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Affine-Permutation Invariance of 2-D Shapes
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Abstract—Shapes provide a rich set of clues on the identity and
topological properties of an object. In many imaging environ-
ments, however, the same object appears to have different shapes
due to distortions such as translation, rotation, reflection, scaling,
or skewing. Further, the order by which the object’s feature points
are scanned changes, i.e., the order of the pixels may be permuted.
Relating two-dimensional shapes of the same object distorted by
different affine and permutation transformations is a challenge. We
introduce a shape invariant that we refer to as the intrinsic shape
of an object and describe an algorithm, BLAISER, to recover it.
The intrinsic shape is invariant to affine-permutation distortions.
It is a uniquely defined representative of the equivalence class of
all affine-permutation distortions of the same object. BLAISER
computes the intrinsic shape from any arbitrarily affine-permu-
tation distorted image of the object, without prior knowledge
regarding the distortions or the undistorted shape of the object.
The critical step of BLAISER is the determination of the shape
orientation and we provide a detailed discussion on this topic.
The operations of BLAISER are based on low-order moments of
the input shape and, thus, robust to error and noise. Examples
illustrate the performance of the algorithm.

Index Terms—Affine-permutation invariance, blind algorithm
for intrinsic shape recovery, fold number, intrinsic shape, orbits,
orientation indicator index (OII), point-based reorientation algo-
rithm (PRA), shape invariance, shape space.

1. INTRODUCTION

N IMAGE processing and computer vision, the shape of an

object is described by the two-dimensional (2-D) projections
of the three-dimensional (3-D) feature points of the object on
the image plane. This perceived shape is highly dependent on
the viewpoint under which the object is imaged and the order
in which the feature points are scanned. This dependence has
significant effects on many image processing and computer vi-
sion applications, for example, when detecting, classifying, or
identifying an object from its 2-D image. A common way to
address this problem is to restrict these shape variations to cer-
tain classes, for example, translations and rotations, and then
designing a detector or a classifier that is “robust” to this vari-
ability, e.g., [1]-[5]. In this paper, we take a different approach
to the problem and look for an invariant definition of the shape
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of an object. This invariant shape can then be used as tem-
plate in detection or classification problems or in image data-
base searches.

Invariant features of 2-D shapes under affine transformations
have been studied in image processing and computer vision ap-
plications such as pattern recognition [23], [27], [28]. Good 2-D
affine invariants are complete, easy to compute, stable under
small distortions, and continuous. There are a number of dif-
ferent approaches to obtaining affine invariants. The normaliza-
tion approach, in particular, has been well outlined in [11], [12],
for example, and is the method chosen for our work in this paper.
The author in [11] defines invariant features of planar curves
under affine or projective transformations using the framework
of group theory. Then, he shows an example of global nor-
malization techniques to compute the affine invariants using
low-order moments. The approach in this reference requires an
edge detector prior to normalization and the orientation ambi-
guity (rotation and reflection) is not discussed in depth.

Shapes in general have also been studied in other contexts.
For example, Kendall et al. [13], [14] have developed a theory of
shape that makes the following assumptions. 1) Labeled feature
points: The feature points that define a shape are labeled—they
implicitly assume that the correspondence between features
in different images of the same object has been established.
2)Class of motions: The class of motions that distort the shapes
are restricted to translations, rotations, reflections, and uniform
scaling. 3) Shape space: These references study the structure
of the space of shapes after the allowed class of motions has
been factored out. Grenander and his collaborators [16]-[20]
describe the shapes of the objects by closed contours. The
authors here map these contours onto nodes of object graphs
and give a definition of shape in terms of invariance to a general
class of transformation groups.

Our work is distinct from these previous works. We look for
an invariant definition of the shapes intrinsic shape [6]-[8] that
is invariant to the full class of affine-permutation distortions.
We define the notion of intrinsic shape and present a blind al-
gorithm that recovers it from any arbitrarily affine-permutation
distorted image of the object. The algorithm is referred to as
the blind algorithm for intrinsic shape recovery, or BLAISER
for short. The algorithm is blind because no further informa-
tion is needed other than the given input shape. We now list
the important features of our work. 1) Unlabeled feature points:
We work with unlabeled feature points. We represent the un-
known labeling of the feature points by a permutation. We avoid
the computation-intensive feature correspondence problem by
doing so. 2) Affine distortions: Beyond the geometric distor-
tions studied by Kendall et al., i.e., translation, rotation, and
uniform scaling, we consider a more general class of shape dis-
tortions—the affine distortions. This class of distortions is more
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general than Kendall’s but more restrictive than Grenander’s.
3) Rigidity constraint: Our approach exploits the rigidity con-
straint on the object’s shape and its distortions. By doing so,
we can recover the intrinsic shape using a simpler algebraic ap-
proach rather than a graph theoretic framework as in [19]. 4)
Low-order moment-based approach: The affine-permutation in-
variant, i.e., intrinsic shape, is obtained by computing a set of
low-order (up to third order) moments of the input shape. We
avoid using higher order moments that are generally considered
to be more sensitive to noise. 5) Dense image representation: We
include all points in the object that are imaged by the sensor as
the feature points, including the points that are inside the image
contour, leading to a more detailed description of shapes, es-
pecially for those shapes with multiple complex structures (i.e.,
holes, disjoint parts, etc.). We require the shape to be segmented
first, but unlike other previous works, feature extraction or edge
detection is not needed. When this dense representation is com-
bined with the moment-based approach in 4), more robust per-
formance results are obtained. 6) Intrinsic shape: Most impor-
tantly, we are interested in recovering the canonical form of
the object’s shape, its intrinsic shape. The intrinsic shape is the
affine-permutation invariant and is obtained via the normaliza-
tion process that completely removes the full affine-permutation
distortions. The study of intrinsic shapes leads to interesting ap-
plications in image processing and computer vision.

This paper is organized as follows. We start by introducing the
concept of intrinsic shape in Section II. In Section III, we present
the blind algorithm referred to as BLAISER. In Section IV, we
focus on the shape orientation problem. In Section V, we discuss
the robustness of BLAISER in the presence of random noise
and erroneous pixels. Then, we apply BLAISER to a set of real
data to verify the affine-permutation shape distortion model and
illustrate the performance of BLAISER. Section VI summarizes
and concludes the paper.

II. INTRINSIC SHAPE

We introduce the notion of intrinsic shape. We first fix the
notation for representing shapes and affine-permutation shape
distortions. Next, we define what the intrinsic shape of an ob-
ject is under the framework of group theory. Then, we formally
state the problem of recovering intrinsic shape from affine-per-
mutation distorted shapes. In this section, the concepts and al-
gorithms are developed under an ideal environment where dig-
itization error, background noise, occlusion, and other pertur-
bations do not exist. The shapes are assumed to be segmented
first. Then, all pixel points constituting the shape are identified
as the feature points. These points have one-to-one correspon-
dence with all of its affine-permutation distorted versions by a
precise mathematical relationship (see Fig. 1 for typical input
shapes used in this work). The nonideal environments are intro-
duced later in Section V-A where we discuss the robustness of
our approach to error, noise, and occlusion.

