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A Monte Carlo  Study o f Absolute 
Phase Determ ination 

RICHARD s. BUCY, FELLOW, IEEE, JOSE M . F. MbURA, MEMBER, IEEE, AND 
ALBERT J. MALLINCKRODT, SENIOR MEMBER, IEEE 

Absrruct-The problem of absolute phase tracking and the development 
of the properties of an optimal estimator of absolute phase are considered. 
Using Monte Carlo simulation, this estimator’s performance is compared 
with that of the phase-locked loop on the basis of slip distribution growth 
rate. Further slip prediction is considered and a statistic, based on the 
entropy of the conditional distribution of the phase given the observations, 
is shown to be effective. 

I. INTRODUCTION 

E STIMATING the phase of a  narrow-band signal in 
the presence of noise is fundamental to the function of 

many radio-communications, navigation, and  radiometric 
tracking systems. The  classical phase-locked-loop (PLL) 
circuit provides a  near-optimal solution to this problems 
under  a  wide variety of circumstances, particularly where 
the phase estimate’s output noise-to-signal ratio is small so 
that the resultant phase-sensor nonlinearity can be  well 
represented in terms of a  linear expansion about the oper- 
ating point. 

For a  number  of reasons, however, receivers wherein 
accuracy, power efficiency, or range are particularly de- 
mand ing often are designed to operate at or near  the 
threshold of such nonlinearity. In communications, for 
example, various bandspreading modu lation and  coding 
systems permit a  beneficial trade-off between ultimate 
accuracy and  signaling bandwidth up  to the onset of some 
detection threshold, commonly a  phase-lock threshold. 
Similarly in radiometry, measurement  accuracy is com- 
mon ly proportional to the measur ing signal’s bandwidth, 
but only up  to the point where, as bandwidth is increased, 
the input noise approaches a  detection threshold which is 
again a  phase-lock threshold. Thus it is no  accident that 
the performance of central systems such as deep-space 
communicat ions and  tracking, worldwide navigation, etc., 
relates directly to phase estimation performance near 
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threshold, i.e., in just the region for which the PLL no  
longer provides the optimal phase estimate. Furthermore, 
in a  number  of such applications the economic incentive 
per decibel of threshold extension may well justify a  sig- 
nificantly greater effort at improving that threshold. Such 
incentives, a long with the growing availability of ultra- 
h igh-speed array processing capability at the m inicomputer 
and  potentially m icrocomputer level have motivated stud- 
ies of the nonlinear phase estimator which provides the 
optimal phase estimate in just the critical region where the 
PLL fails [3]. 

In the past, the performance of phase or frequency (rate 
of phase) demodulators has been  evaluated by using a  
cyclic error norm 

L(c) = 2(1 - COSE), (1) 
where e  is the error process. Equation (1) exhibits the 
desirable features of being cyclic and  of reducing to e* for 
small e. Phase errors larger than 2~ (referred to as cycle 
slips) are of only transient concern. There are practical 
instances, like in radiometry with DECCA, LORAN, 
OMEGA, etc., where distance is measured in terms of the 
transit time  phase shift of a  radio wave. Wh ile some of 
these systems include means for resolving cyclic amb igui- 
ties in the phase, the basic question is that of keeping track 
of the cumulative phase change (relative to an  initial value) 
with phase defined on  the infinite line (- cc, cc). For these 
applications, where the cycle slips have a  lasting effect, the 
m inimum mean  square error (mmse) or a  slight mod ifica- 
tion thereof is a  more appropriate norm. In this paper, the 
first problem is termed the modu lo 2a  or cyclic phase 
demodulat ion (CPD) problem, while the second one  is the 
absolute phase demodulat ion problem (APD). 

For the modu lo 27r problem, nonlinear filters have been  
built via the direct implementation of the conditional cyclic 
density. They exhibit, below a  threshold level, significant 
performance improvement over the PLL. Likewise, in 
principle, the APD is solved by finding the a posteriori 
conditional densityp(x, tie,) of the phase process given the 
observation field 0,. However, the problem of effective 
representation of the conditional density is complicated by 
the growing support of the conditional density as the slips 
accumulate. For sufficiently many slips to occur, in a  given 
time  interval, the signal-to-noise ratio must be  small. In 
turn, this requires a  large grid span for accurate numerical 
propagat ion of the conditional density. This remark il- 
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lustrates the conflict inherent in the simulation of the 
problem. With time, the problem demands increasingly 
greater computational resources. The objectives of creating 
slip statistics of small dispersion, a finite number of mass 
points in the density representation as the support of the 
density grows, and of providing estimates which have fewer 
slips than the PLL, has proven difficult to obtain simulta- 
neously. Ad hoc techniques have led only to partial results 
[Il. 

By looking at the information carried by the a posteriori 
probability density function p(x, tlOt), this paper studies 
the basic properties of the APD, with emphasis on the 
analysis of the cycle slipping behavior of several estimation 
structures. A framework for the APD is presented that 
encompasses the basic model, a direct finite representation 
for the nonlinear filter, and provides a sufficient statistic 
for the cycle-slip analysis. 

