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Gauss—Markov Random Fields (GMrf)
with Continuous Indices

Jo€ M. F. Moura,Fellow, IEEE and Sauraj Goswami

Abstract— Gauss—Markov random fields (GMrf's) play an like in transmission lines in corona, in electrostatic paint

important role in the modeling of physical phenomena. The paper sprayers, in electrophotography, and laser printing devices.
addresses the second-order characterization and the sample path Under the right set of conditions, the linear procésg)

description of GMrf's when the indexing parameters take values . . )
in bounded subsets ofR”, d > 1. Using results of Pitt, we give 9IVen by (1) is a Gauss-Markov random field (GMrf). The

conditions for the covariance of a GMrf to be the Green’s function ~covariance R(t;, t2) associated withX(¢) when Y'(¢) is
of a partial differential operator and, conversely, for the Green's  “white noise” is the solution to the biharmonic equation, a

function of an operator to be the covariance of a GMrf. We foyrth-order partial differential equation (pde) (see Section

then develop a minimum mean square error representation for : ) ; ; ; :
the field in terms of a partial differential equation driven by lll). Poisson’s equation, suitably interpreted, is sample

correlated noise. The paper establishes for GMrf's orit? second- Path representatiorof the GMrf X (¢), while the Green's
order characterizations that parallel the corresponding results for function of the biharmonic equation providescavariance

GMrf's on finite lattices. representationfor the GMrf. These parsimonious represen-
Index Terms_BiorthogonaL Gauss—Markov random fie|d3, ta.tions are eXtremely Useful When f|tt|ng mOde|S to data, in
Green'’s functions, innovations, MMSE representation. predicting the natural phenomena variability under different
operating conditions, or when assimilating data obtained from

I. INTRODUCTION measurements.

We are concerned with these issues as well as their con-

W E study representations for signals that describe thgrses: i) set of conditions satisfied by the covariance function
spatial variability of natural phenomena. These signaﬁ(tb t,) of a GMrf X(#); i) when can we associate a GMrf
are commonly referred to as random fields (rf). Randoga(t) with a given covariance functioR(¢y, t,); iii) what is
fields are of interest in a variety of engineering areas. Theye canonicalsample-path representation of a GMrf. We see
may represent the distribution of the temperature in materigls section IV that the canonical sample path representation

or of the concentration of components in process contrgl, hace dependent GMrf's involves correlated noise rather
elucidate the dispersion of atmospheric pollutants in eNVYlan white noise.

ronmental engineering, govern the transport of groundwaterryqqe questions are well understood for one-dimensional

flow in _hydrolpgy, ch_aracterize the mesoscale Circulgtion ?I-D) time-dependent random fields (random processes). It is
ocean flelds.ln physical pceanography, stu.dy thg r:?un_fall Well known that the covariance function of a finite-dimensional
remote sensing, or descrlbe the gray-!evel Intensity in IMaguss—Markov random process (GMrp) exhibits a factor-
processing. Consider Poisson’s equation ization structure, see for example [3, pp. 83-84], satisfies
V2X(t) = AX(t) = Y(b), teT cIR? (1) a second-order linear differential equation, the Lyapounov
) ) N equation, and its sample path representations are linear Ito
completed with appropriate boundary conditions (bc). In (1iffusions. In engineering applications, covariance descrip-
V is the gradient operatory is the Lap,lacean, and is @ tions underline Wiener filtering, while sample path differential
positive integer. In hydrology, Poisson’s equation models &qgels are the departing point for Kalman—Bucy filters. For
perturbation approximation of the steady-state flouiify [1].  Gmrfs x (t) defined onfinite latticesZ, i.e., discrete GMrf's
In physical oceanography, it describes the quasigeostropjfere ¢ € £ c 7¢ 7 being the set of integers, it is well

wind-driven circulation in a mid-latitude oceanic basin, [2],nderstood that the sample path representation provided by

In electrostatic systems, the Poisson equation govems {jg minimum mean-square error (MMSE) description involves
potential field when bulk charge density is a significant SOUrCEy related noise and that the covariance is the inverse of a
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References [7]-[9] are limited to restricted classes of twdéernel Hilbert spaces, Sobolev spaces, Dirichlet forms, and
dimensional (2-D) fields, e.qg., isotropic fields, for which thepartial differential operators. These concepts will be used in
develop filtering and smoothing algorithms. Mathematic&ections Ill and 1V. Finally, Section 1I-C defines the Markov
literature references do address question ii) above but usugipperty for Gauss random fields.

in a general abstract framework. We emphasize ordinary

random fields rather than generalized random functions and Ordinary Random Field

generalized random fields (see Section V). We structure our . .
approach under simpler practical conditions, avoiding in 0?(();; jep)prgraztglrléy n?::r?e(ga; lf;é?()a,alcsglsljl;;r_rﬁz c)sr,net
proofs much of the machinery required by more general '’ 7"

setups, [11]-[{13]. We address the three questions above ¥ rq|ables ()

covariance and sample path representations. We obtain explicit X={X:teTcC IRd}' @)
results on question i), establishing the conditions satisfied by

the covariance of a GMrf. We obtain converse results ofhe covariance isk(t, s). We refer to this family as an ordi-

conditions to associate a GMrf to a given operator, question i}y Gauss random field (rf). We make explicit the conditions
above. These latter conditions are in the spirit of the conditiofg assume throughout the paper.

in [12]. Finally, regarding question iii), we present the MMSE
representation of a GMrf as partial differential equations driven
by correlated noise interpreted in a weak sense. Although we
resort in this section to the framework of generalized random
functions, our partial differential equation model does provide
a representation for a GMrf in terms of ordinary random
fields. Our results regarding the three questions i)—iii) parallelz)
for continuous indices the corresponding results for discrete
GMrf's in [5].

An outline of the paper follows. In Sections 1l and IV,
we study the issues of covariance characterization and MMSE VseaT: Rt s)=0
sample path representation for GMrf's. Section V concludes
the paper. In Section Il and Appendix I, we review the acausal
Markov property in the context of Gauss fields and introduce Vte dI: R(t, s)=0. 3)

background needed to make the paper self-contained. The ) )
major proofs are relegated to Appendix II. For the most part, our results remain valid for more general

setsT'. In particular, they remain true for sets with the segment

property, see [16, p. 36, Definition 2.1]. These sets include
II. GAUSS—-MARKOV RANDOM FIELDS rectangular domains. We restrict ourselves to smooth domains
to remain focused on the relevancy of the results rather than

We consider _thenoncausglor acausal Mar_kov pr_operty. distracting the reader with additional technical assumptions.
This concept is appropriate when dealing with space-

dependent phenomena. It contrasts withusal Markov o ) ) B
associated with time-dependent signals. We distingui§1 Preliminaries: Hilbert Spaces, Locality, Dirichlet Forms
between the two by referring to Markov random fiel(dl4rf) Hilbert Spaces of Random Variable$Ve associate with
when the Markov property is acausal or noncausal and Markthe Gauss random fiel& the following spaces [17]. Let
random processe@irp) when the signals are causal. In ondd(D_) be the Hilbert space of finite-energy real-valued
dimension (1-D), a class of Markov fields that has receivedndom variables
considerable attention recently in the literature is the class of L
reciprocal processes; see [14], [15], and references therein. H(D_) = closure of linear spafX;:t € D_}  (4)
We introduce the definition of acausal Markov in a general
setting in terms ofr-algebras in Appendix I. In this paper,eduipped with the usual inner product and induced norm
we focus attention on linear Markov fields or Gauss—Markov
random fields (GMrf). For GMrf's, the Markov property is
restated in terms of Hilbert spaces, much easier to hand&d
There.are twq types of i;ometrigally isomorphic Hilbert spaces ||Xt||%r(T) = (X, Xt)H(1)- (5)
associated with Gauss fields: Hilbert spaces spanned by collec-
tions of random variables and functional Hilbert spaces. ThetI'. be as in (81) in Appendix | and define the Hilbert spaces
Markov property is rephrased in terms of these spaces. These
equivalent definitions are used in Section Il to characterize Hp =neso H(T.)
the covariance of the GMrf. H(IT_)=nN.o HD_NT,). (6)
We summarize the section. In Section II-A, we state the
basic assumptions on the random field (rf). In Section 1I-B, weefine likewise the linear spacdd (D, ), and H(I'). All
introduce needed background on Hilbert spaces, reproducthgse Hilbert spaces inherit the norm (5).