A. Definitions

Consider the shape of an object described by a configuration
of N unlabeled points {py,}r—1..x on a 2-D plane R%. Each
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(a) (b)

Fig. 1. Typical input shapes. (a) Shape of airplane. (b) Distorted shape.

point py, is assigned a nonzero amplitude value and its location
on the plane is specified by a pair of coordinates (xy, yx) with
respect to a reference coordinate system with x and y axes. This
shape is represented by a 2 X N configuration matrix X that
collects the = and y coordinates of the N feature points. That is

r1 T2
Y Y2

N
YN

X = (1)

The configuration matrix may be vectorized to a 2/N-dimen-
sional vector x, using the vec operation [22]. For example, in
row—order notation, we stack the rows of X as

x=vecX =[r120... 2N Y1 Y2...UN] . 2)
We use interchangeably the terms shape, configuration matrix
X, or configuration vector X.

We define the configuration space X as the collection of all
configurations of N unlabeled points on a 2-D image plane.
When we work with configuration matrices, X is the Euclidean
space RZ*Y of 2 x N matrices. When we work with vectors
using the vec notation, X is the Euclidean space R* of 2N -di-
mensional vectors. We exclude from these spaces lower order
dimensional spaces that correspond to degenerate shapes where
points at the same location are repeated.

B. Permutation

The reordering of the columns in a configuration matrix X is
performed by multiplying the configuration matrix on the right
by an N x N permutation matrix P. The permutation matrix
P is a highly sparse orthogonal matrix with only one nonzero
entry, which is unity, per row, and per column. In practice, dif-
ferent permutation matrices describe different orders by which
the feature points of the image are scanned by the input device.
The unknown permutation matrix P indicates that the corre-
spondence is not known between the pixels of different images
of the same object.

C. Affine Distortion

In many imaging environments, the sensor and the imaged ob-
jects are arbitrarily oriented with respect to each other. Due to
the unknown relative positions, the shape of the object captured
in the image is geometrically distorted. These geometric distor-
tions are well approximated by an affine transformation in many
applications [23]. Affine distortions encompass a wide range of
geometric distortions including translation, reflection, rotation,
uniform (isotropic) and nonuniform (anisotropic) scaling, and
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skewing. Two configuration matrices X and X? are affine dis-
torted from each other if they are related as

X1=AX+1T®é6 3)

where the linear distortion matrix A is a 2 X 2 invertible matrix
of real numbers and the translation vector 6 is a 2 x 1 vector of
real numbers. That is

1 1
_|a1 a3 _ o
A—{a% ] ‘”M'

Note that ® is the Kronecker product [22] and 1 is a [V X 1 vector
of ones. The affine distortion parameters (A, §) completely de-
scribe the affine distortion of the configuration matrix X to X¢.

D. Affine-Permutation Distortion

We now collect the two types of distortions, affine and per-
mutation, in a single model. The two shapes of the object X?
and X are related by an affine-permutation distortion if

X{=(AX+1TesP=AXP+1T0s @

In vec notation, the above equation is written as

x'=PT@A)x+116 6))

where x? = vecX? and x = vecX. By the properties of the

Kronecker product [24], the matrix P7 ® A is invertible.

E. Intrinsic Shape

The affine-permutation distortion in (5) is a special case of
the general affine transform in R2V

x? =vecX?'=GvecX+t=Gx+t (6)

where GG is a 2N x 2N invertible matrix of real numbers and
t e R¥V isa generic translation vector. We consider the set, G =

{9 = (G, t)}, and define the binary operationo : G x G — G
where
g1 092 = (G1 Gz, t1 + Gita),
Vg1 = (G1,t1), 92 = (Go,t2) €G. @)

Clearly, G is a group, the affine group [25]. Within the generic
affine group G, we consider the subset

A={a=(P"®A, 1868} Cg ®)

with an invertible 2 x 2 matrix A, a N x N permutation matrix
P, and a 2 x 1 real-valued vector §. By the properties of the
Kronecker product, this set is closed under the group operation
o. The set A and its associated binary operation o constitute
a group in its own right, hence, a subgroup of G. The group
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A is the important structure that models the affine-permutation

distortions of shapes. We call A the affine-permutation group.
We now consider the action of a group on a set. The action ¢

of the group A on the configuration space X is defined by the

mapping

P AXX — X
(0, X)— aX =AXP +1"® 6
(a,x) — ax = (PT@ A)x+1®86.

The group action ¢ defines an equivalence relation among the
configuration matrices X € X. We represent this equivalence
relation by the symbol = 4. It follows easily from their proper-
ties that equivalence relations partition the configuration space
X into disjoint equivalence classes, also commonly referred to
as orbits. The set C of orbits C is the factor space

C=X/=,={CCX:VX,X,€C,X, =4 Xo}. (9

Often, to indicate explicitly the group, we use the notations C 4
and C 4. The action of the general affine group G on & is tran-
sitive, and so the corresponding X'/~ has a single element.
However, the action of the subgroup .4 on X is not transitive
and there is more than one orbit in X'. This follows because A
is strictly contained in G, i.e., A C G.

Since the equivalence relation =4 partitions the configura-
tion space into disjoint sets, the orbits are either identical or non-
intersecting. An orbit C 4 can be generated by any configuration
X in the orbit as

C4={¢(a,X):Va € A}. (10)
Then, an orbit collects all possible configurations arising from
affine-permutation distortions of the object’s shapes. It is desir-
able to select from all these configurations a unique configura-
tion S that we label the intrinsic shape of the object. Clearly, any
configuration X of an object is class equivalent to its intrinsic
shape S. Our goal is to show that we can in fact identify for
each orbit such a unique representative and to recover blindly
the intrinsic shape S of the object from any of the configura-
tions X € C4.

The problem is summarized by the following input/output re-
lationship:

Input : X =ASP+17 @6 € C4
Output: S€ C4 and (A,P§).
Given an arbitrary configuration X of an unknown object, we
find blindly its intrinsic shape S, i.e., without knowledge of
the group element ¢ = {A,P,8} and its intrinsic shape S.
It is important to note that this statement raises two problems:
1) definition of the canonical representative of an orbit, i.e., the
intrinsic shape; 2) design of the blind algorithm that recovers S
corresponding to the given X. We address these two issues in
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the next section by introducing a new algorithm referred to as
BLAISER.

III. BLAISER

In this section, we develop BLAISER, an algorithm that re-
covers blindly from any distorted configuration X in an orbit
C 4 the corresponding intrinsic shape S. Consider an orbit C 4,
a member X, and its unique intrinsic shape S. The two con-
figurations X and S, each consisting of N points, are related as
X = ASP +17 ®86, where the parameterization a = (A, P, §)
of the affine-permutation distortion is unknown.

Definition 1 (Intrinsic Shape): The intrinsic shape S is de-
fined for an orbit C 4 by the following four properties.

e The center of mass is located at the origin.