Two important concepts play significant roles: a) the 
entropy of the conditional distribution, and b) the con- 
gruence assumption for the line distribution. As an indica- 
tor of disorder, the entropy is a relevant parameter for 
density coding. Studies of the entropy of the conditional 
line density and of the entropy of the phase process show a 
reduction of disorder of one order of magnitude at - 3 dB 
noise-to-signal ratio as a result of observations. The con- 
gruence assumption (see Section IV) provides an interest- 
ing relation satisfied by the entropy of the congruent 
conditional density. Using this relation, one measures the 
(absolute modulus) difference between the entropies of the 
conditional density on the line and a derived congruent 
density. This measure is labeled the entropic measure of 
instability. It provides a means to identify regions of 
instability in the evolution of the line distribution where 
the density perceivably departs from its congruent ap- 
proximation, lobes being created, significantly reinforced 
or annihilated. It is in these regions of instability that the 
estimators can experience cycle slips. From our simula- 
tions, it is apparent that good estimators are able to 
withstand a large number of mass flow situations without 
loss of a cycle. 

In overview, Section II defines the APD model; Section 
III describes an implementation of the nonlinear filter by a 
fixed mesh grid with respect to a moving center, discussing 
its computational advantages, compromises, and possible 
centering strategies. Section IV presents the congruence 
assumption and the entropic measure of instability, pLt. 
Section V exhibits a sequence of pictures depicting the flow 
evolution of the line density as related to the time history 
of pt. As predicted by pLr, undisturbed and turbulent modes 
are distinguished for the flow of the line density. Section 
VI shows the experimental evidence related to cycle slips 
accumulated for several filtering structures as well as histo- 
grams of slip behavior. Finally, Section VII advances con- 
clusions and proposes further work to be pursued. This 
paper contrasts with most previous work on phase modula- 
tion in that the latter has not sought to synthesize the 
optimal demodulator and is instead concerned with analy- 

sis or fixes of the phase-locked loop, see [7] and [3] for 
references. 

II. ABSOLUTE PHASE DEMODULATION 

For computational feasibility, a scalar phase process 
Brownian motion x, is considered.’ In Ito’s differential 
form. 

dx, = d/3, (2) 

with (& t > 0} a standard Brownian motion with E/3: = qt. 
The phase demodulation problem constructs an estimate R, 
of x, based on the two-dimensional observation vector z,, 
s G t, where 

dz, = h ( xl) dt + dv, (3) 

with the cyclic sensor 

h(x,) = [cosx,,sinx,]r (4) 
and o, = [ oi, $1’ a vector Brownian motion of covariance 
matrix rt I, independent of /3,. 

The standard solution to this problem is given by the 
phase-locked loop (PLL) 

d2, = -kh’(~C~) dz,, (5) 
The loop gain k = J4/2r may be obtained via lineariza- 
tion and minimum mean square error arguments. It is 
noted that the PLL is the steady state extended 
Kalman-Bucy filter derived for the problem (2) to (4). 

The optimal nonlinear filter propagates the conditional 
probability density function p(x, tie,). This is accom- 
plished either via the Stratonovich-Kushner partial dif- 
ferential equation 

dP(X> tl4) = 7 
q a*P(xY tPJ dt 

?& 

+ [c - et /. s - $]$p(X, tlet) (6) 

or via Green’s function given by the representation theo- 
rem [2]. In (6), q and r are the noise variances, C and S 
represent cos x and sin x, Ct and ,$ are the components of 
the conditional mean estimate of the sensor i(x,), and df, 
is the innovations vector 

df, = dz, - h(x,) dt (7) 
Approximating the continuous-time problem of (2) to (4) 

by the appropriate stochastic difference equations, a dis- 
crete-time formulation results. The discrete-time optimal 
nonlinear filter, straightforwardly derived from Bayes’ law, 
is a recursion that at time n consists of two steps. 

Prediction: Computation of the predicted probability 
function P,,,- ,(x), the probability of phase at time n A 
given the observations up to time (n - 1)A. This requires a 
convolution 

P,,,,-,(x) = Q*%,,,-,(x), x E X, (8) 

‘Because the density is carried on the line a one-state dimensional 
problem is as computationally demanding as the two-state cyclic density 
which has the torus for support (see [3]). 
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with the dynamics represented by the Gaussian kernel Q  
with the filter probability function F,- ,,n- ,, the probabil- 
ity density of the phase at time  A( n  - 1) given the observa- 
tions up  to time  A(n - 1). A is chosen in a  given signal and  
noise environment so that we obtain ten (10) samples per 
time  constant of the PLL. We  have found this to be  an  
effective method for ensuring that the discrete-time prob- 
lem closely approximates the continuous time  one. 

