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Gauss–Markov Random Fields (GMrf)
with Continuous Indices

José M. F. Moura,Fellow, IEEE, and Sauraj Goswami

Abstract— Gauss–Markov random fields (GMrf’s) play an
important role in the modeling of physical phenomena. The paper
addresses the second-order characterization and the sample path
description of GMrf’s when the indexing parameters take values
in bounded subsets of<d; d � 1. Using results of Pitt, we give
conditions for the covariance of a GMrf to be the Green’s function
of a partial differential operator and, conversely, for the Green’s
function of an operator to be the covariance of a GMrf. We
then develop a minimum mean square error representation for
the field in terms of a partial differential equation driven by
correlated noise. The paper establishes for GMrf’s on<d second-
order characterizations that parallel the corresponding results for
GMrf’s on finite lattices.

Index Terms—Biorthogonal, Gauss–Markov random fields,
Green’s functions, innovations, MMSE representation.

I. INTRODUCTION

W E study representations for signals that describe the
spatial variability of natural phenomena. These signals

are commonly referred to as random fields (rf). Random
fields are of interest in a variety of engineering areas. They
may represent the distribution of the temperature in materials
or of the concentration of components in process control,
elucidate the dispersion of atmospheric pollutants in envi-
ronmental engineering, govern the transport of groundwater
flow in hydrology, characterize the mesoscale circulation of
ocean fields in physical oceanography, study the rainfall in
remote sensing, or describe the gray-level intensity in image
processing. Consider Poisson’s equation

(1)

completed with appropriate boundary conditions (bc). In (1),
is the gradient operator, is the Laplacean, and is a

positive integer. In hydrology, Poisson’s equation models a
perturbation approximation of the steady-state flow in, [1].
In physical oceanography, it describes the quasigeostrophic
wind-driven circulation in a mid-latitude oceanic basin, [2].
In electrostatic systems, the Poisson equation governs the
potential field when bulk charge density is a significant source,
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like in transmission lines in corona, in electrostatic paint
sprayers, in electrophotography, and laser printing devices.

Under the right set of conditions, the linear process
given by (1) is a Gauss–Markov random field (GMrf). The
covariance associated with when is
“white noise” is the solution to the biharmonic equation, a
fourth-order partial differential equation (pde) (see Section
III). Poisson’s equation, suitably interpreted, is asample
path representationof the GMrf , while the Green’s
function of the biharmonic equation provides acovariance
representationfor the GMrf. These parsimonious represen-
tations are extremely useful when fitting models to data, in
predicting the natural phenomena variability under different
operating conditions, or when assimilating data obtained from
measurements.

We are concerned with these issues as well as their con-
verses: i) set of conditions satisfied by the covariance function

of a GMrf ; ii) when can we associate a GMrf
with a given covariance function ; iii) what is

the canonicalsample-path representation of a GMrf. We see
in Section IV that the canonical sample path representation
for space-dependent GMrf’s involves correlated noise rather
than white noise.

These questions are well understood for one-dimensional
(1-D) time-dependent random fields (random processes). It is
well known that the covariance function of a finite-dimensional
Gauss–Markov random process (GMrp) exhibits a factor-
ization structure, see for example [3, pp. 83–84], satisfies
a second-order linear differential equation, the Lyapounov
equation, and its sample path representations are linear Ito
diffusions. In engineering applications, covariance descrip-
tions underline Wiener filtering, while sample path differential
models are the departing point for Kalman–Bucy filters. For
GMrf’s defined onfinite lattices , i.e., discrete GMrf’s
where , being the set of integers, it is well
understood that the sample path representation provided by
the minimum mean-square error (MMSE) description involves
correlated noise and that the covariance is the inverse of a
banded block structured matrix, see for example [4], [5]. In
this paper, we consider these issues forcontinuousparameter
spatially dependent GMrf’s , where , ,

bounded with smooth boundary. The paper recovers for the
continuous context many of the results presented in [5] and
[6] for GMrf’s on finite lattices.

Continuous GMrf’s have been considered in the engineering
literature, for example [7]–[9], as well as in the Mathemat-
ics and Probability Theory literature, for example [10]–[12].
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References [7]–[9] are limited to restricted classes of two-
dimensional (2-D) fields, e.g., isotropic fields, for which they
develop filtering and smoothing algorithms. Mathematical
literature references do address question ii) above but usually
in a general abstract framework. We emphasize ordinary
random fields rather than generalized random functions and
generalized random fields (see Section IV). We structure our
approach under simpler practical conditions, avoiding in our
proofs much of the machinery required by more general
setups, [11]–[13]. We address the three questions above on
covariance and sample path representations. We obtain explicit
results on question i), establishing the conditions satisfied by
the covariance of a GMrf. We obtain converse results on
conditions to associate a GMrf to a given operator, question ii)
above. These latter conditions are in the spirit of the conditions
in [12]. Finally, regarding question iii), we present the MMSE
representation of a GMrf as partial differential equations driven
by correlated noise interpreted in a weak sense. Although we
resort in this section to the framework of generalized random
functions, our partial differential equation model does provide
a representation for a GMrf in terms of ordinary random
fields. Our results regarding the three questions i)–iii) parallel
for continuous indices the corresponding results for discrete
GMrf’s in [5].

An outline of the paper follows. In Sections III and IV,
we study the issues of covariance characterization and MMSE
sample path representation for GMrf’s. Section V concludes
the paper. In Section II and Appendix I, we review the acausal
Markov property in the context of Gauss fields and introduce
background needed to make the paper self-contained. The
major proofs are relegated to Appendix II.