¢ The outer product is an identity matrix, i.e., SsT =1

*  The reorientation point (to be defined in the discussion of

shape reorientation) of S is aligned with the x-coordinate
axis.

e The columns in S are ordered in ascending y-coordi-

nate values, then in ascending x-coordinate values for the
columns with the same y-coordinate values.

The algorithm that finds the intrinsic shape of any affine-per-
mutation distorted shape is then summarized as below.

Algorithm 1 (BLAISER): BLAISER reduces the affine-per-
mutation distorted shape X € C 4 toits intrinsic shape S € C 4
by the following four steps.

* Centering: X = ASP + 17 ® § — X° = ASP.

¢ Reshaping: X° = ASP — X* = USP.

¢ Reorientation: X* = USP — X" = SP.

¢ Sorting: X" = SP — X" = S.

Note that U is a 2 x 2 orthogonal matrix. The first two steps,
centering and reshaping, are together referred to as “com-
pacting” or ‘“shape normalization” in the pattern recognition
community. Readers are referred to [6], [11], and [27] for
details. As shown in [11], the “compacting” process results in
a 2-D affine invariant that is continuous, easy to compute, and
robust to digitization errors. No distinguished points are needed
to obtain this invariant. However, the orientation ambiguity is
not resolved by these steps.

The critical part of BLAISER then lies in the reorientation
step. We present a new efficient and robust algorithm for shape
reorientation in this paper. The point-based reorientation algo-
rithm (PRA) and the orientation indicator index (OII) given in
Section IV remove the orientational ambiguity U of the nor-
malized shape X° = USP. The result is the reoriented shape
X" = SP. The details are discussed in Section I'V.

The last step, sorting, can be implemented efficiently using
any well-known sorting algorithm after affine distortions are
first eliminated. This can be achieved in many different ways.
We sort the reoriented shape X* = X P to X" by reordering
the columns in ascending order of the y coordinate values, then
in ascending order of the « coordinate values within the columns
with the same value of .

The computation of the intrinsic shape by BLAISER is based
on the first-, second-, and third-order moments of the input
shape. First, in the centering step, the first-order moment is set
to zero. That is, m19 = mo1 = 0 where the (p + ¢)th-order
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moment is defined as myq = 3 ; ;) @7y for all points (z;, y;)
in the shape. In the reshaping step, the second-order central
moments are set as moy = mpz = 1 and my; = 0. Finally,
in the reorientation step, the third-order central moments ms3g
and mys are computed and used to generate the OII plot. The
low-order moment-based approach of BLAISER provides ro-
bustness to error and noise as will be discussed in Section V-A

IV. SHAPE REORIENTATION

The centering, reshaping, and sorting steps of BLAISER are
straight-forward and easy to understand. In this section, we
discuss the remaining operation, reorientation. The normalized
shape X* obtained after the reshaping step in Algorithm 1 is
still arbitrarily rotated or reflected. In the reorientation step, we
remove this orientational ambiguity of the normalized shape
X,

Many research efforts have attempted to determine the orien-
tation of an object and discover the fold number of rotationally
symmetric shapes. 1) Principal axes [28], shape matrices [29],
and mirror-symmetry axes [30] methods are unfortunately in-
applicable to shapes that are rotational symmetric or nonmirror
symmetric. 2) Modified Fourier descriptor [31], [32], general-
ized principal axis [33], fold principal axis [34], and fold-in-
variant shape-specific points [35] methods are not universal and
fail on some tested shapes. 3) Techniques in [36] and [37] at-
tempt to determine the fold number of rotationally symmetric
shapes but again fail with some tested shapes. 4) Universal prin-
cipal axes [38] and generalized complex (GC) moments [39]
remove rotational ambiguity and determine the fold number, si-
multaneously. However, they use higher order moments that are
generally considered to be more sensitive to error and they pro-
vide no guarantee of convergence within a finite number of itera-
tions. None of these works mentioned so far deal with reflection.
5) The Shen-Ip symmetries detector [40] is concerned with the
problem of detecting the reflectional and rotational symmetry
axes of a shape. The algorithm requires the computation of all
orders of the shape’s GC moments, not just a finite number of
them. Thus, it does not promise a correct determination of the
symmetry axes within a finite number of GC moment compu-
tations. A practical implementation of their algorithm attempts
to find at least three nonzero GC moments by computing up to
30th-order GC moments of the shape (depending on the com-
plexity of the shape); this turns out to be inadequate for some of
the shapes tested in their experiments.

In this paper, we develop the PRA that is a simple, efficient,
and complete method to determine the fold number of the
shape and to remove the full orientational ambiguity including
both rotation and reflection. Its computational complexity is
O(N log N) where N is the total number of feature points in
the shape. To improve the robustness of PRA in a noisy envi-
ronment, we introduce to PRA a new measure of orientation
referred to as variable-size window OII (A-OII). The combined
PRA-A-OII algorithm is, thus, efficient and stable [9]. First,
we state a series of Lemmas about the orientational symmetry
of a shape in Lemmas 1-9. These Lemmas together with the
reorientation point p, introduced in Lemma 10 become the
basis of PRA presented in Theorem 1 in Section IV-E. Due to
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lack of space, readers are referred to [6] for complete proofs of
these Lemmas.

A. Shape Decomposition

PRA decomposes a shape into a set of subshapes where each
subshape is composed of feature points located at the same dis-
tance from the center of the shape. To do that, we first rewrite
the configuration matrix X of a normalized shape in polar co-
ordinates

PN
01 0, ... On

pi =\/x? +y?, 0;=arctan <&> .
T

We measure the angles 6; from the x axis in the counterclock-
wise direction and use the 2-D version of the arctan function.
Next, we sort the columns of the matrix z, by decreasing order
of the p;, then again by increasing order of the f; within the
columns with the same value of p. We group the columns with
the same value of p together as a subshape

where

Oj: P; Pj .- Pj

b by ... Oy |0 IR

12)
where N; is the number of points contained in the subshape O ;
and R is the number of distinct values of p. Each subshape is
the set of points located on a ring with radius p; centered at the
origin.

From the matrix O;, we compute and generate the list of an-
gles Z; where

Z;=[0:—61 60
= [91,2 02,3

27r+ 01 — HNJ.]

On,] - (13)

Each angle 0, ; is the angle between two neighboring pomts i
and p;, also denoted as 4P, OP where O is the origin and P, is
the vector from the origin to the point p;. A circular shift of the
list Z;, denoted as cir Z;, represents a different starting point
and does not change the description of the subshape O;. Only
the relative order and the magnitudes of the angles in the list are
important.

B. Rotational Symmetry

A shape has r-fold rotational symmetry if it is indistinguish-
able after being rotated about its center of mass by an angle
(2km)/(r), k = 1,...,r. A shape is considered nonrotational
symmetric if it is one-fold rotational symmetric. The fold
number of a shape is the largest integer r for which the shape
is r-fold rotational symmetric.

Lemma 1: A shape containing a set of N points can only
have r-fold rotational symmetry where r is an integer divisor of
N.