1) Boset: We consider bounded opesets? ¢ R¢ with
smoothboundarydT'. We refer to suchl’ as a domain.
We letT =T UdT. InT, D_ C T represents an open
set with smooth boundary and D is the complement
in T of the closureD_ = D_ UT. The setsD_ and
D, are referred to asomplementangets.

Dbc: Dirichlet boundary conditions. For simplicity we
fix the boundary conditions (bc) to be of the zero
Dirichlet type

<Xt7 X5>H(T) :E[Xth] = R(tv 3)
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Functional Hilbert Space—RKHSA second space of im- Sobolev SpacesThese are candidate spaces for RKHS of
portance associated with Gauss fields is the reproducing ker@lirf's. There are several types of Sobolev spaces. We focus
Hilbert space™(7") abbreviated as RKH space or simplyon the class of Sobolev spaces of oraer 7' (T"), which
RKHS. This is a functional space associated with the covadre the closure in an appropriate nhorm of the set of smooth
ance R(t, s) of the field. The RKHS is functions with compact support. For other types of Sobolev

spaces see any standard text, for example [18]. They are
H(T) = {u(t) =E[XX: t € T, X € H(T)}. (7) subspaces oL*(T).
To introduce Sobolev spaces, we recall the Schwartz no-
Let w;(t) = E[X;X,], i = 1, 2. The inner product and norm tation of muIti—indices. T_h_ed—tuple of nonnegative integers
in H(T) are o = [oq, - -, ag] is amulti-index of ordefe| = a1+ - +avg.
Given the multi-indicesae and 3, we saya < (3 provided
a; < 3, 1 <1 <d. The operatoD® represents the weak (or

(s w2)ery = E[XLX] distributional) partial derivative operator [19]

and
wil By oy = (wis widseery = E1XG| (8) D*=Dp*--- Dy (13)
] o where D = 9% /dx]".
The spacesi(D_) and(D-) are defined similarly t6{(1) | et 05°(T') be the set of infinitely differentiable functions
and with compact support i’ ¢ R%.
Definition 1.2—Sobolev Spac&he Sobolev space(j*(T)
HT+) ={ue = E[XX3]: t € Dy and X € H(I'1)}. (9) s the closure of2§°(7") under the Sobolev standard norm

These spaces are Hilbert spaces which are isometrically iso- . 12
morphic to the corresponding spaces of rv's. For example, for |2y = J/T z; | Dul? dz. (14)
H(T), the isometric isomorphisn is lor| <
N These Sobolev spaces telescope
J: H(T) — H(T) (10) . ) . ,
X a1y CHETHT) CHR(T) - C HE(T) C HY(T) = LA(T).
(15)

The image of the rvX € H(T) under.J is the function
J(X) = uw=EXX;] € H(T).
The following are equivalent defining properties of an

Sobolev spaces are RKHS and local spaces as we discuss now.
Sobolev Spaces as RKHS and Local Spade=t:Cy(T') re-

RKHS present the set of continuous functions with compact support.
' _ _ Lemma II.1:The Sobolev spac&y*(T), T R?, m>d/2,
RKHS1: Reproducing kernel propertythere is a reproduc- is an RKHS.
ing kernel R(¢, s) This result follows from the Sobolev embedding Theorem
[16]
Vu e H(T) U’(t) = <U'7 R(tv )>H(T) (12) d
Vm > 5 Hy (1) — Co(T). (16)

RKHS2: Pointwise evaluation of functionstn the RKHS,
pointwise evaluation of functions is a boundedhe symbol— stands for continuous embedding, i.e.,

linear functional, i.e., the functional — w(¢) is m
continuous. Vu € Hg'(1): flelg [u(®)| < Cllullr ). (17)

In the spacd.?(T’) of square integrable functions, pointwise ) o
evaluation of functions is not continuous, so propd&igHs2 [N words, (17) states that convergence|in ||, ) implies
is not satisfied inL2(T). Hence, L2(T) is not an RKHS. pointwise convergence. By Propef®KHS2 above, the con-

Sobolev spaces introduced below provide a rich class @tuous embedding of(g'(T') in Co(T') for m > d/2 implies

RKHS's. that the Sobolev spacKj*(T) is an RKHS.
Locality: A useful property of RKHS associated with Lemmall.2: The Sobolev spac(i'(T) is local.
GMrfs is that of locality. The Lemma is proved by a limiting argument. Let the sets

Definition I1.1—Locality [12]: A Hilbert space H(T) is - and.D. it‘nT be complementary with smooth boundary
local if and only if (iff), for every open complementary@ndu, v € Hg (Tnz with suppu C D and Supp v C Dy
sets D, and D_ with smooth boundary, the following two Becauseu, v € Hg'(T), there areu,, andw, in Cg*(T), with

conditions hold: suppup, C D_, supp v, C Dy, un — uw andv, — v, and
1) Locall: If u,v € H(T) such thatsuppu C D_, / o o
- ny, Un = D%u, D%y, =0
suppv C D, then(u, v}y = 0. {tn, vn)re(r) Z - un () D% v () da

loe|<m

2) Local2: If x = utwv € H(T), such thatuppu C D_,
suppv C Dy, thenu € H(T), v € H(T). O In the limit this verifies conditiorLocall in Definition 11.1.
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We verify conditionLocal2 by showing that
[l lrg oy [[oll2ge oy < o0

where, forz € Hy*(T), u, andv are as inLocal2. Because
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The following “honesty condition” is a sufficient condition
for the continuity of the nonnegative forfn ), [12].
Honesty condition: if w,, — 0 in C5°(T) and (u,, — .,
Uy, — Uy — 0 @SN, m — 00, then (u,, u,) — 0.

u and v have disjoint supports, by direct substitution of the

decomposition ofc in the expression for the norm af, the
cross terms are zero. We get

||$||3-(6“(T) = ||U'||3-(6”(T) + ||U||3-(6”(T) < 00.

The last inequality is a direct consequencexoE HZ'(T).

Since each term in the middle side of the equality is no

negative, it is finite, and se and v belong toH§'(7") as
desired.
Partial Differential Operators and Dirichlet FormsThe

C. Markov Property for Gauss Random Fields

The Markov property for Gauss fields is now restated in
terms of H(T") and H(T"). We follow [12].

Definition Il.3—Markov Property for Gauss Fields (GMrf's):
The Gauss fieldX is a GMrf iff: ¥V open setD_ C T with
r§_mooth boundany’

1) Continuity: H(I'_) = H(I'}.) = Hr.