II. GAUSS–MARKOV RANDOM FIELDS

We consider thenoncausalor acausal Markov property.
This concept is appropriate when dealing with space-
dependent phenomena. It contrasts withcausal Markov
associated with time-dependent signals. We distinguish
between the two by referring to Markov random fields(Mrf)
when the Markov property is acausal or noncausal and Markov
random processes(Mrp) when the signals are causal. In one
dimension (1-D), a class of Markov fields that has received
considerable attention recently in the literature is the class of
reciprocal processes; see [14], [15], and references therein.

We introduce the definition of acausal Markov in a general
setting in terms of -algebras in Appendix I. In this paper,
we focus attention on linear Markov fields or Gauss–Markov
random fields (GMrf). For GMrf’s, the Markov property is
restated in terms of Hilbert spaces, much easier to handle.
There are two types of isometrically isomorphic Hilbert spaces
associated with Gauss fields: Hilbert spaces spanned by collec-
tions of random variables and functional Hilbert spaces. The
Markov property is rephrased in terms of these spaces. These
equivalent definitions are used in Section III to characterize
the covariance of the GMrf.

We summarize the section. In Section II-A, we state the
basic assumptions on the random field (rf). In Section II-B, we
introduce needed background on Hilbert spaces, reproducing

kernel Hilbert spaces, Sobolev spaces, Dirichlet forms, and
partial differential operators. These concepts will be used in
Sections III and IV. Finally, Section II-C defines the Markov
property for Gauss random fields.

A. Ordinary Random Field

On the probability space , consider the set
of zero mean Gauss real valued -random

variables (rv)

(2)

The covariance is . We refer to this family as an ordi-
nary Gauss random field (rf). We make explicit the conditions
we assume throughout the paper.

1) Boset: We consider bounded opensets with
smoothboundary . We refer to such as a domain.
We let . In , represents an open
set with smooth boundary and is the complement
in of the closure . The sets and

are referred to ascomplementarysets.
2) Dbc: Dirichlet boundary conditions. For simplicity we

fix the boundary conditions (bc) to be of the zero
Dirichlet type

and

(3)

For the most part, our results remain valid for more general
sets . In particular, they remain true for sets with the segment
property, see [16, p. 36, Definition 2.1]. These sets include
rectangular domains. We restrict ourselves to smooth domains
to remain focused on the relevancy of the results rather than
distracting the reader with additional technical assumptions.

B. Preliminaries: Hilbert Spaces, Locality, Dirichlet Forms

Hilbert Spaces of Random Variables:We associate with
the Gauss random field the following spaces [17]. Let

be the Hilbert space of finite-energy real-valued
random variables

closure of linear span (4)

equipped with the usual inner product and induced norm

E

and

(5)

Let be as in (81) in Appendix I and define the Hilbert spaces

(6)

Define likewise the linear spaces , and . All
these Hilbert spaces inherit the norm (5).
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Functional Hilbert Space—RKHS:A second space of im-
portance associated with Gauss fields is the reproducing kernel
Hilbert space abbreviated as RKH space or simply
RKHS. This is a functional space associated with the covari-
ance of the field. The RKHS is

E (7)

Let E , . The inner product and norm
in are

E

and

(8)

The spaces and are defined similarly to
and

and (9)

These spaces are Hilbert spaces which are isometrically iso-
morphic to the corresponding spaces of rv’s. For example, for

, the isometric isomorphism is

(10)

(11)

The image of the rv under is the function
E .

The following are equivalent defining properties of an
RKHS.

RKHS1: Reproducing kernel property:There is a reproduc-
ing kernel

(12)

RKHS2: Pointwise evaluation of functions:In the RKHS,
pointwise evaluation of functions is a bounded
linear functional, i.e., the functional is
continuous.

In the space of square integrable functions, pointwise
evaluation of functions is not continuous, so propertyRKHS2
is not satisfied in . Hence, is not an RKHS.
Sobolev spaces introduced below provide a rich class of
RKHS’s.

Locality: A useful property of RKHS associated with
GMrf’s is that of locality.

Definition II.1—Locality [12]: A Hilbert space is
local if and only if (iff), for every open complementary
sets and with smooth boundary, the following two
conditions hold:

1) Local1: If such that ,
, then .

2) Local2: If , such that ,
, then

Sobolev Spaces:These are candidate spaces for RKHS of
GMrf’s. There are several types of Sobolev spaces. We focus
on the class of Sobolev spaces of order, , which
are the closure in an appropriate norm of the set of smooth
functions with compact support. For other types of Sobolev
spaces see any standard text, for example [18]. They are
subspaces of .

To introduce Sobolev spaces, we recall the Schwartz no-
tation of multi-indices. The -tuple of nonnegative integers

is a multi-index of order
Given the multi-indices and , we say provided

, . The operator represents the weak (or
distributional) partial derivative operator [19]

(13)

where .
Let be the set of infinitely differentiable functions

with compact support in .
Definition II.2—Sobolev Space:The Sobolev space

is the closure of under the Sobolev standard norm

(14)

These Sobolev spaces telescope

(15)

Sobolev spaces are RKHS and local spaces as we discuss now.
Sobolev Spaces as RKHS and Local Spaces:Let re-

present the set of continuous functions with compact support.
Lemma II.1:The Sobolev space , ,

is an RKHS.
This result follows from the Sobolev embedding Theorem

[16]

(16)

The symbol stands for continuous embedding, i.e.,

(17)

In words, (17) states that convergence in implies
pointwise convergence. By PropertyRKHS2 above, the con-
tinuous embedding of in for implies
that the Sobolev space is an RKHS.

