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. INTRODUCTION

The design of localization algorithms for
sonar/radar or guidance/navigation systems is
addressed here. We are concerned with determining
the range and motions of a target. For simplicity, the
transmitted signals are narrowband. Using complex
exponential notation, let the received signal be

(1) = [5(t) + w(t)]exp j[27 for] ¢))
where the narrowband transmitted signal is
5(t) = V2Pg(t)exp [— j2m 5552 + 9} )

with R(¢) representing the target-receiver separation
(range), A the wavelength, P the transmitted power, 6
an additive phase, f; the (assumed known) transmitted
frequency, g(¢) the narrowband envelope, and Ww(t) a
corrupting noise.

Equation (2) shows that range modulates in phase
the transmitted signal. Source localization is cast as
the problem of estimating the range R(t), ¢t > 0, from
a record of the observations (1). In this sense, ranging
is equivalent to phase demodulation. To motivate the
approach we briefly discuss a simple example.

EXAMPLE. For a target following a radial uniform
motion with respect to a single omnidirectional sensor
(or in the far field of the array),

R(t) = Ry + vt 3)

where Ry = R(0) and v is the radial velocity. Under
these circumstances, the phase is given by

Y(t) = waot—ZW@ +6
=27rf0t—2w£f\2—27r¥+9. )

In active systems (e.g., CW radar), # =0, or
another known value. The initial range Rp can be
determined from the phase term 3o = 27 Rp/ ), ie.,
from the travel time delay. Actually, due to the
periodic nature of the transmitted signal, only the
residual range (Rp mod A) can be found.

In passive systems, 6 # O and it is either
unknown or random. The residual phase g is now
indistinguishable from 6. This says that, for a radially
moving target, range cannot be determined from the
target passive signature. Of course in both cases, the
target speed v can be estimated from the Doppler shift
that appears as a linear phase modulation.

The preceding example illustrates several points
that we now make explicit.

1) Ranging is a global problem where the goal is
to overcome global a priori uncertainty, while tracking
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can be thought of as a local problem of following the
small variations induced by the target motions on the
received signal structure.

2) The target motions induce phase modulations
on the signal temporal structure. Ranging is
equivalent to a phase demodulation problem. In
general, in localization, the receiver has an array
of sensors. Besides these temporal modulations,
the received signals also exhibit spatial wavefront
curvature. This spatial information enhances the range
determination capability; furthermore it provides
bearing discrimination ability to the receiver. We
decouple the spatial information from the temporal
information and focus on ranging strictly from the
phase time modulations (see [1] for an alternative
integrated approach to this problem).

3) Ranging raises observability issues. In general,
we need target maneuverability, or target acceleration,
to be able to recover the range Ry, or R(¢) (target in
the Fresnel or near field of the array.) On the other
hand, estimating v presents in general no difficult
observability questions.

4) The preceding comment clarifies why linearizing
techniques, based on extended Kalman-Bucy filters
(EKBFs), usually work well for target tracking.
However EKBFs lack global observability for global
ranging. An alternative starting algorithm is needed
to achicve this (see [2], where a hybrid strategy along
these lines has been discussed for this problem).

In this work, we study ranging as a nonlinear
problem and develop an intrinsically nonlinear
solution. We apply techniques drawn from stochastic
optimal nonlinear filtering (e.g., [3, 4]) to design
the ranging algorithm (for a tutorial on stochastic
nonlinear filtering see [5]). To apply these tools, we
need a suitable model for the target motions, which
is assumed as a nominally deterministic trajectory
with random perturbations. As referred to above, we
decouple the temporal diversity of the problem from
the spatial diversity (induced by the array baseline)
and consider a pointwise single target being tracked
by a single omnidirectional sensor. The simplifying
assumption of not considering bearing estimation has
two advantages. First, it makes the problem more
manageable; performance is assessed via Monte
Carlo simulations and these become computationally
expensive for high order problems. Second, by
decoupling the temporal from the spatial aspects, we
focus on ranging issues. This analysis leaves out the
coupling between bearing and range estimation but
illustrates how global ranging can be accomplished.