Lemma 2: 1If a shape is r-fold rotational symmetric, it is also
k-fold rotational symmetric where k is an integer divisor of 7.

Lemma 3: A shape is nonrotational symmetric if any of the
subshapes O;,j = 1,..., R, is not rotational symmetric.
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Lemma 4: If all of the subshapes O; of the given shape X
are r;-fold rotational symmetric for j = 1,--- R, the shape
is r-fold rotational symmetric where r is the greatest common
denominator of the fold numbers {r;},=1...r.

Lemma 5: 1f a subshape O, containing IN; points is r;-fold
rotational symmetric, its list of angles Z; has a circularly re-
peated pattern of length (N;)/(r;). The sum of any (N;)/(r;)
consecutive angles in the list is equal to (27)/(r;).

Lemma 6: For every shape, it is possible to identify a unique
(up to a circular shift) list of angles L that is nonperiodic. Such
a list L is defined as the fundamental list of angles.

Lemma 7: A rotation of the shape results in a cyclic shift
of the fundamental list of angles. That is, for a shape X and its
rotated version X %, we have the corresponding fundamental list
of angles L and L%, respectively, where

L® =cirL (14)

and “cir” is a circular shift of the lists.

C. Reflectional Symmetry

A general reflection is represented by an orthogonal matrix F
of the form

F:[a b

b —a (15)

} , a®>+b*=1 and(a,b) €R
Lemma 8: Any reflection matrix F can be written as a se-
quence of an appropriate rotation R and a reflection F, about

the x axis. That is
a b 1 0 a b
<[} L=l S]] o)=rm
where a® + b = 1 and (a,b) € R.

In Lemma 8, the reflection F',. can be replaced by a reflection
about an arbitrary axis through the origin, e.g., the reflection F,,
about the y axis. In this paper, we decide to work with the x axis.

Lemma 9: If the configuration X is a reflected version of
X with a general reflection F' as in

(16)

XF = FX (17)
then the list of angles Z¥ of X* is in the reverse order of the
list Z of X. That is, if

7 = CiI‘ [91_’2 92_’3 9]\ij1] (18)

then

ZF =cir [On, 1 B2 012] (19)

where “cir” is a circular shift of the lists.

According to Lemma 9, traversing the angles between any
two rotationally consecutive points of the shape X in the coun-
terclockwise direction is equivalent to traversing the angles of
the reflected shape X' in the clockwise direction.

D. Reorientation Point

The reorientation point is a specific feature/pixel point in the
shape that is uniquely identifiable. PRA uses this reorientation



1692

=
;\
-
3
=
s e s s s 38 s

s 8 8 3 8 &
=
)\\3’

&
=]
or
-
rs

(©) (@

Fig. 2. Example: PRA. (a) Input shape X. (b) List of angles Z.
(c) Fundamental list of angles L. (d) Reoriented shape.

point to restore the correct orientation of the shape. In this sec-
tion, we introduce the reorientation point and describe how to
identify it from any given shape.

1) Concept: The reorientation point is critical to the shape
reorientation process in PRA. PRA reorients the given shape
by: 1) identifying the reorientation point of the shape; 2) ro-
tating the shape until its reorientation point falls on the z axis;
and 3) reflecting the shape about the z axis if the nearest neigh-
boring point of its reorientation point in the clockwise direc-
tion is farther away (in the angular sense) from the reorientation
point than the nearest neighboring point in the counterclockwise
direction. To reorient shapes according to these steps, the reori-
entation point needs to be uniquely defined for any given dis-
torted shape of the same object as stated in the following lemma.

Lemma 10: The reorientation point of a shape is uniquely
determined from any given shape of the same object with un-
known orientation.

2) Algorithm: We now explain how to determine the reori-
entation point from a given shape. There are three main steps:
1) determine the fold number of the shape; 2) construct the fun-
damental list of angles; and 3) identify the reorientation point
of the shape.

Fold Number: First, we decompose the shape X into a set of
subshapes O; and compute the lists of angles Z;, j = 1... R,
associated with the subshapes. Then we compute the fold num-
bers 7; of the subshapes from Z;, j = 1... R, using the result
of Lemma 5. Finally, we determine the fold number r of the
overall shape as the greatest common denominator of the fold
numbers 7;, j = 1... R, as stated in Lemma 4 [see, for ex-
ample, Fig. 2(a)]. The shape in (a) consists of N = 6 points.
The first subshape contains four points (p1, ps, p4, ps) and is
four-fold symmetric. The second subshape contains two points
(p2, ps) and is two-fold symmetric. The overall shape is, thus,
two-fold symmetric.

Fundamental List of Angles: Once the fold number r of
the shape is found, we construct the fundamental list of an-
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gles L introduced in Lemma 6 from one of r nonperiodic
portions of the shape. That is, simply choose N/r consecutive
elements from the list of angles with N elements. In our
example, the list of angles is Z = [#1 2,023, --,056,061] =
[r/4,7/4,7/2,7/4,7 /4,7 /2] [see Fig. 2(b)]. Since the fold
number of the shape is 2, we take any N/r = 3 consecutive
elements from Z as the fundamental list of angles L. For
example, L = [0 3,03 4,04 5] = [7/4,7/2, 7 /4] in Fig. 2(c).

Reorientation Point: We search for a unique element 6;; =
AP_’;OF_’} of L by locating the element with the largest magni-
tude. If there is more than one element with the same maximum
magnitude, we compare the magnitudes of the neighboring ele-
ments to break the tie. Denote all occurrences of the maximum
magnitudes with the labels #; _; , where m is the total number
of such occurrences. We then compare the right-side neighbors
of each of the elements §;_, , . We choose the one whose
nearest right-side neighbor has the largest value. The chosen el-
ement is denoted as f%. Then, we repeat the same procedure
by comparing the left-side neighbors of #;,_; . and obtain 67 .
In our example in Fig. 2(c), 3 = 07 . Finally, we identify the
unique element 6* in the list by picking one of the two angles
{0%.05}. We pick one of the two angles {%, 0%} by com-
paring the right-side neighbors of 8% with the corresponding
left-side neighbors of 67, starting with the closest neighbors.
We choose the unique element of the list % = 6% if its kth
right-side neighbor is larger than the kth left-side neighbor of 67,
for k =1... N — 1. In the opposite case, we choose §* = 67 .
During the process, if all neighbors have the same magnitudes,
the list L is symmetrical and we can choose any of the two. If
the angle 63, = 6;; is chosen as the unique element §* of the list,
we set the point p; to be the reorientation point p, and align the
vector P:, = F_’; with the x axis. If the angle 67 = 6;; is chosen,
we declare the point p; to be p,, align the vector F_’; = P_’; with
the = axis, and reflect the entire shape about the x axis. In our
example, §* = 0% = 07 = 03 4. If we choose 6* = 05 = 03 4,
the point p, becomes the reorientation point p, and the shape
is rotated so that this point falls on the = axis. If we choose
0* = 07 = 03 4, the point p3 becomes the reorientation point p,,,
the shape is rotated so that this point falls on the x axis, and the
shape is reflected about the z axis. In both cases, the resulting
shapes are identical [see Fig. 2(d)].