Lemma II.2: The Sobolev space is local.
The Lemma is proved by a limiting argument. Let the sets

and in be complementary with smooth boundary
and with and .
Because , there are and in , with

, , and , and

In the limit this verifies conditionLocal1 in Definition II.1.
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We verify conditionLocal2 by showing that

where, for , , and are as inLocal2. Because
and have disjoint supports, by direct substitution of the

decomposition of in the expression for the norm of, the
cross terms are zero. We get

The last inequality is a direct consequence of .
Since each term in the middle side of the equality is non-
negative, it is finite, and so and belong to as
desired.

Partial Differential Operators and Dirichlet Forms:The
results in Section III are in terms of differential operators. Let

be the linear differential operator of order

(18)

The real-valued coefficients are assumed to be suf-
ficiently differentiable in , for example,

, . In the sequel, we assume thatis positive
and symmetric.

Positivity:

(19)

Symmetry:

(20)

In these equations, is the usual inner product in
.

Associate with the positive, symmetric differential operator
in (18) the bilinear form

(21)

(22)

(23)

The bilinear form is referred to as a Dirichlet form.
The form is well-defined in . In fact, it is
well-defined for all , see [19, p. 511].

The positive, symmetric densely defined operatoradmits
a self-adjoint extension, see [19, p. 131] and [20]. This is the
Friederichs extension of . In this paper when referring to
the differential operator we always assume its Friederichs
extension.

Locality and Dirichlet Forms: In [12] and [21], the follow-
ing is proved, see [12, Theorem 4.1 (iii)]. Let be the
closure of under a positive-symmetric bilinear form

. Assume the space is local. Then, if the bilinear form is
continuous, it is a Dirichlet form.

The following “honesty condition” is a sufficient condition
for the continuity of the nonnegative form [12].

Honesty condition: if in and
as , then .

C. Markov Property for Gauss Random Fields

The Markov property for Gauss fields is now restated in
terms of and . We follow [12].

Definition II.3—Markov Property for Gauss Fields (GMrf’s):
The Gauss field is a GMrf iff: open set with
smooth boundary

1) Continuity: .
2) Conditional independence.The projection of

onto is .

Recalling from (10) the isometric isomorphismbetween
the spaces and , the continuity condition in
Definition II.3 is reexpressed as

(24)

Definition II.4: A Gauss field which satisfies (24) is
Markov iff the RKHS is local.

III. SECOND-ORDER CHARACTERIZATION OF GMRF’S

In this section we characterize the covariance of a GMrf.
The model is specified in Section II-A, namely, the indexing
set , , is boundedopen with sufficiently smooth
boundary and the covariance of the zero mean
GMrf satisfies zero Dirichlet bc’s. We address the following
two questions:

1) Direct: what properties are satisfied by the covariance
of a GMrf.

2) Converse:when is a positive-definite function
the covariance of a GMrf, i.e., when can we construct a
GMrf whose covariance function is the given positive-
definite function .

The explicit conditions contained in the Theorems and
Corollaries below provide rich classes of examples of GMrf’s.
After each result we comment briefly on the proof. Detailed
proofs are in Appendix II.

Theorem III.1: Let , where
is bounded open with smooth boundary, be a zero-mean

GMrf satisfying Dirichlet bc’s. Let be a dense subset
of its RKHS . Then the covariance of the field
is the Green’s function of the partial differential operator
associated with the inner product of the RKHS.

This theorem considers thedirect question above and shows
that the covariances of GMrf’s are solutions to certain partial
differential equations. The proof in Appendix II establishes
that the inner product in the RKHS is given by a
Dirichlet form and then shows that, in a distributional sense,

is a delta function.
We now provide converses to Theorem III.1. The next

theorem states a sufficient condition for the Green’s function
of a positive-symmetric differential operator to be the
covariance of a GMrf.
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Theorem III.2: Given a positive-symmetric partial differen-
tial operator of order with coefficients
such that

(25)

then there exists a GMrf whose covariance is the Green’s
function of .

The theorem is proved in Appendix II by considering
the space which is the completion of under

. In the Appendix we show first that is
a local space. Then, we show it is an RKHS. Finally, we
construct a GMrf with as RKHS and whose covariance
is the Green’s function of the operator associated with the
inner product of the RKHS.

We now consider Sobolev spaces. Before we state the first
result for these spaces, we recall the notion of strong ellipticity,
e.g., [19].

Definition III.1—Strong Ellipticity: The differential opera-
tor of order in (18) is strongly elliptic [19] iff there is
a positive constant , independent of , such that

(26)

where .
Strong ellipticity involves the principal part of the operator,

i.e., the differential terms with . If we can only
guarantee that the polynomial in the left-hand side of (26) is
nonzero for then the operator is said to be elliptic.
A symmetric, elliptic operator is strongly elliptic [16, p. 147,
Theorem 10.7]. Also, if the principal part of the operator has
real coefficients (as in all cases we consider), ellipticity and
strong ellipticity are equivalent [16, p. 142, Theorem 10.2(c)].

The next Corollary shows that Sobolev spaces are the RKHS
of GMrf’s.

Corollary III.1: Let be a Sobolev space with
. Let be the partial differential operator of order

associated with the inner product. Then is the RKHS
of a GMrf. The covariance of this GMrf is the Green’s function
of the partial differential operator . Moreover, is strongly
elliptic.

By Lemmas II.1 and II.2, Sobolev spaces are RKHS’s
and local. The first part of the Corollary then follows from
Theorem III.2 by showing that the covariance is the Green’s
function of the operator . Finally, an equivalence of norms
shows that is strongly elliptic (see Definition III.1).