2) Conditional independenc&he projection of H(D,)

onto H(D_) is Hr.

results in Section Ill are in terms of differential operators. Let Recalling from (10) the isometric isomorphismbetween

P be the linear differential operator of ordem

Y (=DDYMaus(@)D? (w)].

lal,|8]<m

Yu,ve C5°(T) : Pu

(18)

The real-valued coefficients,s(z) are assumed to be suf-

ficiently differentiable inT c RY, for example, aqs €
C™R(T), k > 0. In the sequel, we assume thtis positive
and symmetric.

Positivity:
Yue C5(T):
Symmetry:
Vu, ve C§oT):

(Pu, w) 21y 2 0. (19)

(Pu, v)r2(7) = (u, Pv)r2(ry. (20)

In these equations, -)z2(r) is the usual inner product in

L(T).

Associate with the positive, symmetric differential operator

P in (18) the bilinear form

Yu,v e C3(T) :
B(U'v U) = <PU'7 U>L2(T) = <U'7 PU>L2(T)

/ aap(@)D* u(z) DP v(z) de  (22)
T

(21)

lal; [8]<m

>

lal, |Bl<m

(Dau, aa,gD'ﬁsz (T)- (23)

The bilinear formB(u, v) is referred to as a Dirichlet form.
The form B(u, v) is well-defined inCg°(T). In fact, it is
well-defined for allu, v € H(T), see [19, p. 511].

The positive, symmetric densely defined operdtoadmits

the spacesH(T) and H(7'), the continuity condition in
Definition 11.3 is reexpressed as
H(TL) =HT ) =H{T). (24)
Definition 11.4: A Gauss field X which satisfies (24) is
Markov iff the RKHS H(T’) is local.

In this section we characterize the covariance of a GMrf.
The model is specified in Section II-A, namely, the indexing
setT € IR?, d > 1, is boundedopen with sufficiently smooth
boundarydT and the covariancéi(y, z) of the zero mean
GMrf satisfies zero Dirichlet bc’s. We address the following
two questions:

1) Direct: what properties are satisfied by the covariance
R(y, =) of a GMrf.

2) Converse:when is a positive-definite functioR(y, z)
the covariance of a GMrf, i.e., when can we construct a
GMrf whose covariance function is the given positive-
definite functionR(y, x).

The explicit conditions contained in the Theorems and
Corollaries below provide rich classes of examples of GMrf’s.
After each result we comment briefly on the proof. Detailed
proofs are in Appendix II.

Theorem Ill.1: Let X = {X;:t € T C R4, d > 1}, where
T is bounded open with smooth bound@y, be a zero-mean
GMrf satisfying Dirichlet bc’s. LetCg(T") be a dense subset
of its RKHS H(T'). Then the covarianc&(y, x) of the field
is the Green'’s function of the partial differential operaf®r
associated with the inner product of the RKHS.

This theorem considers tltgrect question above and shows

SECOND-ORDER CHARACTERIZATION OF GMRF' S

a self-adjoint extension, see [19, p. 131] and [20]. This is thkat the covariances of GMrf's are solutions to certain partial
Friederichs extension of. In this paper when referring to differential equations. The proof in Appendix Il establishes
the differential operato we always assume its Friederichghat the inner product in the RKHS{(T) is given by a

extension.
Locality and Dirichlet Forms: In [12] and [21], the follow-
ing is proved, see [12, Theorem 4.1 (iii)]. Léf(T) be the

Dirichlet form and then shows that, in a distributional sense,
PR(y, ) is a delta function.
We now provide converses to Theorem IIl.1. The next

closure of C§°(T") under a positive-symmetric bilinear formtheorem states a sufficient condition for the Green’s function
{, ). Assume the space is local. Then, if the bilinear form isf a positive-symmetric differential operata? to be the

continuous, it is a Dirichlet form.

covariance of a GMrf.
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Theorem II1.2: Given a positive-symmetric partial differen-Using the definition of inner product (27) in the left-hand side
tial operator P of order 2m > d with C™(T) coefficients of (28), we get
such that

Vo e C(T): (supld(t))? < (¢, Pd)rery  (25)

then there exists a GMrf whose covariance is the Green’s
function of P.

The theorem is proved in Appendix Il by considerindntegration by parts (and using the fact th@0) = u(1) = 0)
the spaceV(T") which is the completion ofC5°(T) under leads further to
(f, Pf)r2(ry- In the Appendix we show first that(T’) is
a local space. Then, we show it is an RKHS. Finally, weu(-), R(s, -))w1o1))
construct a GMrf withV(7") as RKHS and whose covariance LT 2R(s, )
is the Green’s function of the operatét associated with the = / {—72’
inner product of the RKHS. 0 dt

We now consider Sobolev spaces. Before we state the first

result for these spaces, we recall the notion of strong eIIipticit?,y (28), the. left-hand Sid? ia(s). Then, thg bracket in the
ight-hand side of (29) defines (in a generalized sense) a delta

(u(-), R(s, )21 (o))

_ /0 1 {dz(:) dRE;’ 2 —i—u(t)R(s,t)} dt.

+ R(s,t)} w(t) dt. (29)

e.g., [19]. i
Definition 111.1—Strong Ellipticity: The differential opera- function. Hence
tor P of order2m in (18) is strongly elliptic [19] iff there is 2
a positive constant,, independent of, such that {_W + I} R(s, t) = 6(t — s). (30)

VeeRY, zeT: (-1)™ Aag(2)EXER > colE]P™
=) Z o) okl The boundary conditions follow becaugs, -) € H§([01]),

], |8]=m
(26) and so
where £ = &0 .- £G4 R0,¢t)=R(1,t)=0
Strong ellipticity involves the principal part of the operatorgnd
i.e., the differential terms withe| = | 3| = m. If we can only R(s, 0) = R(s, 1) = 0. 0

guarantee that the polynomial in the left-hand side of (26) is
nonzero foré # 0 then the operator is said to be elliptic. Clearly, we can have one-dimensicnal fields whose co-

A symmetric, elliptic operator is strongly elliptic [16, p. 147, L .
Theorem 10.7]. Also, if the principal part of the operator ha\éarlance satisfies higher order operators. The next example

real coefficients (as in all cases we consider), ellipticity arPo[OV'deS one S9Ch field. .
strong ellipticity are equivalent [16, p. 142, Theorem 10.2(c) Ifjxamr;:e ll.2: Let 'Th:h[o .1] c® agd considef{5([01]).
The next Corollary shows that Sobolev spaces are the RK ow the space with the inner product
of GMrf's.
Corollary I11.1: Let H§*(T) be a Sobolev space witty > (u, W7z (01])
d/2. Let P be the partial differential operator of ordem LT dPu(t) d?u(t)  du(t) du(t)
associated with the inner product. Thef§*(T) is the RKHS _/0 [ di2 di2 At dt
of a GMrf. The covariance of this GMrf is the Green’s function
of the partial differential operatal. Moreover,P is strongly In divergence form
elliptic.
By Lemmas Il.1 and II.2, Sobolev spaces are RKHS’@M V)nz(fo01])
and local. The first part of the Corollary then follows from e dholt
Theorem II.2 by showing that the covariance is the Green's = / {u(t) # — u(t)
function of the operatof. Finally, an equivalence of norms 0 dt
shows thatP is strongly elliptic (see Definition III.1).
The space${]*(T") provide examples of GMrf’s.
Example lIl.1: Let T = [01] € R* and defineH§([01]). . )
In this space, consider the inner product P = <d _d +I> (33)

+ u(t)v(t)} dt. (31)

d?u(t)

W + u(t)v(t)} dt. (32)

The differential operator is now

T\det T de

1
B du(t) dv(t)
{u, V)30 _/0 { & at T u®yo(t)| dt.  27) \which is a fourth-order operator.
. _ In Theorem III.2, the differential operatdf provides the
Let R(s, t) be the reproducing kernel indexed bye [01]. |ocality of the space; it is the dominance of thep norm
Then condition (25) that guarantees tH&{7T) is an RKHS. In the
- next theorem, we assume strong ellipticity of the operator,
Vue C([01]): (ul), Bls, Dwgqor)y = uls)- (28)  yhich gives us theup norm dominance condition.
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Theorem II1.3: Let A be a strongly elliptic symmetric par-
tial differential operator of orde2m satisfying the smoothness
assumption

Vial, [8] <m: aag € C™(T). (34)

2)

Then, for some\ > 0, there exists a GMrf whose covariance
is the Green’'s function of

P=A+ ), A>0.