2) Filtering: Calculation of F&(x). This consists of a  
mu ltiplication 

F,,,(x) = HnbPn,?-,b)~ x E x, (9) 

of the sensor function H,(x) and  the predicted density 
P +,. In (8) and (9), 

Q(x) = ’ - exp ( -x2/Q,), 
\/2?rq, 

f&(x) = k, ev( -llz, - C4112/RJ~ 01) 
qd = 4 ; rd E r. 

A’ 
X is the probability functions’ support, k, is a  constant 
which, in actual implementation, is absorbed into numeri- 
cal normalization procedures, qd and rd are the equivalent 
discrete-time noise variances, ]] . I] is the Euclidean norm. 

For the modu lo 27r or cyclic phase demodulat ion prob- 
lem (CPD), the estimator that m inimizes the cyclic loss 
function given by (1) is 

XT = tan-‘($/ct), x:E(--IT, v). 02) 
It is constructed from estimates of cyclic quantities. These 
need  not be  obtained from p(x, t I@,), but can be  obtained 
from its folded version 

.I@ , tie,) A E p(2km + - x, tl4>3 2  E [-% -,?I-). 
k=-cc 

(13) 
The  cyclic or folded pdf J(Z, t 10,) follows updating schemes 
parallel to (6) or (8) and  (9), referred to in the sequel as 
cyclic recursion. The  CPD has bounded support X = 
[ - 7~, r), which leads to a  more tractable representation of 
the density. Alternative implementation techniques and  
extensive Monte Carlo simulation studies for the discrete- 
time  version of the CPD problem has been  reported in [3] 
and  [4]. 

For the line or absolute phase demodulat ion problem 
(APD), one  is interested in tracking the process x, on  the 
real line (- cc, co). As the error process 

Et A x, - R, 04  
undergoes diffusion on  the line, the a posteriori distribution 
spreads out over the real axis. In PLL studies (e.g., [5]), the 
theoretical performance of the PLL as a  line tracker is 
assessed by decomposing the error process into the sum of 
two independent components,  a  cyclic (or modu lo 27r) 
error C(t) and a  counting process N(t): 

z1 = ct + 27rrN(t), Q, E [-57,97). (15) 

The  process N(t) accounts for the phase slips exhibited by 
the estimate. Under the independence assumption, and  
assuming N(t) to be  Poisson, the error variance is un- 
bounded,  and  is given by 

where ui is the so-called diffusion coefficient. 
For the nonlinear estimator, experiments have shown 

that the analogous counting process also has a  variance 
that is linear in t. Later we will compare the variance 
growth rate of the PLL and  the optimal filter. For more 
general  estimator structures (16) may not hold, i.e., it is not 
obvious that the two error components in (15) are indepen- 
dent. However, the decomposit ion (15) is an  intuitively 
satisfying tool for analysis, and  it will be  used to assess the 
performance of several filters for the APD problem. 

We  remark that the APD problem is intrinsically a  
transient problem. The  steady-state distribution solution 
for the nonlinear filtering recursion is the trivial one, i.e., 
the uniform density on  (- co, co). From a  practical point 
of view, there is a  finite time  horizon beyond which the 
accumulated errors are greater than the acceptable practi- 
cal accuracy requirements, no  matter how accurate the 
noisy measurements are (as long as plant and  measurement  
noises of finite nonzero variance are assumed).  In other 
words, the cyclic measurements provide only local informa- 
tion on  the line phase process; how the process departs 
from a  known initial condition (Brownian motion) is the 
global problem. 

This remark motivates our statistical design of the Monte 
Carlo experiments which we performed to evaluate the 
distribution of slips and  to study the behavior of the 
conditional density around slip points. We  fix the sample 
path length so that there was small probability that the 
conditional density was not interior to the finite support 
chosen to represent the conditional density. 

III. ALGORITHMIMPLEMENTATION 

As given in Section II, the recursion to be  implemented 
is, in symbolic notation, a  convolution 

P, = Fn-,*Q, (174 
followed by a  mu ltiplication 

F, = P, . H. WV 
For the implementation of (17), a  differencing scheme was 
adopted. This grid algorithm provides a  controlled simple 
test on  the attainable accuracy, setting a  benchmark for 
other finite representations. The  space dimension is dis- 
cretized using a  uniform fixed grid with floating center 

G ,(l) = C,, + C(l), 1= l;.., L, (Isa> 
where the fixed grid is given by 

C(Z) = - (K+ 1)~ + (k - 1)277 + (m - l)A,, 
m = 1;. +, M; 

k = (I- l )modM+ 1  = l;.., K, (18b) 
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with the total number of points being L = MK and the 
grid mesh AM = 2m/M. In (IS), K is the number of cycle 
intervals, M is the number of grid points in each 27r-cycle. 
In the simulation studies, K is chosen to be odd and M is 
even. The fixed grid with floating center affords computa- 
tional savings by requiring a single evaluation of the kernel 
Q as the grid has fixed mesh and by simplifying the 
computation of the sensor factor H at each iteration. 