The reorientation point, computed using the fundamental list
of angles, is invariant under rotation and reflection. This is be-
cause a rotation or a reflection shifts or reverses the fundamental
list of angles cyclically (Lemma 7 and Lemma 8). The magni-
tudes and the relative locations of the elements are unaffected by
rotation and reflection. The reorientation point, however, is not
invariant under the full affine-permutation distortion. It can be
computed only from the normalized (compact) shape X* after
the first two steps of BLAISER are performed.

3) Example: We give another simple example to illustrate
how to determine the reorientation point from a given shape.
According to Lemma 6, we construct a unique (up to a circular
shift) nonperiodic list of angles L from the input shape. Con-
sider, for example, the list L shown in Fig. 3 that consists of nine
elements [0 2 623 634 ... 091]. For simplicity, we represent
these nine angles by [0, 0, 6. ... ;] with a single subscript.
We define the right-side (or left-side) neighbor of an element in
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the list as the element that appears on the right (or left) in a cyclic
manner. For example, in Fig. 3, the first right-side neighbor of
the element 6; is 6, and the second left-side neighbor of the el-
ement 6. is §,. To choose a unique element §* of the list, we
start by picking the element that has the largest value. If there
is a single element with the largest value, we simply denote it
as #*. This element is uniquely identifiable in the list L. If there
are multiple elements sharing the same maximum value, we note
all of their occurrences with the labels 65_, . where m is the
total number of such occurrences. For the list in Fig. 3, there are
three occurrences of the maximum value: the elements 07 = 0,
05 = 64, and 65 = 6. We need an algorithm that consistently
chooses one out of these elements. We explain next how to deter-
mine 6* when there are more than one angle with the maximum
value.

Given the elements #;_, ,  with the same maximum value,
we choose one by comparing the values of their neighbors. We
first compare the right-side neighbors of each of the elements
0;_1 - We choose the one whose nearest right-side neighbor
has the largest value. The chosen element is denoted as 7,. In
our example, the first right-side neighbors of 6;_, , are 0y, 0.,
and 6;. Since these elements have the same value, we move
to the second right-side neighbors, 6.,60;, and f,, and com-
pare their values. We find that the magnitude of §,,, the second
right-side neighbor of 63, is the largest. Therefore, we assign
0% = 05 = 0. Because the list L is nonperiodic and finite, it
is guaranteed that we locate a unique member 6% in L by com-
paring the right-side neighbors. We repeat the same procedure
by comparing the left-side neighbors of §;_; . and obtain 67 .
In our example, 6; is the largest among the first left-side neigh-
bors and we set 7 = 6, Finally, we identify the unique element
6* in the list by picking one of the two angles {6%, 07 }. We
pick one of the two angles {7, 67 } by comparing the right-side
neighbors of 6% with the corresponding left-side neighbors of
67 , starting with the closest neighbors. We choose the unique
element of the list 0* = 0} if its kth right-side neighbor is larger
than the kth left-side neighbor of 67 fork =1... N — 1. In the
opposite case, we choose 6* = 07 .

We consider both the right-side and left-side neighbors to
deal with the reflectional ambiguity of the shape. According to
Lemma 10, the list LY obtained from the reflected version of
the shape contains the same set of elements as the list L from
the nonreflected version. The difference is that the lists are in a
reverse order of each other. Traversing the right-side neighbors
of the list L corresponds to traversing the left-side neighbors
of the reversed list LY. That is, the unique element obtained by
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comparing the right-side neighbors in the list corresponds to the
unique element obtained by comparing the left-side neighbors
in the list of the reflected shape. This is why we first determine
both 6% and #7 from the list L. When we finally choose one of
these two angles, we are choosing an element that is unique for
the shape even if the shape is a reflected version.

Next, we determine the reorientation point from the unique
element 6* of the list. The shape is rotated until this reorientation
point falls on the = axis. If 7 is chosen as 6, we reflect the
shape about the x axis to compensate for the reflection term
that is present in the shape. This is possible because any general
reflection is decomposed into an appropriate rotation followed
by areflection about the x axis as stated in Lemma 9. We explain
below how to determine the reorientation point from the unique
element 6* of the list.

If the angle 6% = 6;; is chosen as the unique element 6* of
the list, we set the point p; to be the reorientation point p, and
align the vector P, = ﬁ with the z axis. If the angle 07 = 0;;
is chosen, we declare the point p; to be p,, align the vector
P, = P, with the X axis, and reflect the entire shape about
the X axis. In our example, the first two right-side neighbors of
0% have values that are identical to the first two left-side neigh-
bors of 87 . However, the third right-side neighbor, 8, of 0% is
larger than the third left-side neighbor, 6,4, of 67 . We, therefore,
choose 6}, = 03 = 03 in this example. Finally, the point pg is
selected to be the reorientation point p,. The shape is reoriented
by rotating the shape until the vector P, =Pis aligned with
the X axis.

E. Point-Based Reorientation Algorithm (PRA)

Lemmas 1-10 provide the basis for the PRA that orients any
given shape to its normalized orientation as stated in the fol-
lowing theorem.

Theorem 1 (PRA): The PRA achieves the reorientation of a
shape by the following steps.

1) Convert the configuration matrix X of a normalized
(compact) shape in rectangular coordinates to X} in
polar coordinates.

2) Sort the columns of the matrix X} by decreasing order of
p. Sort again by increasing order of # within the columns
with the same value of p.

3) Consider the subshapes O;, j = 1,..., R, defined by the
columns of X with the same value of p. Construct the list
of angles Z; given in (13) for each subshape.

4) For each subshape O;, determine the fold number, r;,
of its rotational symmetry. That is, given the number of
points IV; of the subshape,

(a) Find all integer divisors of N; (Lemmas 1 and 2). Start
with the largest integer divisor k = IV;.

(b) Sum the first N; /k consecutive angles in the list Z;.
If the sum is equal to 27 / k and the list is periodic with the
same pattern of length N;/k, declare the subshape to be
r; = k-fold rotational symmetric (Lemma 5). Otherwise,
set k to the next largest integer divisor of N; and repeat.

5) Declare the shape to be r-fold rotational symmetric where
r is the greatest common denominator of the fold num-
bers {r;};=1..r (Lemmas 3 and 4).
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6) Identify from the r-fold rotational symmetric shape its
fundamental list of angles L that is nonperiodic (Lemma
6).

7) Pick the reorientation point p, from the list L.

8) Align the vector P, with the x axis as described above
(Lemma 10).

F. Variable-Size Window OII (A-OII)

In Section IV-E, we presented the PRA to remove the orien-
tational ambiguity of 2-D shapes. The PRA first determines the
fold number of the shape and removes both the rotational and
reflectional ambiguities. The algorithm is efficient with com-
putational complexity O(N log N), where N is the number of
feature points in the shape.