The spaces provide examples of GMrf’s.
Example III.1: Let and define .

In this space, consider the inner product

(27)

Let be the reproducing kernel indexed by .
Then

(28)

Using the definition of inner product (27) in the left-hand side
of (28), we get

Integration by parts (and using the fact that )
leads further to

(29)

By (28), the left-hand side is . Then, the bracket in the
right-hand side of (29) defines (in a generalized sense) a delta
function. Hence

(30)

The boundary conditions follow because ,
and so

and

Clearly, we can have one-dimensional fields whose co-
variance satisfies higher order operators. The next example
provides one such field.

Example III.2: Let and consider .
Endow the space with the inner product

(31)

In divergence form

(32)

The differential operator is now

(33)

which is a fourth-order operator.
In Theorem III.2, the differential operator provides the

locality of the space; it is the dominance of the norm
condition (25) that guarantees that is an RKHS. In the
next theorem, we assume strong ellipticity of the operator,
which gives us the norm dominance condition.
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Theorem III.3: Let be a strongly elliptic symmetric par-
tial differential operator of order satisfying the smoothness
assumption

(34)

Then, for some , there exists a GMrf whose covariance
is the Green’s function of

The proof in Appendix II follows by showing that the closure
of by the bilinear form associated with is a Sobolev
space. This results by establishing the equivalence of the norm
induced by and the standard Sobolev norm.

If we restrict attention to operators with only highest order
derivatives and constant coefficients, we can forego thein
the theorem.

Corollary III.2: Let the operator be given in divergence
form

(35)

where constant If is strongly elliptic and symmetric,
then there exists a GMrf whose covariance is the Green’s
function of .

Symmetry follows if . The proof establishes
again an equivalence of norms and uses a form of G¨arding’s
inequality where in Theorem III.3 can be taken to be zero
when the assumptions in the corollary hold. See Appendix II
for details.

Example III.3—The Biharmonic Operator:Let ,
. This implies that . Then is a

suitable candidate for an RKHS space. An appropriate inner
product for is

where is the second-order derivative with respect toand
likewise for the other quantities. Using the method in the proof
of Theorem III.1, it follows that the biharmonic operator

(36)

is the operator associated with this inner product. This is
the operator associated with the covariance of random fields
described by the Poisson equation in Section I driven by white
noise.

Before leaving the section, we make some final comments.

1) Theorems III.2 and III.3 as well as Corollaries III.1 and
III.2 describe conditions on the differential operator
under which we can associate with it a GMrf. They are
in the spirit of Pitt [12, Theorem 5.4]. These are all
converses to Theorem III.2. Pitt’s Theorem 5.4 makes
the assumption that certain norms are equivalent. Our
converses state conditions under which the norms we
work with are equivalent, in particular, for the norm
induced by the operator to be equivalent to the standard
norm of a Sobolev space. In contrast, Theorem III.1 is

a direct result that describes the covariance of a GMrf
as a Green’s function of a partial differential operator.
These results hold for both nonhomogeneous as well as
homogeneous fields.

2) Covariance smoothness of order. Under the above
results, it is clear that the covariance of the field asso-
ciated with the operator has generalized derivatives.
Moreover, under the assumptions of Theorem III.3, as
well as Corollary III.1, the norm induced by
for of order is equivalent to the Sobolev norm,
and hence the RKHS associated with the GMrf is the
Sobolev space . Then, we can make the much
stronger statement that the distributional derivatives of

of order up to are , i.e.,

Smooth covariance:

and (37)

Since spans , is the largest
integer for which (37) holds in this case. When is
the highest nonnegative integer such that a covariance
satisfies (37), we say that the covariance issmooth of
order .

3) Order of the GMrf. McKean [10] introduced the notion
of (normal) generalized derivative of a field. The order
of the field is if these generalized derivatives are
continuously differentiable up to order and if
the -algebra generated by the generalized derivatives is
the minimal splitting -algebra. In this case, contains
information about the generalized derivatives up to order

. Pitt [12] shows that the order of the field is half
the order of the associated operator. If the covariance
is smooth of order , see (37), the field is of order
in the sense of McKean and Pitt.

4) Example III.1 is interesting because it shows that our
results include examples drawn from a class of GMrf’s
which has been the subject of recent attention in the
literature. In the example, the differential operatorof
the field is second-order. Hence, the field is a first-order
GMrf in the sense of McKean and Pitt. This means that
the field is sharp Markov, see Appendix I. The splitting

-algebra, see (85) in Appendix I, has no derivative
information, it is generated by the values of the field at
the boundary, i.e., . This 1-D field is referred
to in the literature as a reciprocal process [14], [15].

5) The results in this section do not cover fields when
and the covariance operator is order , i.e., .
A prototypical example is the Laplacian operator on
the plane or higher dimensions when .
The corresponding field is the Nelson free field, the
basic building block of Euclidean field theory, a branch
of Quantum Physics, [22], [23]. Free fields describe
noninteracting particles but are basic to the study of the
more complex quantum systems of interacting particles.
In Statistical Mechanics, the free field is known as the
Gauss field. The Sobolev space associated with it is

. Although a local space, this is not an RKHS
for , since, in the Sobolev embedding
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Theorem, for , the condition is not
verified when . The preceding theorems cannot
be applied to the free field. To show that the inverse
of is still the covariance of a GMrf one needs the
theory of generalized random fields. Generalized random
fields, which are to be distinguished from generalized
random functions, see [13] and Section IV, are indexed
by distributions. Nelson showed that the dual space

of is the appropriate indexing space
and that the corresponding field is in fact a generalized
random field known as the Nelson free field.