The proof in Appendix Il follows by showing that the closure
of C§°(T’) by the bilinear form associated wiff is a Sobolev
space. This results by establishing the equivalence of the norm
induced byP and the standard Sobolev norm.

If we restrict attention to operators with only highest order
derivatives and constant coefficients, we can foregothe
the theorem.

Corollary 111.2: Let the operatord be given in divergence

form

A() = (=D D*[aapD? (-] (35)

>

lal=[8]=m

wherea,s = constantlf A is strongly elliptic and symmetric,
then there exists a GMrf whose covariance is the Green’s3)
function of A.

Symmetry follows ifa,s = ago. The proof establishes
again an equivalence of norms and uses a form afd®q’s
inequality whereA in Theorem 111.3 can be taken to be zero
when the assumptions in the corollary hold. See Appendix Il
for details.

Example I11.3—The Biharmonic Operatoiet 7 C 2,

m > d/2 = 1. This implies thatm > 2. ThenH(T) is a
suitable candidate for an RKHS space. An appropriate inner
product for H3(T') is

(u, U>H§(T) = /T [UpzVsz + UyyVyy + 2UzyUsy| dr dy

4)

whereu,., is the second-order derivative with respect:tand
likewise for the other quantities. Using the method in the proof
of Theorem llI.1, it follows that the biharmonic operator

ot a*

84
?= +2——
ozt oyt Ox20y?

(36)

is the operator associated with this inner product. This is
the operator associated with the covariance of random fields
described by the Poisson equation in Section | driven by whites)

noise.

O

Before leaving the section, we make some final comments.

1)

Theorems IIl.2 and II1.3 as well as Corollaries 11l.1 and
I11.2 describe conditions on the differential operatBr
under which we can associate with it a GMrf. They are
in the spirit of Pitt [12, Theorem 5.4]. These are all
converses to Theorem l11.2. Pitt's Theorem 5.4 makes
the assumption that certain norms are equivalent. Our
converses state conditions under which the norms we
work with are equivalent, in particular, for the norm
induced by the operator to be equivalent to the standard
norm of a Sobolev space. In contrast, Theorem Ill.1 is
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a direct result that describes the covariance of a GMrf
as a Green'’s function of a partial differential operator.
These results hold for both nonhomogeneous as well as
homogeneous fields.

Covariance smoothness of ordes. Under the above
results, it is clear that the covariance of the field asso-
ciated with the operatoP has generalized derivatives.
Moreover, under the assumptions of Theorem 111.3, as
well as Corollary 1.1, the norm induced Wy, P-) 21

for P of order2m is equivalent to the Sobolev norm,
and hence the RKHS associated with the GMrf is the
Sobolev spacé{j*(T). Then, we can make the much
stronger statement that the distributional derivatives of
R(t, s) of order up tom are L?(T), i.e.,

Smooth covariance:

V]a| <mandVt € T: D*Ry(s) € L*(T). (37)
Since R.(s) spansH (1) = H{(T), m is the largest
integer for which (37) holds in this case. Whemn is
the highest nonnegative integer such that a covariance
satisfies (37), we say that the covariancesisooth of
order m.

Order of the GMrf. McKean [10] introduced the notion
of (normal) generalized derivative of a field. The order
of the field ism if these generalized derivatives are
continuously differentiable up to order. — 1 and if

the o-algebra generated by the generalized derivatives is
the minimal splittings-algebra. In this cas&; contains
information about the generalized derivatives up to order
m — 1. Pitt [12] shows that the order of the field is half
the order of the associated operatarlf the covariance

is smooth of ordern, see (37), the field is of order

in the sense of McKean and Pitt.

Example IIl.1 is interesting because it shows that our
results include examples drawn from a class of GMrf's
which has been the subject of recent attention in the
literature. In the example, the differential operatdiof

the field is second-order. Hence, the field is a first-order
GMrf in the sense of McKean and Pitt. This means that
the field is sharp Markov, see Appendix |. The splitting
c-algebra, see (85) in Appendix |, has no derivative
information, it is generated by the values of the field at
the boundary, i.e3X([") = Xr. This 1-D field is referred

to in the literature as a reciprocal process [14], [15].
The results in this section do not cover fields wHen 2

and the covariance operatét is order2, i.e., m = 1.

A prototypical example is the Laplacian operator on
the plane or higher dimensions whéh = V? = A.
The corresponding field is the Nelson free field, the
basic building block of Euclidean field theory, a branch
of Quantum Physics, [22], [23]. Free fields describe
noninteracting particles but are basic to the study of the
more complex quantum systems of interacting particles.
In Statistical Mechanics, the free field is known as the
Gauss field. The Sobolev space associated with it is
H§(T). Although a local space, this is not an RKHS
for T c IR% d > 2, since, in the Sobolev embedding
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Theorem, form = 1, the conditionm > d/2 is not function (grf). The grf is indexed by th€g°(T") functions. If
verified whend > 2. The preceding theorems cannotve fix w € & and let¢ € C5°(T) vary

be applied to the free field. To show that the inverse -

of P is still the covariance of a GMrf one needs the ot C57(T) — R

theory of generalized random fields. Generalized random ¢ —Eu(9) (38)
fields, which are to be distinguished from generalized

random functions, see [13] and Section IV, are index e g_et a sample path_. The sample path is a continuous_ ”near
by distributions. Nelson showed that the dual spa gnptlonal oano(T), 1.€., an e'e"T‘e”t (.)f the space Of.d'sm'
utions?’. Following usual notation with random variables,

ye omit thew dependence and denote the grfdfy).

Molcan and Rozanov [11], [13] study conditions for the
arf {&(¢):¢p € C5°(T)} to be a Gauss—Markov generalized
random function (GMgrf).

We now associate a grf with an ordinary random field.