In practice, however, the exact locations of the feature points
may be measured inaccurately due to the finite resolution of the
input device and due to background noise. PRA may be sensi-
tive to such disturbances. Moreover, the rectangular to polar co-
ordinates conversion in the first step of PRA is bound to create
serious problems if not carefully managed. To improve the ro-
bustness of PRA to such error and noise, we introduce a mo-
ment-based measure of the orientation, referred to as the A-OII.
This measure is computed from the third-order central moments
of the shape and improves the OII that we introduced in [5].
The coupled PRA-A-OII algorithm is robust to errors, such
as round-off errors in pixel locations or missing/added feature
points.

In this section, we define A-OIl. We study and verify the
properties of A-OII with examples: We test A-OII against the
shapes that other methods have failed to work with. We also test
A-OII against 200 symmetric and nonsymmetric shapes pro-
vided by a database [40]. We then propose an algorithm that
combines A-OII and PRA for the robust determination of shape
orientation.

1) A-OIl: We now introduce A-OII of the centered shape
X. Let 6 be the orientation angle of the given shape. A-OII(6)
is defined as

A-Ollx (0) = \/p2(0) + p2(0) (20)
where
pa(6) = Z i and p,(0) = Z s,
keA(b) keA(9)
2
A(9) = {k D (xg,yk) € X, Vg, yr € %-Window}
(21)

and A is an integer multiple of 4. The (27/A) window is the
wedge on the first quadrant of the coordinate plane enclosed be-
tween the positive z axis and the straight line through the origin
at angle (2w /A) rads with the x axis. This window contains all
the pixels (z,y) where > 0 and y < xtan (27/A). For ex-
ample, the (7/2) window is the first quadrant of the coordinate
plane, enclosed between the positive = and the positive y axes.
As the orientation 6 of the shape changes, A-OII changes.
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When the shape rotates by an angle 6, A-OII(6) is com-
puted from the fraction of the shape that falls within the (27 /A)
window. We will compute in the sequel A-OII(#) as we rotate
the given shape X by 6.

The third-order central moments /¢, and y,, computed by (21)
are not zero for § € [0,2m) unless the shape is defined by
a single point at the origin. This is because the shape is cen-
tered at its center of mass and every (27/A) window is located
within the first quadrant of the coordinate plane where the coor-
dinate values of the pixels (2, yx ) are nonnegative. Therefore,
A-OII(#) is nonzero.

2) Properties of A-OIIl: The OII plot introduced in [5] is a
cosinusoidal function of the rotation angle # for every shape
whose third-order moments are non zero. This is not true for
A-OII(). We list the properties of A-OII(#) below, see [6] for
complete proofs.

Property 1: If a shape is r-fold rotational symmetric, we can
find a A such that A-OII(#) is periodic in the rotation angle
with the period 7' = 27 /7.

Property 2: If A-OII(6) is periodic with T' = 27 /k, the
shape is r-fold rotational symmetric where 1 < r < k.

Property 3: If a shape is a circle or a union of rings, its
A-OII(#) is flat and equal to a constant K > 0 for 6 € [0, 27).

Property 4: The rotation of a shape circularly shifts its
A-OIIL(6).

Property 5: The reflection of a shape reverses its A-OTI(9).

In practice, we plot A-OII(6) only for a discrete set of an-
gles 6; that we will assume to be uniformly spaced in the range
[0, 27). This samples the original continuous plot. The resolu-
tion of this discrete plot has a direct effect on the performance of
the reorientation operation using A-OTI(#). We adjust the res-
olution of the A-OTI(#) plot according to the complexity of the
given shape by setting the number of discrete samples 6, to be
proportional to the number of pixels of the shape.

The next section illustrates the properties of A-OII(6) by
computing it for all the shapes in a database, [40], that contains
about two hundred symmetrical and nonsymmetrical shapes. Of
course, due to space limitations, we detail here the results for
eight difficult shapes from the database.

3) Examples: We compute A-OII(#) for the shapes,
Shape 1-Shape 8, shown in Fig. 4. These are the shapes that
cause difficulty and failure for many existing methods as
discussed before. The plots shown next to the shapes are the
corresponding A-OII(6); in each plot, the horizontal axis is
the rotation angle #. We note that, in all eight plots, A-OII(6)
is 1) not flat and 2) exhibits the rotational symmetry of the
shape through its periodicity, i.e., the fold number of the shape
is equal to the periodicity of A-OTI(6).

We used the (7/2) window for all the shapes in Fig. 4, ex-
cept for Shape 1 in Fig. 4(a) for which (7 /4) window is used.
As mentioned, we have also plotted A-OII(#) for the 200 sym-
metric and nonsymmetric shapes in the database [40]. The plots
of A-OTI(#) using the (7 /2) window (i.e., the first quadrant) ex-
hibit the correct periodicity representing the fold number of the
shape for all but nine shapes. The plots of A-OII(#) using the
(w/4) window have resolved the problems of the (7 /2) window
with these nine shapes. Correct results have been observed with
the (7/8) window as well.
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Fig. 5. Examples: Reorienting Shapes 1 and 3 in Fig. 4(a) and (c). (a) A-OII

Shape 1. (e) A-OII of Shape 3. (f) Circ. autocorrelation. (g) A-OII single period.

G. Reorientation of Shapes Using A-OII and PRA

We now develop an algorithm for shape orientation using
A-OIl and PRA. The basic idea is as follows. Since A-OII(6) is
a function of the rotation angle 6 € [0, 2), if we locate a unique
peak point of the plot and reorient the shape (i.e., rotate and re-
flect it) until this unique point is brought to the origin at § = 0,
the shape can be brought to its unique normalized orientation. To
achieve this, we first determine the fold number of the shape by
plotting its A-OTII(#). Then, we pick out the nonperiodic por-
tion of the plot, corresponding to its fundamental period, and
denote this partial A-OII plot as the fundamental list of angles
L. We find the unique peak in L by comparing the right-side
and left-side neighbors as has been done in PRA. When we lo-
cate the unique peak in L, we perform an appropriate rotation
and reflection as described in Section IV-D to bring the shape
to the unique orientation. We make a set of statements that are
necessary to develop the algorithm outlined above.

Lemma 11: The periodicity of A-OII(#) is obtained by com-
puting its circular autocorrelation and counting the number of
peaks with magnitude 1 in the resulting autocorrelation.

A A-OII(6) plot with periodicity d is periodic in the rota-
tion angle 6 with period T = 27 /d. That is, the plot is indis-
tinguishable every time it is circularly shifted by the rotation
6 = 2r/d rad. This happens d times over the circular shift of
the plot in the computation of the circular autocorrelation, re-
sulting in d peaks with magnitude 1 in the autocorrelation. For
example, consider the plot of A-OII(¢) with periodicity d = 2
in Fig. 5(a). This is the A-OII(6) plot for Shape 1 in Fig. 4(a)
using a (7 /4) window. Its circular autocorrelation is shown in

of Shape 1. (b) Circ. autocorrelation. (c) A-OII single period. (d) Reoriented
(h) Reoriented Shape 3.