There are several classes of phase/frequency
problems. Let

P() = 27 for + x1(2) )

where x1(¢) is the low pass phase component of
the received signal (the transmission wavelength is

normalized, i.e., A = 1). Decompose x;() as

x1(t) = %1(¢) + 2w L(z) (6)
where %1(¢) is the cyclic phase, ic.,

X1(2) = x1(t)mod 27 ™)

and L(¢) is a counting process giving the integer
number of 27 intervals necessary to reconstruct the
absolute value of the phase.

Depending on the specific goals, phase
demodulation problems can be categorized as follows.

1) Cyclic Phase Demodulation. Only %1(z) is
of concern. This is the problem in synchronous (or
coherent) communication systems, where the initial
phase errors lie in [—m, +7]; rapid convergence
(acquisition) to a final tracking error (synchronization)
is mandatory in digital communications [6].

2) Absolute Phase Demodulation. Of interest
is x1(r). What is important is to estimate the global
(or absolute) value of the phase (i.e., the distance),

[2, 7]. In this context, the following issues can be
distinguished:

a) Acquisition. The ambiguity associated with the
initial phase value overlaps a multiple of 27 cells. The
problem is a global one, namely to resolve the initial
large indetermination by making the phase estimate
converge to the actual phase process.

b) Tracking. Once the acquisition has been
performed, a tracking period begins. The initial phase
estimate is now assumed to be within a small error
from the true phase value. The problem is a local
one, namely to follow the phase evolution as close as
possible,

Range determination corresponds to acquisition in the
context of absolute phase demodulation. It requires
determination of the global target/receiver separation.
In terms of (6), it basically refers to the estimation

of L(t). Once acquisition has been achieved, motion
following gives rise to a tracking stage.

The classical solution to phase and frequency
demodulation is the phase-locked loop (PLL, see e.g.
[8, 6]), which is a simple feedback structure performing
well in a variety of situations. Its behavior is identical
to that of the EKBF applied to the corresponding
phase problem.

Optimal nonlinear filtering is essentially a Bayesian
approach to the problem of estimating a stochastic
process from its noisy observations. Accordingly, all
the information about the process to be estimated
is contained in its conditional probability density
function (filtering density) which, for the problem
under study, is in general multimodal. A central issue
in implementing a nonlinear filter is to preserve and
propagate the relevant shape of the filter density
by retaining the essential features of the model
nonlinearities; linearization, as done in the EKBF,
neglects important information.
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Cyclic estimation problems, studied in [11 and
12] are the classical test-bed for optimal nonlinear
filtering. These studies show the superior performance
of the optimal nonlinear filter over the PLL. Absolute
phase tracking has been considered in [13] as a
nonlinear filtering problem. In these three references,
the optimal filter has been implemented by discretizing
the state space and representing the probability
functions by the corresponding masses at the grid
points (point masses filter). This implementation, being
computationally extremely expensive, is however useful
as benchmark. The time-delay trackers and detectors
developed in [9 and 10] also represent the conditional
densities as probability masses on a grid.

The filtering density propagation algorithm
presented here is a basic recursive scheme adequate
to both absolute and cyclic phase estimation. Reference
[14] described this algorithm and used it as an absolute
phase tracker applied to real signals propagated under
the Arctic ice crust; it proved to be flexible and simple
enough for that practical problem, while performing
much better than standard procedures. In [15 and 16],
the same structure has been adapted to cyclic phase
estimation attaining almost the maximal achievable
performance gain over the PLL. In recent work (see
[19]) we addressed the design of suboptimal phase
estimators by adopting minimum Kullback distance
criteria (see [17, 18]). Results of this work are used in
Section IIIB to assess the quality of the adopted sensor
factor representation.

Absolute phase acquisition is inherently a global
optimal nonlinear filtering problem, where a local
estimator (such as the EKBF) cannot even provide
a suboptimal solution. The nonlinear filter (NLF)
implementation, developed in Section III, exploiting
the periodic nature of the observations model,
represents and propagates the involved densities as
sums of Gaussian functions with common covariance
matrix. This allows for the definition of relative
phase variance and the formulation of absolute phase
acquisition as a first passage (detection) problem. To
our knowledge, there is no other published work along
these lines.