IV. MMSE SAMPLE PATH REPRESENTATION

The previous section discussed covariance-based represen-
tations for GMrf’s. In signal processing, the covariance is often
obtained directly from the data. An alternative representation
which is very useful in many applications in control, com-
munications, or signal processing is a differential/difference
equation driven by noise. We study in this section such
models. We refer to them as sample path representations.
When fitting minimum mean-square error (MMSE) models
to (time-dependent) random processes, the canonical sample
path representations that result are white-noise-driven models.
In contrast, as will be discussed in this section, with spatial
dependent data, canonical MMSE sample path representations
lead to noise with a very specific correlation structure. This
correlated noise is related to the concept of biorthogonal
field. In this section, our main focus is to derive a sample
path representation for ordinary random fields as discussed in
Section II-A, not generalized random functions.

In Section IV-A we discuss preliminary material regarding
generalized random functions as introduced by Molcan [11],
see [13], and biorthogonal fields. Our final result on this
subsection is a partial differential equation for the GMrf
driven by the biorthogonal field. This equation is in terms
of generalized random functions. Section IV-B introduces the
MMSE predictor representation for the GMrf. Finally, Section
IV-C provides the sample path representation of the field in
terms of ordinary random fields rather than generalized random
functions.

A. Preliminaries: Grf’s Biorthogonal Fields

A good reference for this subsection is [13].
Generalized Random Function:The setup is the same as

described in Section II-A. Let be the set of
random variables defined on the underlying probability space

. Let , bounded, and consider a continuous
linear mapping

The linear functional maps each fixed into the mean-
square-integrable random variable

. For each , we obtain a real number.1

The linear functional is referred to as a generalized random

1We deal with real-valued random variables.

function (grf). The grf is indexed by the functions. If
we fix and let vary

(38)

we get a sample path. The sample path is a continuous linear
functional on , i.e., an element of the space of distri-
butions . Following usual notation with random variables,
we omit the dependence and denote the grf by .

Molcan and Rozanov [11], [13] study conditions for the
grf to be a Gauss–Markov generalized
random function (GMgrf).

We now associate a grf with an ordinary random field.
Grf’s and Ordinary rf’s: Let

bounded, be an ordinary (weakly) continuous random field

(39)

We associate with the rf a grf by the following construction:

(40)

The space is the closure of the linear span of the
. Kallianpur and Mandrekar [24] show that is a

Gauss–Markov random field (GMrf) iff
is a Gauss–Markov generalized random function (GMgrf).

Biorthogonal Grf—Definition:To study the sample path
description and to establish results that are the analog to the
discrete sample path results in [4] and [5], we introduce the
notion of the biorthogonal generalized random functionof
a grf [13]. The biorthogonal grf is the continuous linear
functional

represented by , which is uniquely determined by the
biorthogonality condition

E (41)

For smooth and bounded sets, the closure of the random
variables , , is . When this holds, the
biorthogonal grf is often referred to as the dual grf.

Biorthogonal Grf and Markov Property [13]:The grf is
Markov iff is local, i.e., iff

such that

E (42)

In the Markov case, the expectation is given by a Dirichlet
form, see (22)

E

(43)
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Biorthogonal Grf Representation:Consider the ordinary
GMrf and its Hilbert spaces of rv’s

and RKHS , with dense
in . These spaces were introduced in Section II. With
this field, we associate the GMgrf given by (40). Since

by the isometric isomorphism of (11), for some

E (44)

Kallianpur and Mandrekar [24] show that the random element
in this equation is

(45)

This is easy to verify. Assume (45) and (40) of . Then

E E (46)

E (47)

(48)

By using (45) in (46), we got (48) which is the biorthogonality
condition (41) that defines uniquely the biorthogonal grf.
In these equations, interchanging expectations with integration
is valid because Fubini’s theorem applies as a result of (39).

Biorthogonal Grf and : We now establish a relation
between and the inverse of the isometric isomorphism

between the spaces and . This isomorphism
was introduced in Section II, and is given by (10). Each

is mapped by onto a function

E (49)

Since is dense in , take and
consider its pre-image under. In terms of the inverse ,
let

(50)

We then have

E E (51)

E (52)

(53)

Equations (51)–(53) say that is biorthogonal to ,
hence by the uniqueness of the biorthogonal grf, this states that

is (54)

PDE for GMgrf: Next, we see that the GMgrf satisfies a
partial differential equation. By the isometry between the two
spaces, the following equality of the inner products holds:

E (55)

(56)

(57)

where is the differential operator defining the inner product
in the RKHS . The last equality is a consequence of the
fact that being the RKHS of a Markov field is a local
space and so its inner product is given by a Dirichlet form. We
assume that . Then (see [13]) the GMgrf
satisfies the following stochastic partial differential equation
(PDE):

(58)

We develop now a representation for this abstract equation.

B. MMSE Field

The goal in this subsection is to present a relation between
the biorthogonal grf and the minimum mean-square predic-
tion error field. This result is then used in the next subsection to
derive a representation for (58) in terms of ordinary random
fields.