The previous section discussed covariance-based represeirf's and Ordinary rf's: Let
tations for GMrf's. In signal processing, the covariance is often
obtained directly from the data. An alternative representation X={X, e L*(Q, A P)telC ]Rd}’ dz1
which is very useful in many applications in control, cOmy hoynded, be an ordinary (weakly) continuous random field
munications, or signal processing is a differential/difference
equation driven by noise. We study in this section such / E[X,)? dt < . (39)
models. We refer to them as sample path representations. T

When fitting minimum mean-square error (MMSE) modelgye a550ciate with the X a grf by the following construction:
to (time-dependent) random processes, the canonical sample

path representations that result are white-noise-driven models. Ve CS(T): &)= / X (¢, w)g(t) dt. (40)
In contrast, as will be discussed in this section, with spatial 0 T ’

dependent data, canonical MMSE sample path representati?% spaceH(T) is the closure of the linear span of the
lead to noise with a very specific correlation structure. Thi ). Kallianpur and Mandrekar [24] show thaX is a

correlated noise is related to the concept of biorthogo auss—Markov random field (GMr) iffé(¢): ¢ € C3(T)}
field. In this section, our main focus is to derive a samp(jg a Gauss—Markov generalized random function (OGMgrf).
path representation for ordinary random fields as discusse 'rBiorthogonaI Gr—Definition: To study the sample path
Selctlgn ”,'A’ R;);geneégllzed ra"ol'.‘)".‘ funcuons.. | di description and to establish results that are the analog to the
n e_ctlon ~/A We dISCUSS preliminary material regardingyic o (e sample path results in [4] and [5], we introduce the
generalized random functions as introduced by Molcan [11] i o the biorthogonal generalized random functiorof

see [13.]’ ar_ld b|orthc_)gongl f|e|d_s. Our f'!"a' result on thi grf £ [13]. The biorthogonal gr£* is the continuous linear
subsection is a partial differential equation for the GMrunctionaI

driven by the biorthogonal field. This equation is in terms

of generalized random functions. Section IV-B introduces the & C5(T) — L2(Q, A, P)

MMSE predictor representation for the GMrf. Finally, Section W — (1, &)

IV-C provides the sample path representation of the field in

terms of ordinary random fields rather than generalized randoepresented by*(+), which is uniquely determined by the
functions. biorthogonality condition

HyH(T) of HY(T) is the appropriate indexing spac
and that the corresponding field is in fact a generaliz
random field known as the Nelson free field.

IV. MMSE SAMPLE PATH REPRESENTATION

A. Preliminaries: Grf's Biorthogonal Fields Vo, € CF(T): E[E()E"(v)] = /T P(t)p(t) dt.  (41)

A good _reference for this sgbsecuon IS [1.3]' For smooth and bounded sets, the closure of the random
Generalized Random Functiorithe setup is the same as

described in Section II-A. LeL?(f2, A, P) be the set ofL.2 variables¢’ (¢), ¢ € C5°(T), is H(T'). When this holds, the

. ' . . biorthogonal grfé* is often referred to as the dual grf.
random variables defined on the underlying probability SpaceBiorthogonaI Grf and Markov Property [13]:The grf ¢ is

d . .
ﬁgé;?, rﬁe)lb:giitgg C R*, bounded, and consider a Contmuouﬁ/larkov itt ¢+ is local, i.e., iff

V¢, ¥ € C§°(T) such thatsupp ¢ N suppy = 0

& (D) — L (2 A P) = E[ ()W) =0. (42)

¢ — (o, &)
The linear functionalé maps each fixed) into the mean- ][2 “t,:e SI\éI:rI((;);/) case, the expectation is given by a Dirichlet
square-integrable random variablg,(w) = (9, &) '

L*(Q, A, P). For eachw € €2, we obtain a real numbér. oy / a ]
) Y ! E = a3()D*d(t) D7 (H)1p(t) dt.
The linear functional is referred to as a generalized random[S (9)67(W)] T |0‘|%|:<7" Gap(HD GO D (e (E)

1We deal with real-valued random variables. (43)
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Biorthogonal Grf RepresentationConsider the ordinary
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PDE for GMgrf: Next, we see that the GMgrf satisfies a

GMrf X ={X;:teTC ]Rd} and its Hilbert spaces of rv's partial differential equation. By the isometry between the two
H(T) c L*(Q, A, P) and RKHSH(T'), with C§°(T') dense spaces, the following equality of the inner products holds:
in H(T). These spaces were introduced in Section Il. With

this field, we associate the GMgrf given by (40). Since
¥ € C°(T) CH(T)
by the isometric isomorphisni of (11), for someX € H(T)
P(t) =

E[XX]. (44)

Kallianpur and Mandrekar [24] show that the random eleme

X € H(T) in this equation is
§(y) =

This is easy to verify. Assume (45) and (40) &ip). Then
Vo, € C5(T)

(45)

o lx [ xouoa] @
_/ X(Dg(t) dt (47
- /T Y()(t) dt (48)

By using (45) in (46), we got (48) which is the biorthogonalit

condition (41) that defines uniquely the biorthogonal §ff

In these equations, interchanging expectations with integration
is valid because Fubini's theorem applies as a result of (39).

Biorthogonal Grf and/~!: We now establish a relation
between&* and the inverse of the isometric |somorph|sntlhe boundary datar(I')
J between the spaceX(7") and H(T). This isomorphism
and is given by (10). Each
X € H(T) c L*(Q, A, P) is mapped byJ onto a function

was introduced in Section I,

f) € H(T)

J(X) — [f(t) = E[XXy]. (49)
Since Cg°(T') is dense inH(T'), take+(t) € C5°(T") and
consider its pre-image undef. In terms of the inverse/ 1,
let

“Hy)=X (50)
We then have
Vo, € CSO(T)-
E[e() T2 (¢)] = / X(t ety dtX]  (51)
/ [XX] (2) dit (52)
- / (1) (53)

Equations (51)—(53) say thdt‘1|cgo(T) is biorthogonal tcg,

EE™ ()" ()] = (€ (9), £ () m(r) (55)
=(¢, V)n(r) (56)
=(¢, PY)r2(1) (57)

whereP is the differential operator defining the inner product
in the RKHSH(T'). The last equality is a consequence of the
e}ct thatH(T") being the RKHS of a Markov field is a local
space and so its inner product is given by a Dirichlet form. We
assume thaPC§°(T) C C3°(T). Then (see [13]) the GMgrf
satisfies the following stochastic partial differential equation
(PDE):

V¢ e C(T): (58)

§(Pp) =& (9)-

We develop now a representation for this abstract equation.

B. MMSE Field

The goal in this subsection is to present a relation between
the biorthogonal grE* and the minimum mean-square predic-
tion error field. This result is then used in the next subsection to
>pler|ve a representation for (58) in terms of ordinary random
fields.

Con3|derD and D, to be the usual complementary sets
ith boundaryT" in set7 c RR®. Let X, be the minimum
ean-square error (MMSE) prediction of the fie\d given
and the data inD_, i.e.,
X = E[X,[S(D-)] = E[X,[Zr]. (59)
The second equality follows from the Markov property of the
field. By Gaussianity, conditional expectations are computed
by orthogonal projections

Xt = HHF (Xt)

wherells is orthogonal projection on the subspateRepre-
sent the MMSE prediction errors by

We consider the relation between the biorthogonal &rf
and the MMSE fieldn, = X; — X;. This leads in the next

subsection to a representation for (58). Introduce the Hilbert
space generated by the error field

fIO(DJr):closed linear span dfn, =X, —E[X¢|2r], t€ Dy}

(62)

hence by the uniqueness of the biorthogonal grf, this states that

I gy IS £ (54)

and likewise forfI(D_). Recall the definitions o (D, ) and
H(D_), see (4). We have the following decompositions.