The text is organized as follows. Section II presents
the class of models considered. Section I develops
an efficient phase estimator designed according to the
relevant features of the problem under study. Absolute
phase acquisition is studied in Section IV. Section IVA,
considering a first-order phase dynamics, illustrates
the behavior of the NLF, introduces an acquisition
mechanism, and studies its performance via Monte
Carlo simulation. Incorporating this mechanism, the
NLF becomes an estimation/detection structure. The
simulations performed include a comparison of this
structure against a bank of EKBFs equipped with
the same acquisition detection scheme. Subsection
IVB extends concepts and methods to a second-order
dynamics, suggesting their applicability to higher order
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models. For reference purposes, the equations of the
EKBF corresponding to the addressed problem are
derived in the Appendix.

1. MODEL

To design the optimal estimator, suitable models
for the dynamics and the observation process are
required. Although somewhat restrictive, the models
herein considered describe a large class of systems
and problems of practical interest. As described
in Section I, when the underlying application is a
radar/sonar localization system, the phase process and
its derivatives represent the relative source/receiver
geometry and dynamics.

Consider the received signal described by (1) and
(2), which correspond to a phase modulated carrier in
an additive white Gaussian noise (AWGN) channel.
Let z;, and z,, be discrete time versions of the
in-phase and quadrature components of the received
signal. Assuming constant amplitude (normalized to 1),
these observations take the form

RS
o4 sinxy , Vo

where {vi,} and {v,,} are mutually independent

zero mean white Gaussian sequences (WGS) with
variance r. The phase process {x,,}, discrete version
of process {x1(¢)} of equation (5), is modeled as the

first component of the k-dimensional vector process
{x.} described by the stochastic difference equation

Xn+1 = AX, + Bu, n=12,... 9)

where A and B are matrices with appropriate
dimensions and {u, € R™} is a vector zero mean WGS
with covariance matrix Q. The initial condition x; is a
random vector with probability density function p(x;).

The measurement noise {v, = [v1, v2.]7}, the
driving input noise {u,}, and the initial condition
vector x; are all mutually statistically independent.

In the sequel, a first-order example is used to
illustrate the behavior of the NLF and introduce the
acquisition mechanism. Concepts and methods are
then extended to second-order dynamics.

A. First-Order Dynamics

The observations are given by (8). The phase signal
is the scalar sequence {x,} modeled by the stochastic
difference equation

Xp+1 = aX, + Uy, n=12,... (10)

where {u,} is a zero mean WGS with variance g,
and a is a drift parameter. We can think of (10) as a
discretization of
dx(t)
dt

=(a—-Dx(t) +u(?) (11)
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where the sampling interval has been normalized to 1
(A = 1), and the driving term u(z) is white Gaussian
noise with spectral density g. For a = 1, (10) (or (11))
models a Brownian motion; it describes a fluctuating
target located at (normalized) range x; (equal to
x(0)). For a # 1, it represents the (normalized) range
of a target, initially at x,, and decaying (a < 1) or
increasing (a > 1) with time constant |a— 1|~

B. Second-Order Dynamics

The second-order model considered is
representative of a class of positioning and navigation
problems {1, 2, 7], like a maneuvering or accelerating
target moving in the field of view of a surveying radar/
sonar. The phase process is the first component of a
two dimensional random sequence {x, = [X1.X24]7 };
the second component is the frequency modulation
(Doppler shift) corresponding to moving targets. The
sequence x, is modeled by

L] = ]+ )
X2n+1 a 1] lxo, Un

n=12.. (12)

where {u,} is a zero mean WGS with variance g.
The random variable x;, independent of {u,}, has
probability density function p(x;). Equation (12)
models a target initially at range x1; which is moving
along an essentially circular nominal trajectory with
speed x,1. The velocity is perturbed by random
accelerations u,. Again, we can view (12) as arising
from the discretization (with sampling interval A = 1)
of a two-dimensional system

dxi(t) _
dlt = bxy(t) W)
d’;zt(t) = axi(r) + u(t)

where u(t) is white Gaussian noise. In (13), for b =1,
x2(2) has the interpretation of time derivative of
range x1(z). The second equation couples the range
acceleration to the first component. This is similar

to the range acceleration equation for a point target
moving on the plane along a linear track; the motion
equation is (only the range equation is shown)

R(t) = 6°R(t) (14)

where R(¢) is the range and § is the time derivative
of the bearing angle. We remind the reader that,
according to Section I, we decouple the bearing and
range estimation problems, thus assuming 6 to be
known. This provides motivation for the second order
model and an interpretation for a.