Three centering strategies were tested. The first trivially 
sets CY = 0. The second takes C,, as the maximum of the 
conditional distribution. The third chooses C,, as that grid 
location which at each iteration minimizes the outward 
mass flow, i.e., the density loss. The latter scheme leads to 
the best results and was finally chosen. 

The definition of the algorithm requires assigning values 
to three quantities, M, K, and T. The number M of points 
in each cycle interval is adjusted to be a reasonable com- 
promise between accuracy and computational effort (com- 
puter time and numerical error). The value M = 17 was 
used in most of the numerical studies presented in the 
sequel. The number K of cycle intervals is related to the 
time horizon T chosen for the simulation runs duration. In 
order to obtain accurate statistics for the cycle slip phe- 
nomenon, the simulation runs must exhibit a statistically 
significant number of slips. This may be attained either by 
choosing a large time horizon T or a small loop signal-to- 
noise ratio IX The nonlinear theory for the one-dimensional 
PLL [5] provides an estimate for the mean time to skip a 
cycle. The simulation parameters T and a: are loosely set on 
the basis of this estimate. For a given T, K is chosen so that 
the total mass loss experienced in the run is smaller than a 
given preset value cp. As a further test on the accuracy of 
the density representation, the moments of the cyclic den- 
sity obtained by direct folding of the line density P, and of 
the cyclic density computed directly from the cyclic recur- 
sion are made to agree within a preset tolerance. Another 
number of importance in actual simulation concerns the 
support of the convolution kernel Q. Due to finite compu- 
tation precision, the kernel need only be computed and 
stored for a finite number I of points of a fixed grid. 

In Fig. 1, the block diagram of our simulation is given. 
This program flow chart exhibits two loops-a time loop 
nested in the simulation Monte Carlo loop. The main drive 
reduces to a set of calls to subroutines accomplishing 
specific tasks. The nonlinear line filter block includes a 
convolution loop. This loop is coded as a dot product in 
the array processor. The array processor also computes and 
accumulates the data required for entropy evaluation. The 
program has restartable features, saving the latest seed 
values for the random number generation. The code per 
iteration has not been optimized and requires an average of 
92.5 ms. The Monte Carlo statistics were collected with a 
set of 23 experiments of 25 x lo3 iterations each (corre- 
sponding to 2.5 X lo3 PLL time constants) and for a 
noise-to-signal ratio of - 3 dB. The average total mass loss 
(see eq. (18a)) observed was 3 percent. The statistical 
design of the Monte Carlo loop is discussed in [3], includ- 
ing the details of the random number generator and an 

MODEL 

. I 

NONLINEAR ESTIMATES: 

CYC. RECURS. LINE AND CYC. 

Fig. 1. Program fluxogram 

analysis of the length of the transient phase. The latter 
analysis justifies our sampling rate of 10 samples per time 
constant. 

IV. CONGRUENCE ASSUMPTION: THEENTROPIC 
MEASURE OF INSTABILITY 

Intuitively one expects the cyclic density J, to be sym- 
metric about the cyclic estimate. Also, as the conditional 
distribution diffuses outward on the line, lobes are created 
in adjacent cycle intervals. If the slip rate is slow compared 
to the filter time constant, as occurs at moderately good 
signal-to-noise ratios, the distributions in the several cycles 
can be thought of as essentially redundant solutions to the 
same dynamics problems, namely the cyclic problem, but 
with weak diffusion coupling between solutions in adjacent 
cycles. This observation suggests that, for any finite time, 
the a posteriori distribution must be a pseudocyclic func- 
tion, as illustrated in Fig. 2, whose individual 277 cycles are 
similar to the cyclic probability J,,, modulated by an overall 
envelope corresponding to a general outward diffusion of 
probability with time. 

In [l], this pseudoperiodic argument was used to factor 
P,(x) as 

P,(x) - 4(x)4(& .f E [ -7r, m), (19 
where J, is the cyclic density in (13), and E,,(x) is an 
envelope function on the line. It is stressed that (19) was 
used as an algorithmic approximation to the a posteriori 
conditional distribution. 
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Fig. 2. Pseudoperiodic conditional density 

The  simplest envelope assumed is of the histogram type, 
i.e., the envelope is constant on  the Kth cycle, having 
weight 

W :(n) A E,(x), x E Kth cycle. (20) 
The  weights {W:(n)} are equivalently defined as the total 
mass on  the Kth cycle. In [ 11, exact recursive updating 
formulas for the {e(n)> are presented. Their actual imple- 
mentation requires approximation, (19) being the one  sug- 
gested. 

Herein (19) is used as a  strong signal or “linearized” 
behavior assumption for the conditional distribution. It is 
referred to as the congruence assumption. 

Congruence Assumption (CA): The  a posteriori distribu- 
tion P,,(x) is said to satisfy the congruence assumption 
(CA) if and  only if P,(x) satisfies (19), where J,(Z) is the 
cyclic conditional density and  E,,(x) is a  suitably defined 
envelope on  the line. 