1568 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 5, SEPTEMBER 1997

Lemma IV.1: H(Dy) = ﬁo(Di) @© Hr. C. Canonical MMSE Sample Path Representation

Proof of Lemma IV.1:Follows by orthogonality that Riesz Representability of1: We derive the representa-
H(D,) L Hr. Also, Ho(D,) @ Hr C H(D,). To show tion for the partial differential equation (58) fere D,. By

equivalence, pickk;, ¢ € D, UL Then using Theorem IV.1, sinc€5°(D, ) C Ho(Dy)
Xt :Xt—Xt—f-Xt V¢€ CSO(D+) J_l(¢) 6ﬁ0(D+)

which clearly is inHo(D, )@ Hr. Any X € H(D, ) is either Using (54), we conclude that

X, for somet € D, UT or the limit of a sequence of such, (p) = J ) = £%(¢) € fIO(D+).

which proves the decomposition in Lemma IV.1. O
From this Lemma, the following decomposition holds:  Hence, either

£5(¢) = Xy — E[Xy|o(D)], te Dy

or the limit of such
Now consider the RKHSH(T) and let Ho(D4) be the .
subspace of element§ € H(7T") with suppf C D,. By §(¢) = ,}E}go [Xt, — E[
locality of the space,

H(T) = Ho(D_) ® Hr @ Ho(Dy). (63)

o(D)l,  teD,.

This representation for the biorthogonal grf is not totally
satisfactory. We want to represefit(¢) as resulting from an
integral operation on the prediction errors. What is needed is
Riesz-type representability, see for example [25],.fot. We
Theorem IV.1: The image ofH(D..) under the isometric address this issue next. We first introduce this notion formally.
isomorphism/J is Ho(D+ ), i.e., J(Ho(D+)) = Ho(D4). Represent byL;(z) the space of absolutely integrable
The proof in Appendix Il proceeds in three steps. WRinctions with respect to measuye and by L..(u, X) the
show: i) J(Ho(D;)) C Ho(Dy); i) J(Ho(Dy)) is closed space of bounded functions with values in the Banach space
in Ho(Dy); iii) the orthogonal complement ifto(Dy) of .
J(Ho(Dy))is the empty set, i.eHo(Ds)oJ(Ho(Dy)) = 0. Definition 1V.1: A bounded linear operator
The last step shows that the two spaces are equivalent and the
conclusion of the theorem follows. T: Lo(p) — &
Remark: By Theorem IV.1, the range of the inverse !
of the isometric isomorphisny is

H(T) = Ho(Dy) & H(D_ UT). (64)

where X is a Banach space, is Riesz representable if there
existsg € L..(p, &) such that

~Y(Ho(D4)) = Ho(Dy4). (65)

rf= [ fodu  feLiw)
MMSE Predictor: We can use Theorem IV.1 to get a rep-
resentation for the MMSE predictor. By orthogonality From [25, pp. 63 and 64, Theorems 5 and 6], we have that
Vs t€ Dy ¥ if X_has a boundedly complete Sc_hauder basis, then a linear
’ + T ¢ continuous operatof: L; () — &' is representable.
sincev s € D, the MMSE error field, € fIO(DJr) andvt In the problem with which we are concerned
D, the MMSE predictorf(t € Hr and by decomposition (63) JL Ho(Dy) — X = fIO(D+)

these spaces are orthogonal. Then, letsfot € D
_ S so thatX = Ho(D,) is a Hilbert space. For a separable
f(s)=J(n:) and g(t)=J(X). Hilbert space, any orthogonal basis is a boundedly complete
By Theorem IV.1,supp f C D,. By isometry of J and by Schauder basis. Thus* will be Riesz representable if we can

orthogonality, it follows that show that it is continuous. We first show thais continuous
and then invoke the open mapping theorem to show fiat
(fs 9wy =f, Pg)rzr) = 0. is continuous. We need the additional assumption.

Assumption:Let Dy C T, D, and7 bounded subsets of
Since this is true for every’ € Ho(Dy), we have that the rd 5nq |etds be the Lebesgue measure Bn\We assume that
imageg underJ of ¥, is the (weak) solution to Ho(Dy), which is closed as a subspaceld¥(dt) and which
Pg=0 in D, (66) is a subspa_ce ok, (dt), is closedas a subspace df; (dt).
We considerJ

with boundary conditions 7 ffo(DJr) s Ly(dt)

Dgg = R(tv ')7 |Oé| <m (67) . ~

as a linear operator from the closed subsp#tg D, ) of
where D¢ are derivatives along normal directions to thd.?(2, (D, ), P) to a closed subspace @f; (dt). Call this
boundary an®m is the order of the operataP. latter subspacé).
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Theorem IV.2: Let Equation (72) states the orthogonality condition between the
GMrf X (¢) and the fieldg(¢). The fieldg(¢) is the continuous
/ E[X7]dt < oc. index equivalent of the MMSE-correlated predictor noise in
r the discrete case, see [4] and [5].
Then We compute the covariance of the prediction error noise

“L Yy ¢ Ly(dt) — ro(D+) g(t, w). For that, we recall (57)

is continuous. _ E[E* ()6 ()] = (&, PY)re(1). (73)
Proof of Theorem IV.2:The map.J: Hy(D;) — YV is

1—1 and onto (since is an isometric isomorphism). We showSubstitutingé* in (73) by the value given by (69), we get

that J is continuous. The conclusion of the theorem follows

by application of the corollary to the Open Mapping Theoremg¢x(4)¢*(¢)] = EU P(t)g(t, w)dt / g(s,w)i(s) ds}
in Rudin [26, p. 49], that shows thefi~! is continuous. T T

(74)
O ey = | B = [ [ ettt gt it de
< ([ Vexaa)(ver) 79
(by Schwartz inequality Equations (73) and (75) state that, in a distributional sense

</ V XQW) YNz, Elg(t, w)g(s, )] = P8(t — s) (76)

By the last step/ is continuous. So is its inverse by the 0peflg  that the covariance gft, w) is formally equivalent to the

mapping theorem as desired. . O differential operator” whose Green’s function is the GMrf
Remark: Since by Schwartz inequality covariance.

2
[ / \/E[Xf]dt} <T / E[X7?] dt
T T V. CONCLUSION

the condition in Theorem 1V.2 is weaker than the finite energy The paper considered the covariance and the sample path
requirement (39) on the field. representations for Gauss—Markov random fields indexed by
MMSE Sample Path Representatiowe obtain the repre- continuous indices in higher dimensions. The paper satisfacto-
sentation for the biorthogonal grf in terms of the error fieldily parallels the corresponding discrete GMrf results, see [5].
By Theorem IV.2 and by Riesz representability, see Definitiothe covariancek(y, =) of the GMrf is the Green'’s function of
IV.1, there exists a family of random variablet, w) such a positive symmetric formally self-adjoint partial differential

that for eacht € 7', we haveg € L..(dt, Ho(D4)) and operator P
) =T""¢ (68) PR(y, @) = 6(z - y) (77)
= t)g(t, w) dt. 69
/T #t)g(t, w) (69) with appropriate boundary conditions.

The order of the field with continuous indices is half the
order of the differential operataP.
Ve C&(Dy): &(Po) =& (9) Secondly, the MMSE sample path representation for the
GMrf is formally

This is a representation of the abstract (58)

as

[ X opsnii= [ g wpwa @0 PX =g (78)

Equation (70) is the weak formulation of

PX(t, w)=g(t, w). (71) E[X(t)g(s)] =6(t — s)
and

where, by (72) and (76)

Of course, by the biorthogonality condition (41)

()] = d b(s)d
Sl EU Al () de / 9(s, w)P(s) 8} The random input noise field is orthogonal to the GMrX

_ / b(5) and is correlated, with covariance acting like the differential
operatorP. These results are in a certain sense canonical. The
operatorP appears in the field covariance description (77), in
the MMSE representation (78), and defines the correlated noise

E[X (¢, w)g(s,w)] = 6(t — s). (72) covariance (79). We refer to it as the field canonical operator.