Depending on the specific application, the phase
models induced by the target/receiver configuration
and by the target motions may be different. The first-
and second-order models considered allow for the

introduction of concepts and illustrate the relevance of
the techniques developed herein.

Il NONLINEAR PHASE ESTIMATOR

The nonlinear phase estimator herein presented
is tailored to the specifics of the problem at hand,
being efficient on two grounds: 1) high performance
(recovering most of the available improvement
provided by the optimal nonlinear filter), and 2)
regular and simple numerical implementation. The
next subsection presents the general optimal solution,
from which we then derive the NLF implementation.

A. General Optimal Solution

Given the model (8) and (9), consider the problem
of estimating x,,, based on the set of present and past
observations Z,, = {z, 1< k < n}. Conceived as an
NLF, the estimator constructs and propagates the
conditional probability density function F, = p(x, | Z,)
herein referred to as the filtering density. The solution
consists of the recursive application of Bayes’ law and
Chapman-Kolmogorov equation [3]

P,=S,%xF,_,
Filtering: F, =C,H,+ P,

Prediction:

(15)
(16)

where * denotes convolution in the state space, »
means pointwise multiplication of the functions
defined on the state space, and C, is a normalizing
constant. For a justification of these equations see
[11], or more recently [5 or 4]. The convolution kernel,
S» = p(Xx+1| X»), reflects (9) and the assumptions
therein; it is Gaussian and given by

Sp < N (Xp41 — AX,, BQBT) a7

where we used the notation M (s,V) =
exp{—1/2s7V~1s}. This kernel acts on the preceding
filter density F,_; to give the prediction density

P, = p(Xs | Z,—1). This function is updated by the
multiplicative effect of the sensor factor H, = p(z, | X»),
which, taking into account model (8), is given by

21, COSX1n + 22, 5INX
H, ocexp{ o n T Son LLE

- (18)

At each iteration, the optimal estimate X, minimizes
the conditional expectation of a suitable cost function
L(x, — X,). For the problem at hand, we look for the
minimum mean square error (MMSE) estimate, which
is given by the conditional mean

X, = /xF,.(x)d)L

To implement (15) and (16), approximate finite
representations of the operands are required. The
particular representation of the sensor factor H,,
presented in the next subsection, is the key to our
estimation/detection structure.

(19)
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Fig. 1. Two periods of sensor factor H, given by (20) and its representation H, given by (23) as train of Gaussian functions. Each basic
function H, matches in three points each period of Hy, (points signaled by dots). Resulting common variance o= is given by (24).
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Fig. 2. Shapes of half a period of sensor factor H, and its representation H, (both scaled to maximum value of 1), for different values
of A,. The parameter X, is related to the observation data according to (21).

B. Sensor Factor Representation

We rewrite the exponent of the periodic sensor
factor (18), so that H, becomes

H, x et C08(x1,, — 70" (20)
where

M= [+ 2, 1)

g = arctan (Z:) . (22)

Each normalized period of H, is a Tikhonov
function, well known in PLL studies [8]. It is well
approximated by a Gaussian function for large values
of A, and becomes flat as A, tends to zero. This
motivates the substitution of the periodic positive
function H, by a train of Gaussian functions, centered

on n,-H" = né’" + 271, all having a common variance oft:
+o0
2 (v H, _H,
o 3 Nena—ifo™) @)
i=—00

This function should rcproduce, as much as possible,
the shape of H,, for all values of A,.