Consider and to be the usual complementary sets
with boundary in set . Let be the minimum
mean-square error (MMSE) prediction of the field given
the boundary data and the data in , i.e.,

E E (59)

The second equality follows from the Markov property of the
field. By Gaussianity, conditional expectations are computed
by orthogonal projections

(60)

where is orthogonal projection on the subspace. Repre-
sent the MMSE prediction errors by

(61)

We consider the relation between the biorthogonal grf
and the MMSE field . This leads in the next
subsection to a representation for (58). Introduce the Hilbert
space generated by the error field

closed linear span of E

(62)

and likewise for . Recall the definitions of and
, see (4). We have the following decompositions.
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Lemma IV.1:
Proof of Lemma IV.1:Follows by orthogonality that

Also, To show
equivalence, pick , . Then

which clearly is in . Any is either
for some or the limit of a sequence of such,

which proves the decomposition in Lemma IV.1.
From this Lemma, the following decomposition holds:

(63)

Now consider the RKHS and let be the
subspace of elements with . By
locality of the space,

(64)

Theorem IV.1:The image of under the isometric
isomorphism is , i.e.,

The proof in Appendix II proceeds in three steps. We
show: i) ; ii) is closed
in ; iii) the orthogonal complement in of

is the empty set, i.e., .
The last step shows that the two spaces are equivalent and the
conclusion of the theorem follows.

Remark: By Theorem IV.1, the range of the inverse
of the isometric isomorphism is

(65)

MMSE Predictor: We can use Theorem IV.1 to get a rep-
resentation for the MMSE predictor. By orthogonality

since , the MMSE error field and
the MMSE predictor and by decomposition (63)

these spaces are orthogonal. Then, let for

and

By Theorem IV.1, . By isometry of and by
orthogonality, it follows that

Since this is true for every , we have that the
image under of is the (weak) solution to

in (66)

with boundary conditions

(67)

where are derivatives along normal directions to the
boundary and is the order of the operator .

C. Canonical MMSE Sample Path Representation

Riesz Representability of : We derive the representa-
tion for the partial differential equation (58) for . By
using Theorem IV.1, since

Using (54), we conclude that

Hence, either

E

or the limit of such

E

This representation for the biorthogonal grf is not totally
satisfactory. We want to represent as resulting from an
integral operation on the prediction errors. What is needed is
Riesz-type representability, see for example [25], for . We
address this issue next. We first introduce this notion formally.

Represent by the space of absolutely integrable
functions with respect to measure and by the
space of bounded functions with values in the Banach space

.
Definition IV.1: A bounded linear operator

where is a Banach space, is Riesz representable if there
exists such that

From [25, pp. 63 and 64, Theorems 5 and 6], we have that
if has a boundedly complete Schauder basis, then a linear
continuous operator is representable.

In the problem with which we are concerned

so that is a Hilbert space. For a separable
Hilbert space, any orthogonal basis is a boundedly complete
Schauder basis. Thus will be Riesz representable if we can
show that it is continuous. We first show thatis continuous
and then invoke the open mapping theorem to show that
is continuous. We need the additional assumption.

Assumption:Let , , and bounded subsets of
and let be the Lebesgue measure on. We assume that

, which is closed as a subspace of and which
is a subspace of , is closedas a subspace of .

We consider

as a linear operator from the closed subspace of
to a closed subspace of . Call this

latter subspace .
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Theorem IV.2:Let

E

Then

is continuous.
Proof of Theorem IV.2:The map is
and onto (since is an isometric isomorphism). We show

that is continuous. The conclusion of the theorem follows
by application of the corollary to the Open Mapping Theorem
in Rudin [26, p. 49], that shows then is continuous.

E

E E

by Schwartz inequality

E

By the last step, is continuous. So is its inverse by the open
mapping theorem as desired.

Remark: Since by Schwartz inequality

E E

the condition in Theorem IV.2 is weaker than the finite energy
requirement (39) on the field.

MMSE Sample Path Representation:We obtain the repre-
sentation for the biorthogonal grf in terms of the error field.
By Theorem IV.2 and by Riesz representability, see Definition
IV.1, there exists a family of random variables such
that for each , we have and

(68)

(69)

This is a representation of the abstract (58)

as

(70)

Equation (70) is the weak formulation of

(71)

Of course, by the biorthogonality condition (41)

E E

or, formally,

E (72)

Equation (72) states the orthogonality condition between the
GMrf and the field . The field is the continuous
index equivalent of the MMSE-correlated predictor noise in
the discrete case, see [4] and [5].

We compute the covariance of the prediction error noise
. For that, we recall (57)

E (73)

Substituting in (73) by the value given by (69), we get

E E

(74)

E

(75)

Equations (73) and (75) state that, in a distributional sense

E (76)

i.e., that the covariance of is formally equivalent to the
differential operator whose Green’s function is the GMrf
covariance.

V. CONCLUSION

The paper considered the covariance and the sample path
representations for Gauss–Markov random fields indexed by
continuous indices in higher dimensions. The paper satisfacto-
rily parallels the corresponding discrete GMrf results, see [5].
The covariance of the GMrf is the Green’s function of
a positive symmetric formally self-adjoint partial differential
operator

(77)

with appropriate boundary conditions.
The order of the field with continuous indices is half the

order of the differential operator .
Secondly, the MMSE sample path representation for the

GMrf is formally

(78)

where, by (72) and (76)

E

and

E (79)

The random input noise field is orthogonal to the GMrf
and is correlated, with covariance acting like the differential
operator . These results are in a certain sense canonical. The
operator appears in the field covariance description (77), in
the MMSE representation (78), and defines the correlated noise
covariance (79). We refer to it as the field canonical operator.
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APPENDIX I
ACAUSAL MARKOV PROPERTY

Let , , , and be as in Section II. Following Pitt
[12], we introduce the following -algebra:

(80)

where stands for the -algebra generated by the
collection of elements included in . Likewise for .
Let be a metric in , for example, the Euclidean metric.
Define the distance from a point to a set as

For , introduce

(81)

The set is a neighborhood of . Further, define the
following -algebras:

(82)

(83)

(84)

We introduce the Markov property in terms of splitting-
algebras. We discuss these first.