In the sequel, whenever  the congruence assumption is 
invoked, the histogram envelope of (20) is implied. The  
congruent line probability is then a  train of differently 
weighted replicas of the cyclic conditional probability J,,(x). 
In terms of notation, every quantity related to a  congruent 
probability will be  tilded, e.g., p,,(x). 

As ment ioned in the Introduction, a  useful functional 
parameter to study the degree of randomness of the condi- 
tional distribution is its (differential) entropy, 

K A - 5  4&,(x,) log P,b,>, 
I=1 

(21) 

where AM is the space mesh. 
The  entropy of the message process, being the entropy of 

a  Brownian motion (BM) with variance diffusion coeffi- 
cient q, is (in continuous time)  

H,(BM) = $[l + log(27rqt)]. (22) 

Experimental studies show a  reduction of at least a  factor 
of 10  for the entropy of the line density, just as a  result of 
observations. 

Second, the entropy of any distribution over K 2n-cycles 
is bounded  above the the entropy of the uniform distribu- 
tion (UD) 

H(UD) = log(K2n). (23) 

Whenever  the entropy of the line distribution (LD) is 
greater than (23), i.e., 

H, (ID) > log (Kh), (24) 
then it is plausible to assert that any reasonable decision 
scheme will have erred up  to time  n  at least K times when 
deciding which cycle the process is in, in other words, it 
will have exper ienced at least K cycle slips. For example, 
with the uniform distribution, a  randomized strategy will 
be  wrong (K - 1)/K percent of the time. For n sufficiently 
large, 

K- 1 
-n>K. 

K (29 
For a  congruent distribution (linearized behavior) satisfy- 
ing (24), the weight distribution may be  quite uneven. 
However, the weights are spread over a  larger number  of 
cycles, so that it is still reasonable to take K as a  conserva- 
tive estimate of the number  of cycles slipped. 

It is straightforward to show for a  congruent distribution 
that 

iin = fin(w) + fi,,( J), (26) 
where fin(w) is the entropy of the distribution of weights 
{W,(n)} and fin(J) is the entropy of the cyclic probability 
density. As will be  seen from experimental studies pre- 
sented in the following section, the actual form of P,,(x) 
may depart significantly from the congruent format. To  
quantify in a  contracted way this departure, the following 
entropic measure of instability is found to be  useful: 

pn 2 H,, - fin, (27) 
where 111, is the entropy of the congruent distribution pn( x) 
corresponding to the conditional PDF P,(x). This con- 
gruent distribution is constructed in the obvious way, by 
overlapping P,(x) on a  given centered 2r-cycle and  repli- 
cating this in adjacent intervals, with weights correspond- 
ing to the total mass in these intervals. The  next section 
shows how pL, serves a  useful device to predict the smooth 
or turbulent behavior of the conditional density. 

In [S], [9], [lo] the joint information was used to lower 
bound the average error performance of systems for given 
processes. In this paper, in contrast, we are using informa- 
tion concepts applied to the conditional density to signal 
and  detect anomalous behavior along a  given sample path, 
in particular to signal cycle slips. 



514 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-29, NO. 4, JULY 1983 

1.0 f 
2500 

r 1 1 1 I c 
2554 2600 2650 2700 2750 ” 

Fig. 3(a). Q entropic measure history. 

Fig. 3(b). Density display at n = 2860. 

V. BEHAVIOR OF THE CONDITIONAL LINE 
PROBABILITY DISTRIBUTION 

The line recursion (17) was implemented as described in 
Section II. Besides the estimators and statistics presented 
in Section VI, the output included the history of the 
entropic measure of instability pLt = H - DH introduced 
in last section and in graphic displays of the density. These 
were obtained with a Chromatics High Resolution color- 
graphics output device to the PDP-1 l-55 minicomputer/ 
AP120B array processor configuration. 

For a given run, Fig. 3(a), illustrates the trajectory of pr 
from iteration number 2500 to iteration number 2750. One 
distinguishes two types of behavior: a) where pLr exhibits 
small values, remaining in a neighborhood of zero; b) 
where pLt takes large values. About iteration number 2680, 
pt exhibits drastic variations. At this iteration, the condi- 
tional line density Fn is given by Fig. 3(b). It departs 
significantly from the congruent assumption. This pattern 
was found to be present in all the runs simulated. The 
trajectory of pt is a good indication of mass flow between 
adjacent modes. It will be concluded later on, that it is at 
these critical points that slips occur. However, the estima- 
tors are able to survive without slipping 90-95 percent of 
the time. 

Having the pL-history as a guideline, sequences of 
snapshots of this line density were taken in regions corre- 
sponding to the two aforementioned modes of pt behavior. 
They are shown in Figs. 4 to 12. On the basis of these and 
similar experiments carried out, it is concluded that the 
evolution of the conditional line distribution exhibits two 
basic modes: 

1) A strong signal mode or weak-interaction mode, where 
the line distribution is very nearly congruent, with 
similar, weakly interacting lobes (sequence of frames 
in Figs. 4 to 12). In this mode, the line distribution 
behaves in a smooth or undisturbed fashion, with 
weak diffusion coupling between adjacent cycles. 