LEITAO & MOURA: ACQUISITION IN PHASE DEMODULATION

Fig. 1 shows two periods of H, and of its
representation H,, where the variance o- has been
obtained by fitting a Gaussian function to three
particular points (signaled by oversized dots) of
each of the bell shaped modes of H,: the maximum
(niH",H,{““"), which depends on X, and the fixed
coordinate points (nfl" +m/2,1). The variance of the
resulting H, is 2

24

In the example of Fig. 1, only one Gaussian
function contributes significantly to the corresponding
periods of H, As )\, decreases, lateral effects become
more significant, this giving rise to the flatness of H,.
Fig. 2 shows, for half a period and various values of
An (03,1, 4, 1(),_and 80), the sensor factor H, and its
representation H,, both scaled to a maximum value of
1 (ie., plots are for H,/H™* and H,/H™).

An important issue is how to assess the quality of
the above representation. To quantify the discrepancy
between H, and H,, we adopt the concept of Kullback
distance [17, 18]. Take ngl" =0, and consider the
normalized central periods of H, and H,; denote these
probability density functions by A(x,\) and iz(x,cr),
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Fig. 3. Kullback distances between the normalized central period

of sensor factor 2 (Tikhonov density [8]) and its representations h,

as functions of A. Plot Dy is the lower bound corresponding to the

optimal representation oy = oopr(A). Plots Dy, D, and Dj reflect
suboptimal representation defined in inset.

respectively, where we emphasize the dependence of A
on x, and A,, and of 2 on x, and 0,, after dropping
the temporal index n. The Kullback distance, defined
as

D(h(x,\)|| A(x,0)) = / h(x,A)In hEx /\;d (25)
is a measure of dissimilarity between the probability
density functions 4 and £ (the notation has been
further simplified by dropping the arguments).

In [19], an optimal representation has been

obtained by determining, for any A, the value of ¢
that minimizes D(h||h) as given by (25). The result is a
nonlinear integral equation, whose numerical solution
provides the optimal o as a function of A, i.e. opt(A).
The corresponding minimum Kullback distance (lower
bound), herein denoted by Dy, is plotted in Fig. 3. As
A — oo, the Tikhonov function 4 tends to a Gaussian
density with variance og~ 1/A [8]. This happens when

r — 0. In this case |/z2 + zZ — 1, and, also, from (21),
1/A ~ r; this means that, for very small observation
noise power, r close to zero, the sensor factor is a
train of Gaussian functions with a common variance
o=r.

If p; and p; are normal densities with the same
mean and different variances, say p; = N(0,0;) and

p2 = N(0,07), then (see [18, p. 191])

1 aJ1 a2
D(pillp2) =5 [lﬂ (a) o —1] .

From Fig. 3, as A — oo, the parameter Dy — 0. From
(26) this means that the optimal representation Aqy

is a perfect replica of 4. The maximum of Dy (worst

case) occurs for A ~ 2 where the Tikhonov function A
is no longer well approximated by a Gaussian and the
contribution of lateral modes are not able to give the
representation / the shape of 4. For vanishing values

(26)
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of A, the densities 4 and & become equally flat and 4
is again a good apprommatlon to the shape of 4.

When o/ is given by equation (24), the Kullback
distance is given by curve D; depicted in Fig. 3. In
the limit, as 7 — 0, &; assumes a Gaussian shape
with variance oy = (12/8)r. Computing Di (k1 || Aopt)
according to (26), one gets the horizontal asymptotic
value D; = 0.01 (see Fig. 3). For 3 < A < 4, the
representation is practically optimal (D; ~ D). The
maximum of D; (and maximal departure from the
optimum Dyp) happens for A ~ 1.5. Values of A close
to zero lead again to D; ~ D~ 0.

To analyze the effect of using expression (24) with
mismatches between the assumed noise variance and
the true one, we replot the Kullback distance using the
values of o and o3 given in the inset of Fig. 3.

Taking 0>, a variance (8/72)r (corresponding to
an underestimation of about 20%) is presumed. The
corresponding plot D; coincides with Dy for large
values of A, but departs significantly from Dy about
its maximum, i.e., for 1 < A < 3.