Splitting -Algebra

Let and be sub- -algebras of the -algebra . Let be
a sub- -algebra of . Following McKean [10] and Pitt [12],

and split over , or is a splitting -algebra of and
iff and are conditionally independent given. There

is a minimal splitting algebra, [12], given by

E bounded and -measurable (85)

For any splitting -algebra , we have that . Also

(86)

The acausal Markov property is now defined, see [12]. We
refer to it simply as the Markov property.

Definition A.1—Markov Property:The field is Markov
iff for every open set with smooth boundary the
following two conditions hold:

1) Continuity .
2) Minimal splitting field: Conditional independence

is the minimal splitting algebra of and .

From the continuity condition, it is clear that the boundary
-algebra is contained in the “past” -algebra and

in the “future” -algebra and so in their intersection.
From (86), we then have

(87)

where is the minimal splitting-algebra of and of
. The conditional independence condition states that

is in fact the minimal splitting field.

Remark: The Markov property in Definition A.1 requires
more than simply boundary data about the field. Besides
information about the field on the boundary, contains
derivative information about the field, see McKean [10] for
details. The -algebra is referred to in the literature as
the germ -algebra, [27]. This is in general different from the

-algebra generated by the boundary data

(88)

which is the so-called sharp-algebra. Conditions under which
the germ and the sharp-algebra are equivalent are studied
in [27]. The Markov property with respect to the sharp field
is called sharp Markov. The sharp Markov property may lead
to degenerate fields. For example, sharp Markov with respect
to open discs with the additional assumption of isotropy, i.e.,
with a covariance which depends only on the distance, leads
to constant fields, see [28].

APPENDIX II
PROOFS

Proof of Theorem III.1

By the Markov property, see Definition II.4, the RKHS
is a local space. We now verify that the inner product

satisfies the “honesty condition” stated in Section II-
B. If satisfies the “honesty condition,” then, as stated in
the same subsection, the inner product is given by a Dirichlet
form. An inner product satisfies the “honesty condition” if

in and

implies that . Recall the isometric isomor-
phism between spaces and , see (10), and let

. Since in , we have
for all as . Therefore, tends weakly

to in . Also, since the are Cauchy in , through
the isometric mapping , we see that the corresponding
are Cauchy in . Therefore, being complete,
converges strongly to some in . Since strong limit
implies weak limit, when both exist they have to be equal,
and so must be . Therefore, converges to in the
metric of the inner product in . Hence, again by the
isometry , converges to in the metric of the
inner product in , , which verifies the
“honesty condition.”

We have shown that the inner product is given by a Dirichlet
form, see (22). So

(89)

By the reproducing kernel propertyRKHS2 of

(90)

(91)
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Integration by parts of (91) leads to

(92)

Recalling the definition of the operator in (18), (92) gives

In a distributional sense, this defines the covariance as the
fundamental solution of

(93)

The bc’s associated with (93) are the values of the field
covariance at the boundary, see (3), i.e., zero Dirichlet
bc’s. This proves the Theorem.

Proof of Theorem III.2

Let be the space which is the completion of
under . The proof is in three steps. First, we show
that is local, then that it is an RKHS, and finally, we
associate with a GMrf.

is Local: We verify the two conditionsLocal1 and
Local2 through a limiting argument. Let and be
complementary sets, and with
and . Because is dense in , there
are sequences and , and

. For each of these, by direct computation

implying in the limit that

which verifies conditionLocal1. For Local2, let
, with and as inLocal2. Then, because

and have disjoint supports,

which shows and ,
hence as desired. This shows is local.

is an RKHS: We show that the pointwise evaluation
of functions is a continuous linear functional. This
follows if (25) holds for all , not just for .
We use a limiting argument. Let . Then there exists
a sequence such that . From (25), since
the are in

The space is closed under . Since
is a convergent sequence, it is Cauchy in the sense of

. So, for large there exists a small that
bounds above the right-hand side of the previous equation, i.e.,

This equation says that if is Cauchy under the inner product
norm , then it is Cauchy under the norm.
Therefore, (25) holds for all , showing that pointwise
evaluation of functions is a linear continuous functional on

and the space is an RKHS.
Construction of GMrf: We associate with the RKHS

a Gauss field. The covariance of the field is the reproducing
kernel of . We determine this reproducing kernel. Let

be the Green’s function of . In a distributional sense

(94)

From this property of , it follows

(95)

The right-hand side of this equation can be written in terms
of the inner product in . We then have

(96)

A standard limiting argument shows that satisfies zero
Dirichlet boundary conditions, since (it is well
known that it spans the RKHS) we can find such
that and so for . This shows
that the Green’s function of is the reproducing kernel of the
RKHS and hence the covariance of the field.

Finally, by the smoothness on , the kernel is
smooth of order (see (37)). Then, the continuity condition
(24) follows by arguments similar to those in [12] (see the
proof in [12, p. 374, Theorem 3.3]). Hence the RKHS being
local, the field is Markov.