Elg(t)g(s)] = Po(t - 5). (79)

or, formally,
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APPENDIX | Remark: The Markov property in Definition A.1 requires
ACAUSAL MARKOV PROPERTY more than simply boundary data about the field. Besides
Let T, D_, D, andI be as in Section Il. Following Pitt information about the field on the boundafy X contains
[12], we introduce the followingr-algebra: derivative information about the field, see McKean [10] for
details. Thes-algebraXr is referred to in the literature as
YD_)=0c—-{X;:te D_} (80) the germg-algebra, [27]. This is in general different from the

c-algebra generated by the boundary data
where ¢ — {-} stands for thes-algebra generated by the _ )
collection of elements included if}. Likewise for X(D, ). M) =o—-{Xutel} (88)
Let X be a metric inIR?, for example, the Euclidean metric.which is the so-called sharpalgebra. Conditions under which

Define the distancée,i(x) from a pointz to a setA as the germ and the sharp-algebra are equivalent are studied
_ in [27]. The Markov property with respect to the sharp field

da(z) = ;gg Mz, y)- is called sharp Markov. The sharp Markov property may lead

to degenerate fields. For example, sharp Markov with respect

For ¢ > 0, introduce to open discs with the additional assumption of isotropy, i.e.,

with a covariance which depends only on the distance, leads

Pe={teTtdr(t) <e}. (81) to constant fields, see [28].
The s_etl“E is a neighborhood: of I'. Further, define the APPENDIX I
following o-algebras: PROOES
Y _ =Neoo—{XpteD_nl} (82)
Sy = Neso 0 — {Xy:t € Dy N} 83) Proof of Theorem I11.1
Sr = Neso 0 — { Xyt € T} (84) By the Markov property, see Definition 1.4, the RKHS

‘H(T) is a local space. We now verify that the inner product
We introduce the Markov property in terms of splittimg  (; )x(r) Satisfies the “honesty condition” stated in Section II-
algebras. We discuss these first. B. If H(T) satisfies the “honesty condition,” then, as stated in
the same subsection, the inner product is given by a Dirichlet
splitting o-Algebra form. An ir!ner product satisfies the “honesty condition” if
un(t) — 0in Cg°(T) and
Let 7 andG be sube-algebras of ther-algebra’. Let S be
a sube-algebra ofF. Following McKean [10] and Pitt [12], (Un = Um; Un = Um)2(T) — 0
F andg split overs, or S'is a splittingo-algebra ofZ” and  implies that(u,., un)s ) — 0. Recall the isometric isomor-
G iff 7 andG are conditionally independent givef There phism J between spaceH (T) and H(T), see (10), and let
is a minimal splitting algebra, [12], given by u(t) = J(U,) = E[U,X,]. Sincew,, — 0in C5°(T), we have
) EU,X;] — 0forall t asn — oo. Thereforel/,, tends weakly
So = o = {E[g|¥]: g bounded an@j-measurablp  (85) to[O in H](T). Also, since the,, are Cauchy irt{(7"), through
the isometric mapping —*, we see that the correspondify
are Cauchy inH(T). Therefore,H(T") being completel/,
FNGCS. (86) converges strongly to som& in H(T). Since strong limit
implies weak limit, when both exist they have to be equal,
The acausal Markov property is now defined, see [12]. Wid sol/ must be0. Therefore,U/,, converges ta) in the
refer to it simply as the Markov property. metric of the inner product irH(7"). Hence, again by the
Definition A.1—Markov PropertyThe field X is Markov isometryJ, J(U,) = u, converges td) in the metric of the
iff for every open setD_ C T" with smooth boundary’ the inner product inH(T), (un, un)# ) — 0, Which verifies the
following two conditions hold: “honesty condition.”
1) Continuity: ¥ = X_ = X,. We have shown that the inner product is given by a Dirichlet
2) Minimal splitting field: Conditional independenceX;  form, see (22). So
is the m|n|r.nal. spllttmg glgeprg cb(Dy) andX(D_). ¥ 9 € H(D): {f, 9)wuiry
From the continuity condition, it is clear that the boundary

For any splittings-algebrasS, we have thatS; C S. Also

o-algebraXr is contained in the “pasts-algebraX(D_) and = Z / aap(2)[D* f(2)][D” g(x)] dz. (89)
in the “future” o-algebraX(D, ) and so in their intersection. lal, 18]<m ” T
From (86), we then have By the reproducing kernel properfKHS2 of H(T')

Yr € X(D-)NX(Dy) € So @7 Sl =0 Ry, Nwa (90)
where S, is the minimal splitting-algebra of(D_) and of = Z / aas(z)[D* f(2)][D° R(y, )] dz.
Y(D4). The conditional independence condition states that laf, 181<m 7T

Yr is in fact the minimal splitting field. (91)
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Integration by parts of (91) leads to This equation says that ff, is Cauchy under the inner product
B norm (-, P-)r2(r), then it is Cauchy under theup norm.
fy)= Therefore, (25) holds for alf € V(T'), showing that pointwise
o] 1o 5 evaluation of functions is a linear continuous functional on
/ f@Y Y. (1) D [aus(@)D” R(y, ®)] pdz.  (T) and the spac®(T) is an RKHS.
T lee], 18]<m Construction of GMrf: We associate with the RKHB(T")
(92) a Gauss field. The covariance of the field is the reproducing
. _ . _ kernel of V(T'). We determine this reproducing kernel. Let
Recalling the definition of the operatdt in (18), (92) gives R(y, x) be the Green’s function aP. In a distributional sense
fy) =(f(), PR(Y, ) 2(1)-

PR(y, ) = 6(z - y). (94)
In a distributional sense, this defines the covariance as the
fundamental solution of From this property ofR(y, ), it follows
PR(y, z) = 6(z ~y). (93) VeEV(T): fly)=(f(), PR(Y, Nrecry.  (95)

The bc's associated with (93) are the values of the fieighe right-hand side of this equation can be written in terms
covarianceli(y, x) at the boundary, see (3), i.e., zero Dirichlegt the inner product in/(T). We then have
bc's. This proves the Theorem. O

fly) ={f(), Ry, D). (96)
Proof of Theorem I11.2

Let V(T) be the space which is the completion G§°(T) A standard limiting argument shows th&f¢, s) satisfies zero

under(f, Pf)zz2(r). The proofis in three steps. First, we shoinriChlet boyndary conditions, Sinc(s) < M) (itis wel
that V(T) is local, then that it is an RKHS, and finally, we nown that it spans the RKHS) we can fifigl € Cig (T) such
associate With/(T) a GMrf. that f,, — R.(s) and soR,(s) = 0 for s € 7. This shows

V(T is Local: We verify the two conditiond.ocall and that the Green’s function aP is the reproducing kernel of the

Local2 through a limiting argument. LeD_ and D, be RKHS H(T") and hence the covariance of the field.