Fig. 5(b). We see that there are two peaks in the autocorrelation
plot with magnitude 1 as expected.

We have experimentally verified with all the 200 symmetric
and nonsymmetric shapes in the database [40] the following
statement that we use below in the combined A-OII-PRA al-
gorithm:

“The fold number of a shape is given by the period-
icity of A-OII(#); this periodicity is unchanged across the
window sizes A = 27 /4k and 27 /4(k 4 1) for an integer
k>
The first part of the statement refines Property 2. According

to this statement, the fold number of the shape is obtained by
computing the periodicity of A-OII(¢) with the 27 /4k-and
2r/4(k + 1) windows until the two plots display the same
periodicity. In our experiments, we have observed that the
window size of A = 7/4 solves for the fold number for every
shape tested.

Given A-OII(6) with its periodicity, d, matched to the fold
number of the shape, we designate the nonperiodic portion of the
plot § = [0, 27 /d], which corresponds to the fundamental pe-
riod of the plot, as the partial plot L. L contains a finite number
of A-OII values that are nonperiodic. Then, we apply the same
procedure described in PRA to locate a unique element of L,
and then to rotate and reflect the shape until this unique element
is brought to the origin § = 0. The unique reorientation of the
shape is achieved in this way by combining A-OII and PRA. In
our example with Shape 1 in Fig. 4(a), we take the first half of
the A-OII plot to be the nonperiodic list L as shown in Fig. 5(c).
There is a single peak in the list L located at § = 37/16. We
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also observe that the left-side of this peak has larger values than
the right-side of the peak. We, thus, first rotate the shape by an
angle § = —37 /16 and then reflect it about the « axis to arrive
at the unique orientation. The reoriented Shape 1 of Fig. 4(a) is
shown in Fig. 5(d).

We provide another example using Shape 3 in Fig. 4(c). We
obtain the A-OII plot of this shape using a (7/4) window as
shown in Fig. 5(e). The plot exhibits a periodicity of 4. The
circular autocorrelation of the A-OII plot, as shown in Fig. 5(f),
verifies the periodicity with four peaks with the magnitude of
1. We take the first quarter of the A-OII plot and denote it as
the nonperiodic partial plot L as shown in Fig. 5(g). This L
has a single peak at the location § = 557 /256. The right-side
neighbors of this peak are larger than the left-side neighbors
and there is no need for a final reflection. The final reoriented
shape is obtained by rotating Shape 3 in Fig. 4(c) by an angle
6 = —55m /256 as in Fig. 5(h).

H. Combined A-OII-PRA Algorithm

The shape reorientation algorithm using A-OII and PRA is
as follows. We start by setting the counter k£ = 1.

Step 1: Given a shape as input, generate a pair of A-OII
plots using (27/4k) and (27/4(k+1)) win-
dows.

Compute the periodicity d; and ds of the two
plots.

If di = ds, set the nonperiodic portion
6 = [0,27/dy] of the plot generated by the
(27 /4k) window as L. Otherwise, set k = k + 1
and go to Step 1. This L plays the role of the
fundamental list of angles in step 6) in PRA.
Locate and denote the unique peak in L. This cor-
responds to finding the reorientation point in step
7) in PRA.

Rotate and reflect the shape until this unique ele-
ment is brought to § = 0. This is step 8) in PRA.
End.

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

V. EXPERIMENTS

In this section, we present some experimental results on
BLAISER. First, in Section V-A, we discuss the robustness of
BLAISER to error and noise. We study each step of BLAISER
in this regard and illustrate the performance with examples. In
Section V-B, we apply BLAISER to real-world images that are
obtained by a digital camera at different viewing angles and
distances. The results demonstrate the validity of the affine-per-
mutation distortion model in the actual imaging process and
the performance of BLAISER in it.

A. Robustness

In Section II, the concept of intrinsic shape has been devel-
oped under an ideal error-free environment. In practice, how-
ever, error and noise arise from many sources such as discretiza-
tion of sampling grids, binary thresholding, rectangular to polar
coordinates conversion, and background noise. In this section,
we discuss the robustness of BLAISER to error and noise and
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show that the intrinsic shapes are good affine-permutation in-
variants that are stable under small perturbations.

Centering and Reshaping: The robustness of moment-based
normalization in steps 1 and 2 of BLAISER has been discussed
and demonstrated in [11]. The underlying idea is that the first
and second-order moments of the shape computed in these steps
are relatively insensitive to small data perturbations.

Orientation: In Section IV, A-OII is introduced to improve
the robustness of PRA to error and noise. When A-OII is used,
each element of the fundamental list of angles L is no longer
computed from the exact location of each pixel as in PRA, but
is computed from the third-order moments of the corresponding
segment of the shape. This greatly reduces the sensitivity to
small perturbations due to grid digitization, rectangular to polar
conversion, and background noise. The same applies to the com-
putation of the fold numbers and other similar computations per-
formed in PRA.

Sorting: After removing the effect of affine distortion from
the shape, we eliminate the permutation factor P by sorting the
columns of X" as specified in the sorting step of BLAISER.
This provides a one-to-one pointwise correspondence when
comparing copies of intrinsic shapes from the same object.
Error and noise pixels disrupt this correspondence relationship.
We can still do a good job in the presence of error and noise
by performing an “approximate matching” of points. This is
because the corresponding points will very likely be found near
the expected locations after sorting the noisy shapes. So, rather
than an exact pixel-to-pixel correspondence, we modify the
algorithm to accomplish a small region-to-region correspon-
dence. This is now robust to error and noise as we will see in
the examples.

BLAISER: The performance of BLAISER with noisy images
or images with erroneous pixels depends on several factors, in-
cluding the amount and spatial distribution of the noise and
error corrupting the images. We discuss briefly the robustness of
BLAISER and illustrate it with examples. Consider the shape of
the airplane in Fig. 6(a) and the plot of its A-OTI(#) in Fig. 6(b).
The shape in Fig. 6(a) consists of 1208 pixels. We randomly add
noise pixels to this shape and observe its effect on every step of
BLAISER. Fig. 6(c), (e), and (g) shows the original image with
60, 120, and 241 noise pixels added, respectively, i.e., with 5%,
10%, and 20% of the total number of pixels added to the original
shape. The results of BLAISER are shown in Table I. In the cen-
tering step, the center of mass (g., g, ) drifts slightly from the
origin (0,0). In the reshaping step, the second-order moments
are set to mog = 1, my; = 0, and mge = 1. Since the com-
putation of these moments includes the noise/error pixels, the
normalized shape X" that results may be slightly distorted from
the exact intrinsic shape. In the reorientation step, as more noise
pixels are added to the shape, the peak of the A-OII plot shifts
away from the expected location. This induces small errors in
the rotation angles Af [see the A-OII plots shown in Fig. 6(d),
(f), and (h)]. Even though the plots are distorted by the noise
pixels, the location of the peak stays relatively unchanged. This
stability helps the correct recovery of the shape orientation using
A-OIL