Proof of Corollary III.1

By the Sobolev embedding, see (16), Sobolev spaces are
RKHS. By Lemma II.2, Sobolev spaces are local spaces. Then,
by Theorem III.2, the covariance is the Green’s function of the
operator associated with the inner product of . To
show that is strongly elliptic, we recall the fact that if two
norms generate the same topology they are equivalent. The
norms

and

being the Sobolev space standard norm and the norm induced
by the inner product, respectively, generate the same space,
namely, the Sobolev space , so they are equivalent. By
the equivalence of these two norms, see for example [19, p.
261, Corollary 5.9.4], we can bound below the norm induced
by the inner product by the Sobolev standard norm. For some

This implies, see [16], that the operatoris strongly elliptic.
Finally, the continuity condition (24) follows by an argu-

ment similar to that used in the proof of Theorem III.2, and
the field is Markov.
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Proof of Theorem III.3

In this proof we need the concept of coercivity.
Definition A.2—Coercive Bilinear Form:Let be a

Sobolev space of order . A bilinear form defined on
is coercive iff there exist constants and

such that

Garding’s inequality:

(97)

where is the Sobolev standard norm in
given by (14).

Let the operator be given as in (18) and associate with it a
bilinear form as given by (97). On ,
define the bilinear form

(98)

By the smoothness of the coefficients of, and the fact that
is bounded there is a positive constantsuch that

(99)

We show that the completion of by the bilinear
form generates the Sobolev space by proving the
equivalence of the standard Sobolev norm defined by (14) and
the norm induced by the bilinear form .

We first show that the norm induced by is dominated
by the standard Sobolev norm.

(100)

(101)

(102)

(103)

(104)

(105)

Equation (101) follows from (100) simply by bringing the
magnitude signs inside the sum and the integrals. The next

step, (102), uses the boundedness condition on the coefficients,
see (99). The two following steps, (103) and (104), are appli-
cations of Schwartz inequality in a discrete and continuous
parameter setting, respectively. The last equality follows by
identifying in the first term of the right-hand side the Sobolev
norm and bounding the second term by this norm.

We now consider the reverse inequality. Garding’s Theorem,
see Wloka [16, p. 291, Theorem 19.2], states that, for

bounded, if the bilinear form has continuous
coefficients up to the boundary, i.e., for all

, the strong ellipticity of on is a necessary
and sufficient condition for the coercivity of the bilinear form

.
In our case, is strongly elliptic with smooth coefficients,

so that the bilinear form is coercive. Hence, there
exist constants and , such that

(106)

This is Gärding’s inequality, for example see [16] and [19].
Putting together the two inequalities (105) and (106)

(107)

Therefore, the norm induced by and the standard norm
are equivalent. Hence, the closure of under
generates the Sobolev space of order .

Let be the Green’s function of and
take . The inner product in is the inner
product induced by the bilinear form in (98). Then

(108)

(109)

(110)

The third equality follows because is the Green’s
function of and so is in a distributional
sense a delta function. But equalities (108)–(110) state the
reproducing kernel property. Therefore, is the repro-
ducing kernel and so it is the covariance of the associated
GMrf.

Remark: The proof of the Theorem uses only the bound-
edness of the coefficients in the associated bilinear form, see
(99). Given the boundedness of the domain, this requires only
continuity of the coefficients of the bilinear form, not the
stronger condition in (34).

Proof of Corollary III.2

For as in (35), which is restricted to the highest order
terms, it can be shown that, in Gärding’s inequality (106), see
[19, p. 514, proof of Theorem 7.7.2], can be taken to be
zero, and so

(111)

Likewise, by arguments similar to the ones used in the proof
of Theorem III.3, there is a sufficiently large such that
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Therefore, the norm

is equivalent to on . The reproducing kernel
is the Green’s function of the operatorgiven by (35).

Proof of Theorem IV.1

We mentioned below the theorem that the proof follows in
three steps.

We prove that . From the definition
of , see (49), for some

E E

E E

When and , by the orthogonality principle,
the last equation is zero. This means that the function

E

when and

i.e., the function has support in . Therefore, it is in
and so for

E

By a limiting argument, we can conclude that

which proves the first step.
We consider now the second step that is closed

in . The image is closed because is an
isometric isomorphism and is closed.

We address the final step that .
Let

By the definition of , there exists such that

E (112)

E (113)

The second equality follows from the fact thatwas chosen
from and so with . From (113)

(114)

Since is also chosen to be orthogonal to

(115)

(116)

Since from (112)

Equation (116) states that

E (117)

i.e.,

(118)

Equations (114) and (118) imply that

which in turn implies

This proves the Theorem.
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opérateurs diff́erentiels’,”Math. Scand., vol. 8, pp. 116–120, 1960.
[22] E. Nelson, “Construction of quantum fields from Markoff fields,”J.

Functional Anal., vol. 12, pp. 97–112, 1973.
[23] , “The free Markoff field,” J. Functional Anal., vol. 12, pp.

211–227, 1973.
[24] G. Kallianpur and V. Mandrekar, “The Markov property for generalized

random fields,”Ann. Inst. Fourier, vol. 24, no. 2, pp. 143–167, 1974.
[25] J. Diestel and J. J. Uhl, Jr.,Vector Measures. Providence, RI: Amer.

Math. Soc., 1977.
[26] W. Rudin, Principles of Mathematical Analysis, 2nd ed. New York:

McGraw-Hill, 1964.
[27] L. D. Pitt and R. S. Robeva, “On the sharp Markov property for

the Whittle field in 2-dimensions,” inStochastic Analysis in Infinite
Dimensional Spaces(Research Notes in Mathematics), Kunita and Kuo,
Eds. Belmont, CA: Pitman, 1994,.

[28] M. I. Yadrenko,Spectral Theory of Random Fields.New York: Opti-
mization Software Inc., 1983.