2) A weak signal mode or strong-interaction mode, where 
the line distribution departs significantly from the 
congruent assumption, with strong coupling between 
lobes and mass flow, or lobes spanning several adjac- 
ent 277 cycles (sequence of pictures in Figs. 4 to 12). 
In this mode, the line distribution goes through a 
turbulent state, with the creation, annihilation, or 
exchange of significant mass between cycle lobes. 
These pictures confirm that the entropic measure of 
instability p1 is a good indicator of the dynamical 
stability of the conditional distribution is evolution. 
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Fig. 4. Phase density 1826. Fig. 5. Phase density 7828. 

Fig. 6. Phase density 7830. Fig. 7. Phase density 7832. 

Note the relation between an  information theoretic 
concept and  the behavior of nonlinear filters. The  
difficulty lies in the fact that computation of pLr still 
requires the propagat ion of the full line density, as 
the weights Wz must be  determined. 

F igures 4-12 also show, at the arrows, the location of 
several estimator structures (PLL, line conditional mean,  

estimators and  in particular of how to decide if a  slip 
occurred or not is postponed to next section, a  link is here 
established between the behavior of the density flow and  
the cycle slips. It was observed that the cycle slipping is 
intimately related to the turbulent distribution mode,  i.e., 
where there is oscillation of the entropy difference. After 
the occurrence of a  noisy sequence of data points, when the 
pattern of density modes  changes, the estimators may end  

unwrapped cyclic). Although a  detailed discussion on  these up  locked at a  wrong lobe. It is this phenomenon  that 
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Fig. 8. Phase density 7834. Fig. 9. Phase density 7836. 

Fig. 10. Phase density 7855. Fig. II. Phase density 7857. 

corresponds to a cycle slip. However, this last phenomenon 
has small probability and finer resolution between mass 
flow and slips must be considered. 

As long as successive unstable or turbulent modes occur 
separated in time by several PLL time constants, the PLL 
slips, under these turbulent modes, constitute events inde- 
pendent of each other; i.e., if the time between sequences 

slips are independent. On the other hand, for the line 
conditional mean, as for other estimators directly using the 
line density, one cannot assume this independence. An 
open question is whether bonding or correlation is suffi- 
ciently strong to eventually lead to a corrective movement 
of the slips. A second related open question is concerned 
with the quantification of the probability of a slip in terms 

of noisv data is more than the loon memorv snan. the PLL 
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Fig. 12. Phase density 7859. 

As an  indicator of slips the difference of the entropies of 
the conditional distribution on  the line and  the corre- 
sponding congruent distribution (i.e., based on  the cyclic 
conditional distribution) gives rise to a  large number  of 
false alarms. False alarms are situations where mass flow 
occurs but the estimate survives the mass flow without 
slipping either to the right or to the left. An indicator of 
slips which appears to be  as good  as can be  expected, 
about a  50  percent false alarm probability, can be  con- 
structed by indicating a  slip when the difference of the line 
and  congruent entropies exceeds a  level while simulta- 
neously the entropy of the conditional density on  the line 
at the present instant exceeds that of the previous instant 
by a  fixed amount.  At + 3  dB signal-to-noise ratio, q. = 0.1 
the slips generated by the first random sequence of the 
random number  generator of [6] with levels of 0.05 pre- 
dicted slips well for the first 25  000  estimates. The  inter- 
ested reader can reproduce these results by using the 
generator of [6]. Note that because of our representation of 
the conditional density on  the line viz. 17  277  intervals, our 
simulation is unable to accurately simulate beyond 25  000  
estimates because we lose mass from the finite support. 

VI. CYCLE SLIP STATISTICS AND PERFORMANCE 
BEHAVIOR OF ESTIMATORS 

Given a  loss function appropriate to the problem at 
hand, and  having the conditional distribution, it is trivial 
to derive the nonlinear m inimum loss estimate 2. In [l] a  
hybrid m inimum cyclic loss/maximum likelihood criterion 
was chosen, yielding an  estimate x* + n2r where x* is the 
m inimum cyclic loss estimate and  n is the cycle having the 
largest mass. Here, attention is focussed on  three estimates: 
the PLL, the conditional mean,  and  the replica of x*, the 

cyclic estimate, unwound about the conditional mean.  They 
are compared on  the basis of the average of the accu- 
mu lated mean  square error and  of the number  of cycle 
slips observed in a  given time  span. 