: - Finally, by the smoothness of?, the kernel R(t, s) is

complementary_setsaand «, v € V(T') with suppu C D_ [N 2SS
D. B 0o . : h smooth of ordemn (see (37))..Then, the con'u_nuny condition
andsuppv C Dy BecauseCi=(T)) is dense im(T), there (24) follows by arguments similar to those in [12] (see the

are sequences,, — u andwv, — v, suppu, C D_ and : .
- : ; proof in [12, p. 374, Theorem 3.3]). Hence the RKHS being
supp v, C D4. For each of these, by direct computation local, the field is Markov. O

<Ufn7 Un>V(T) = <U'n7 Pvn>L2(T) =0

implying in the limit that Proof of Corollary IIl.1

By the Sobolev embedding, see (16), Sobolev spaces are
{u, V)vry = (u; V) r2) =0 RKHS. By Lemma I1.2, Sobolev spaces are local spaces. Then,

which verifies conditionLocall. For Local2, let f € V(T), by Theorem III.2, the covariance is the Green'’s function of the

f = u+wv, with supp » andsupp v as inLocal2. Then, because Operator?” associated with the inner product f;' (7). To

u and v have disjoint supports, show thatP is strongly elliptic, we recall the fact that if two
) norms generate the same topology they are equivalent. The
||f||V(T) = <f7 Pf>L2(T) norms

= <U,, PU/>L2(T) + <U, PU>L2(T) < o0

2
which ShOWS(U,, PU'>L2(T) < oo and <1}7 PU>L2(T) < 0, || : ||H6’L(T) and <U,, PU'>L2(T)

henceu, v € V(T') as desired. This shows(7) is local.

V(T) is an RKHS: We show that the pointwise evaluatiorP€eing the Sobolev space standard norm and the norm induced
of functions f € V(T) is a continuous linear functional. ThisPy the inner product, respectively, generate the same space,
follows if (25) holds for allf € V(T), not just forf € Cg°(T). Nnamely, the Sobolev spaé¢;’(T'), so they are equivalent. By
We use a limiting argument. Let € V(T). Then there exists the equivalence of these two norms, see for example [19, p.
a sequence’,, € C5°(T) such thatf,, — f. From (25), since 261, Corollary 5.9.4], we can bound below the norm induced

the f, are in C5°(T) by the inner product by the Sobolev standard norm. For some
c >0
sup | fn — fm|2 <A(fn = fm)s P(fr — fm)>L2(T)-
2
The spaceV(T) is closed under:, P-)2(py. Since f, € el ey < (s Prideay.

C5°(T) is a convergent sequence, it is Cauchy in the sense of . . .
(-, Py (7. SO, for largen, m there exists a small > 0 that ﬁus implies, see [16], that the operatBris strongly elliptic.

bounds above the right-hand side of the previous equation, i.e_l,:inal_ly,. the continuity chdition (24) follows by an argu-
ment similar to that used in the proof of Theorem 111.2, and

sup | = fol® <{(fa = F)s P(fa = fr)) 12y < € the field is Markov. O
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Proof of Theorem 111.3

In this proof we need the concept of coercivity.
Definition A.2—Coercive Bilinear FormLet Hj*(T) be a

Sobolev space of orden. A bilinear form B(u, v) defined on !

HEY(T) is coercive iff there exist constanks> 0 andc¢ > 0

such that
Garding’s inequality:

Vu € Hy'(1): Bi(u, ) = B(u, u) + k{u, u)r2(1)
> el [ul e 7y 97)

where || - |2 (r) is the Sobolev standard norm g (T)
given by (14).

Let the operatod be given as in (18) and associate with it a

bilinear forma(u, v) as given by (97). Os°(T) x C§°(T),
define the bilinear form

B)\(U'v U) = B(U,, U) + )‘<U'7 U>L2(T)- (98)
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step, (102), uses the boundedness condition on the coefficients,
see (99). The two following steps, (103) and (104), are appli-
cations of Schwartz inequality in a discrete and continuous
parameter setting, respectively. The last equality follows by
identifying in the first term of the right-hand side the Sobolev
norm and bounding the second term by this norm.

We now consider the reverse inequality. Garding’s Theorem,
see Wloka [16, p. 291, Theorem 19.2], states that, foC
IR* bounded, if the bilinear formB(u, v) has continuous
coefficients up to the boundary, i.e., for al|, || < m,
aqs(z) € C(T), the strong ellipticity of” onT is a necessary
and sufficient condition for the coercivity of the bilinear form
In our case A is strongly elliptic with smooth coefficients,
so that the bilinear formB,(u, v) is coercive. Hence, there
exist constantg: and ¢ > 0, such that

Vu € Hg'(D): cllullip: < Ba(u, w), — A>k  (106)

By the smoothness of the coefficients .4f and the fact that This is Gdrding’s inequality, for example see [16] and [19].

T is bounded there is a positive consté@ntsuch that

Vo, 1 suplaas(z)| £ C.

zeT

(99)

We show that the completion of5°(7") by the bilinear
form B, generates the Sobolev spak&*(T’) by proving the
equivalence of the standard Sobolev norm defined by (14)
the norm induced by the bilinear ford, (u, v).

We first show that the norm induced &, is dominated
by the standard Sobolev norm.

|Ba(u, u)|
/ Z s () [DPu][D*u] d.'l‘—i—/ 22 dz
la, |8]<m
(100)
/ |aas(®)| | DPu|| D% dx—i—/ Aul? dz
T al,l8l<m T
(101)
SC/ Z | D" Z | D% | dx
T \islgm o] <m
+/ Mul? de (102)
T
SC’m/ S D% [N Do da
TV sigm la]<m
+)\/ |u|? dz (103)
T
o /Z |DPu|? de /Z | Dow|? dee
B8<m a<m
+A/ |uf? de (104)
(c +)‘)||u||HW(T) (105)

Equation (101) follows from (100) simply by bringing the
magnitude signs inside the sum and the integrals. The next

afy

Putting together the two inequalities (105) and (106)

ol fullf < Ba(u, w) < (C" + N3 (107)

Therefore, the norm induced h#, and the standard norm

[l - ||Hm are equivalent. Hence, the closure @§°(T") under
generates the Sobolev spa&@* (T’) of orderm.

et R ) be the Green’s function oP = A + AI and

takeu € CO ( ). The inner product if{g*(T) is the inner

product induced by the bilinear form in (98). Then

(u(-), Ry, N =Ba(w(@), Ry, x)) (108)
= (u(x), (A+ ARy, ®))r2(r) (109)
=u(y). (110)

The third equality follows becaus&(y, ) is the Green’s
function of (A + AI') and so(A + AI)R is in a distributional
sense a delta function. But equalities (108)—(110) state the
reproducing kernel property. TherefotB(y, z) is the repro-
ducing kernel and so it is the covariance of the associated
GMrf. O
Remark: The proof of the Theorem uses only the bound-
edness of the coefficients in the associated bilinear form, see
(99). Given the boundedness of the domain, this requires only
continuity of the coefficients of the bilinear form, not the
stronger condition in (34). O

Proof of Corollary 111.2

For A as in (35), which is restricted to the highest order
terms, it can be shown that, ina@&ling’s inequality (106), see
[19, p. 514, proof of Theorem 7.7.2} can be taken to be
zero, and so

ol [z < {u, Au)r2(r).- (111)

Likewise, by arguments similar to the ones used in the proof
of Theorem II1.3, there is a sufficiently largé such that

(u, Au) 2y < Cllullfi (-
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Therefore, the norm Equations (114) and (118) imply that
lull? = {u, Au)rz(r) y=0
. : : which in turn implies
is equivalent td| -||${W(T) on 15 (T). The reproducing kernel P
is the Green’s function of the operatdrgiven by (35). O f(#)=0.
This proves the Theorem. O

Proof of Theorem IV.1

We mentioned below the theorem that the proof follows in

three steps. B
We prove that/(Ho(D4)) C Ho(D4). From the definition
of J, see (49), for some € T

J(Xy = E[X,[2r]) = J(X: = E[X[%(D-)])

(1]
(2]

(3]
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