Table I shows the performance of BLAISER for 6 different
levels of noise/error, including the three levels considered in
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Fig. 6. Robustness to error. (a) Airplane shape. (b) A-OII of (a). (c) 10% added noise. (d) A-OII of (c). (e) 20% added noise. (f) A-OII of (e). (g) 50% added

noise. (h) A-OII of (g).
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TABLE 1

(b)

PERFORMANCE OF BLAISER UNDER NOISE

No. Noise Pixels || Centering (gz, gy ) | Reorientation Af

12 (1%) (0, 0) 0°
24 (2%) 0, 0) 0.7°
60 (5%) (, -1) 0.7°
120 (10%) (-1, -1) 1.4°
241 (20%) (-2, -2) 3.9°
604 (50%) (-3, -3) 7.7°

Fig. 6. Observe that the drift in the center of mass is only 1 pixel
in each x and y directions even with 120 noise pixels added.
The rotation error is close to 1° in this case. The intrinsic
shapes obtained in 4 of these cases are shown in Fig. 7. The
intrinsic shapes appear similar to each other, with possibly
some shrinking for the shape with the 50% error/noise. This
is due to the noise pixels affecting the computation of the
normalized shapes in the reshaping step as discussed above.

Occlusion: As we close the discussion on robustness, we
comment briefly on the problem of occlusion in relation to
the intrinsic shape computation. The shape normalization
performed by BLAISER is a global operation applied to the
entire shape. Therefore, it is not very effective with shapes
that are occluded. Intrinsic shapes obtained from the occluded
shapes will look different from one another. This is because the
occluded shapes are no longer related by affine-permutation
distortions, thus, do not belong to the same orbit.

B. Application to Real Images

Up to this point, the theory and algorithm for intrinsic shape
recovery by BLAISER have been studied and illustrated using

© | @ |

Intrinsic shapes with added noise. (a) No noise. (b) 10% noise. (c) 20% noise. (d) 50% noise.

computer-generated synthetic shapes. In this section, we apply
BLAISER to real world images.

To verify the affine-permutation shape distortion model and
the performance of BLAISER in practice, we study 2-D planar
shapes obtained from different viewing angles and distances.
First, a grayscale image of an airplane is printed on a letter-
size plain white paper. The physical dimensions of the shape on
the printed page fit into a 4 x 5 in rectangle. Then, the printed
image is placed on a flat floor and is photographed by a digital
camera at different viewing angles and distances. The photos
have been taken at about 4 to 5 feet away from the image with
a 2X optical zoom. The results are shown in Fig. 8(a), (e), (i),
and (m). Some blurring has been introduced to the images due
to hand movement during the photo shots. The shapes appear in
different sizes, orientations, and skews. The dimensions of the
grayscale images are shown in Table II. Each pixel value in these
images has an 8-bit accuracy and ranges from O to 255. In order
to feed these shapes into BLAISER as input, we first apply to
these grayscale images binary thresholding with the threshold
value at 128 and obtain binary images. The dark pixels at value
0 after thresholding are denoted as feature points of the shapes.

Because of different viewing angles and different sizes of the
images, the total number of feature points in each shape is dif-
ferent as shown in Table II. The first two steps of BLAISER,
centering and reshaping, are applied to these binary images to
obtain the normalized shapes in Fig. 8(b), (f), (j), and (n). Note
that translation, scaling, and skewing distortions are removed in
these shapes. The resulting shapes are still oriented at different
angles. Then, in the reorientation step, the A-OII is computed
and plotted for each shape [see Fig. 8(c), (g), (k), and (0)]. The
A-OII plots of the normalized shapes are cyclically shifted ver-
sions of one another, as expected. The maximum points in the
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(m)

Fig. 8.

(0) 9]

Application of BLAISER to real data, “airplane.” (a) Airplane a X, . (b) Normalized shape X 7. (c) A-OII plot. (d) Intrinsic shape S, . (¢) Airplane b X;.

(f) Normalized shape X', (g) A-OII plot. (h) Intrinsic shape S, . (i) Airplane ¢ X.. (j) Normalized shape X 7. (k) A-OII plot. (1) Intrinsic shape S.. (m) Airplane

d X ;. (n) Normalized shape X7 . (0) A-OII plot. (p) Intrinsic shape S,.

TABLE 1I
EXPERIMENT WITH AIRPLANE IMAGES

Image ” Dimension | # Feature Points | Rotation Angle 6
Airplane a 105 x 121 2879 242.23°
Airplane b || 116 x 115 2765 304.10°
Airplane ¢ 127 x 82 2105 31.99°
Airplane d 109 x 97 2291 347.66°

A-OII plots are searched and found at the locations shown as
rotation angle 6 in Table II for the normalized shapes X7;, X},
X7, and X7, respectively. We rotate the normalized shapes by
these angles in the clockwise direction to bring them to the same
orientation. After simple rearranging of the columns of these
shapes by the sorting step, we arrive at the intrinsic shapes S,
Sy, S¢, and Sy, in Fig. 8(d), (h), (1), and (p), respectively. Ob-
serve that all four intrinsic shapes are very similar to one an-
other, except that the intrinsic shapes S, and S, appear to be a
little larger than the other two. This results from the fact that the
shape distortions present in the shapes X. and X, are beyond
those described by the affine-permutation distortion model, e.g.,
perspective and blurring. However, all of the intrinsic shapes ob-
tained by BLAISER still look very much alike and are located at

the same orientation. It is very clear that the intrinsic shapes are
much more useful and effective than the distorted shapes them-
selves for the purpose of detection, identification, and classifi-
cation of these shapes.

We carried out a second set of experiments with the shapes in
Fig. 9, “Camel and Car” (see Table III). The intrinsic shapes ob-
tained after applying BLAISER are shown in Fig. 9(d) and (h).
These results again verify the good performance of BLAISER.

VI. CONCLUSION

In this paper, we introduced the notion of intrinsic shape as
the unique representative of the orbit that contains all affine-per-
mutation distorted shapes of the object. We presented BLAISER
that recovers the intrinsic shape of the unknown object in a blind
manner. We applied with success BLAISER to the about two
hundred symmetrical and nonsymmetrical shapes in the data-
base [40]. We also illustrated its robustness to error and noise.
BLAISER can be applied to many interesting problems in image
processing and computer vision. The concept of intrinsic shape
is extended to 3-D shapes in [10].
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Fig. 9. Application of BLAISER to more real data, “Camel and Car.” (a) Camel and Car a X, . (b) Normalized shape X 7. (c) A-OII plot. (d) Intrinsic shape S, .
(e) Camel and car b X (f) Normalized shape X}'. (g) A-OII plot. (h) Intrinsic shape S,

TABLE 1II
EXPERIMENT WITH CAMEL AND CAR IMAGES

Image || Dimension | # Feature Points | Rotation Angle 6
Camel and Car a 137 x 240 10876 129.73°
Camel and Car b 277 x 142 11289 206.72°
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