A first issue to be  resolved concerns counting slips. 
Decomposing the absolute phase estimation error for 
estimate 2  as in (15), here repeated 

et = zt + 2sN(t), q  E [-T r), (28) 
one m ight be  tempted to count the jumps of N(t) as the 
cycle slips. However, this is found to be  unsatisfactory, as 
mean  time  to slip data for the PLL cannot be  verified. It is 
found experimentally that the error process occasionally 
“loiters” in the vicinity of the unstable equilibrium points 
(2n + 1)rr until resolved one  way or the other by the 
dynamics or the data. F ig. 13  illustrates the point. It seems 
clear in the case illustrated that it is incorrect to count 8  
cycle slips due  to boundary crossings as shown. 

A correct counting of the cycle slips considers the recent 
past history of the error process. This is achieved by 
introducing a  decision scheme with hysteresis [l], resem- 
bling devices used in practice when counting zero crossings 
of a  Brownian motion. This device increases its count only 
when the error process penetrates sufficiently into one  of 
the adjacent intervals, as illustrated in F ig. 14. 

What  it does is to adopt a  hysteresis threshold definition 
of “cycle slips.” It is apparent that the tendency of the 
conditional mean  to be  conservatively posit ioned between 
two ma in lobes of the conditional distribution reduces its 
total number  of cycle slips. 

There is an  error of k positive slips at t if and  only if 

4  there exists an  s, s < t such that E(S) E Q2, = (2mk 
= L, 2rk + L); 

b) the first exit time  r of &St, is such that s < r < t and 
c( 6’) = 2mk + L; 

c> for every P E (Y, t>, 0) E Q2k+l. 

Similarly, for k negative slips. The  above definition only 
counts a  positive slip at the first positive crossing of the 
level (2k + 1)~ + L following a  positive crossing of the 
level (2k + 1)~. The  decision threshold L is tuned by 
adjustment of the PLL experimental and  theoretical re- 
sults. 

In order to find slip histograms with sufficiently small 
confidence intervals, a  reasonable number  of slips have to 
be  generated in each run. This can be  achieved either by 
lowering the signal-to-noise ratio or by extending the time  
duration of the run. The  simulation results presented corre- 
spond to 20  Monte Carlo runs, with the following choice of 
parameters: 

(Y = signal-to-noise ratio = + 3  dB, 
k = A4 = 17; 
N = number  of interations 

= 25  x lo3 (2500 PLL time  constants), 
L = IT. 

For each estimate a  running count was kept of the number  
of slips observed, as well as of the time  average accu- 
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Fig. 13. Error process “loitering” about unstable points. 
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Fig. 14. Counting of cycle slips with hysteresis device. 

mulated mean-square error 

(c’) = ; ic, (x(4 - W)‘. 
The results are reported in Tables I-III. 

It is apparent that the tendency of the conditional mean 
to be conservatively positioned between two main lobes of 
the conditional PDF penalizes its performance as a (local) 
cyclic estimator. However, it reduces its total number of 
cycle slips. The unwound cyclic about the conditional 
mean, being a noncontinuous estimate, exhibits from time 
to time additional pseudo slips. The hysteresis device still 
counts these as slips, but, because they correspond to a 
transient behavior, they are eventually corrected, having no 
significant lasting impact on the mean square error perfor- 
mance. 

These simulations show that, by carrying forward in time 
the conditional density, a significant improvement with 
respect to the PLL can be achieved in terms of reduction of 
the number of cycle slips observed and of slowing down 
the growth of the mean square error. Preliminary results, 
lacking statistical significance, indicate that suboptimal 
structures with limited memory can achieve most of these 
improvements. 

In Figs. 15 and 16, which represent the total number of 
times the signal and the estimate differed by 2km on 23 
sample functions each of duration 25 000 points. The 
histograms are for the PLL estimate and the cyclic estimate 
centered at the conditional mean. The results of Figs. 15 
and 16 are the results of the same experiment with the two 
different seeds of the random number generator reported 
in [6]. 

TABLE I 
SLIPDATA FIRSTSAMPLEPATH 

Phase Locked 

- 728 2741 - 7862 - 8854 - 9641 
- 10120 - 13948 - 15140 17898 22517 

23199 24171 

Conditional Mean Centered Cyclic Slip Place Data 

2680 3633 - 3642 -6177 6346 
-6351 6420 - 7826 - 8824 - 9637 

12613 - 12685 13174 - 13222 13237 
- 13242 13845 - 13857 - 15093 15097 
- 15239 15243 - 15294 15394 - 15344 

15370 - 15940 15955 - 17502 17503 
21331 23929 - 23940 24072 - 24098 
24167 

TABLE II 
SUMMARYOFAVERAGESTATISTICSFORPLLAND XMEAN 

PLL X MEAN GAIN OVER PLL 

2.264 1.796 22% 
11.8 8.5 28% 

1838 2761 50% 

TABLE III 
AVERAGENUMBEROFITERATIONSBETWEENSLIP i - 1 AND i: (iter), 

i PLL 

1 2222 
2 2378 
3 1969 
4 2078 
5 1996 
6 1848 
7 1678 
8 2045 
9 1955 

10 2016 

X MEAN 

2700 
2792 
2495 
3316 
3502 
2220 
2303 

In Table I, we give the original slip place data. An entry 
+ ( - ) k means at time k the estimate slipped one interval 
positive (negative). There were 240 places on the first 
sample function of the first Monte Carlo where there was 
significant mass flow (i.e., the relative minimum of the 
conditional density in a 47r interval centered at the maxi- 
mum was greater than 10 percent of the maximum). Notice 
that in the histogram the PLL estimate accumulates more 
mass in the tails of the slip distribution. The Q statistic, the 
rate of growth of slip variance, is consequently larger for 
the PLL than for the optimal estimate. It is clear from the 
slip data that the conditional mean centered cyclic estimate 
is more sensitive and more precise than the phase lock 
locked loop estimator. 

For the PLL, Lindsey [7] has shown that the slip process 
N(t) is approximately decomposible as 

N(t) = N+(t) -N-(t), 

where N+(t) and N-(t) are independent Poisson processes, 
with the same parameter X in our case so that 

EN+(t) = EN-(t) = At, 

EN:(t) = ml(t) = (At)2 + At, 

and hence 
E(N+(t) - Np(t))2 = 2(h), 
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Fig. 15. Slip histogram (seed 1). 

Fig. 16. Slip histogram (seed 2). 

where X is a  function of the signal-to-noise ratio. We  tested 
our slip detection process by comparing the simulated 
average number  of slips for the PLL with the above 
approximation. 

This situation leads to a  simple idea for a  statistic to 
judge the difference between various estimators of absolute 
phase, name ly X the variance growth parameter. For exam- 
ple, in the case of the PLL the histogram of the total 
number  of slips determines a  variance which grows 
quadratically with time. From our slip histograms we 
can compute the histogram variance of the PLL as 
EN=W+,, ) = 0.005 t/rpLL. It is clear that if V(t) is a  
discrete random process with variance proportional to t 
and mean  zero, the 

where N, = the number  of k such that V(kA) = (Y. From 
the above equality it is clear that the histogram variance 

in the case of the PLL measures X. Our data is consistent 
with the nonlinear absolute phase estimator generat ing a  
slip process N*(t) analogous to N(t) in distribution and  
with growth parameter EN*(t/TpLL)= = 0.00324 t/rpLL. It 
is clear that the nonlinear estimator is significantly better 
than the PLL on  the basis of variance growth parameter X. 
This is the Q  statistic referred to earlier. Analysis of our 
slip data by computing the variance of the histograms for 
the PLL and  nonlinear estimator by variation of sample 
path lengths 8000, 16  000  and  24  000  with 23  Monte Carlo 
runs shows that the variances of the histograms for the 
nonlinear filter grow linearly with time, at least at - 3  dB 
signal-to-noise ratio. 

For each estimate a  running count was kept of the slips 
observed as well as of the time-average accumulated mean  
square error (normalized by the cycle length of 2n) 

(z’) = + f, (x(i) - a(i))‘. 
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Table II summarizes the results for the PLL and the line 
conditional mean X MEAN. In the table 

(slips) = average number of slips observed, 

(iter) = f ,i (iter),, 
I=1 

where (iter), = average number of iterations between slip 
i - 1 and slip i. The above averages are computed over the 
23 Monte Carlo runs. The third column in Table II repre- 
sents the percentage improvement of X MEAN over the 
PLL. 

Table III gives the values of (iter),. Notice that, for an 
equivalent statistical significance, the sequence of available 
values for X MEAN is smaller than for the PLL. 

Table II shows a net improvement of X MEAN over the 
PLL for the three statistics studied. As a final remark, 
notice that the value (iter) = 1838 in Table II for the PLL 
is within 11 percent of the theoretical value of 2070, given 
for SNR = -3 dB by the PLL theory [7]. This serves to 
adjust the threshold of the hysteresis device used in con- 
junction with the slip counting. 

VII. CONCLUSION 

This paper has considered the absolute phase demodula- 
tion (APD) problem. It presents experimental evidence 
based on Monte Carlo simulations run on a digital com- 
puter, that links the cycle slipping of several estimates to 
the turbulent behavior induced by noisy data sequences on 
the conditional distribution. This turbulent behavior is 
measured in terms of the distortion of the PDF with 
respect to its congruent version, being correctly signaled by 
the entropic measure of instability. This measure presents 
an important connection between information theory con- 
cepts and nonlinear filtering. Statistics on the cycle slips 
and the absolute mean-square error performance are pre- 
sented for several estimators, comparing them with respect 
to the corresponding results for the classical phase locked 
loop. Even for the one-dimensional phase problem under 
study, with limited improvement to be expected, significant 
improvements are reported. Of course, the more realistic 
model of the phase process where the acceleration is white 
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and the phase velocity as well as phase must be tracked, 
merits study. From our discussions of the computational 
requirements of an accurate numerical and statistical study, 
it is clear that such a study would be quite demanding 
computationally. Further studies, presently being carried 
out, are concerned with the statistical performance of 
suboptimal finite memory filtering structures. 
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