Adopting o5 is equivalent to presuming a variance
(w2/8)r, ie., an overestimation of about 20%. The
corresponding plot D5 is practically optimal, i.c.,
coincides with Dy, for A < 2; however, for large values
of A, D3 shows a large residual error of 0.0385 (see
Fig. 3). This value can be computed from (26).

Plot Dy is a good compromise between D, and
D;. The residual asymptotic error is small (0.01)
when compared with the much larger asymptotic
value of Ds, and for smali values of A, ie., 1< A< 3,
its departure from the optimal Dy is much smaller
than the departure of D;. Actually, for 2 < A < 4, D,
practically coincides with Dy. In view of the above
arguments we adopt in our simulation in part IV the
value of o as computed from (24).

Alternatively, we could have adopted an adaptive
technique, leading to a nearly optimal representation;
it consists in describing g,p(A) by three hyperbolic
segments: o1, for A < 2; 03, for 2 < A < 6; 03, for A > 6.

In summary we make two comments.

1) To be practical, good representations should
preserve the relevant information contained in
the represented function and involve the explicit
computation of only a small number of parameters
Our description of A, satisfies these parsimonious
requirements. Only two parameters are needed: the
location of a maximum (770 ) of H, given by (22) and
the variance o calculated according to (24). Both
expressions are simple and easy to calculate.

2) As a result of representation (23), and from
the fact that S, as given by (17) is Gaussian, all the
densities will be of the Gaussian sum type, provided
the initial condition has the same form (sce below).

C. Prediction

Assume that F,_; is the sum of Nf--t Gaussian
. . F,_
functions, with means n;” '€ R*, and common
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covariance matrix V-1 (dimension k x k)

NFfn-1
n— Fo -
Foci= Y k"N (g1 —m; ", VEo1)

i=1

@)

' are such that F,_; is

where the weighting factors kiF"‘
a normalized density.

According to (15) the prediction density P, is the
convolution of (27) with the convolution kernel (17).

The result is

Nn
P, =Y kPN (e —nf" V),

i=1

(28)

Since (17) is a single Gaussian, there is no creation
of new modes. The number of Gaussian modes of the
filtering density, N1, is conserved, i.c.,

N#» = NF-1, (29)
The remaining parameters in (28) are
nfr = Anl"! (30)
v = AVE-1AT + BQBT (31)
ki = ck[™. (2)

Constant C affecting all the terms of P, can be
omitted. Prediction is thus a bank of N%-1 discrete
Kalman-Bucy prediction steps. This stems from the
linear and Gaussian assumptions on the dynamics (9)
and the form (27) of F, 1.

D. Filtering

To implement (16), function H, is substituted
by its representation (23). Since multiplying two
Gauss functions yields a Gauss function, the result of
multiplying the ith term of P, by the /th mode of H, is

(P Hy)it o kjf" N (x5 — mi, VE7) (33)
with
'VP"
nPr — gt 1
F, P, 1 ! .
== : 34
Y i VP" + ot .P ( )
LV
.
vE 0 0
Vi =i ! : Vi
Vi + ot Y
vk oo 0
(33)
kif™ = kN (yg — i Vi + o). (36)

Equations (34) and (35) represent a bank of
discrete Kalman-Bucy filtering (updating) steps guided

LEITAO & MOURA: ACQUISITION IN PHASE DEMODULATION

by observations r)lH" with adaptive variance o/,

The means an" of each mode of H, play the role

of pseudomeasurements. Very importantly from a
computational point of view, note that the covariance
matrix V5 in (35) is not subscripted by the mode
indices (i,!), since all the modes of H, have the same
variance. The bank of filters (34) has several clements,
but only one Riccati equation needs to be solved.

E. Dimension Control

At the filtering step the number of terms of F,
increases. To keep the filter dimension N within
reasonable limits the following criteria are adopted.

Truncation: Each term of P, multiplies only the
J nearest modes of H,. This number J is called the
multiplication parameter.

Aggiutination: ~ After multiplication, two terms
of the product of P, « H, are agglutinated in only
one Gaussian term if (n,f‘fi = e }.)2 < Bm, where
m=1,2,...,k, and 77;",; denotes the mth component
of vector niF *. The resulting mean, covariance matrix,
and weighting factor are easily evaluated from the
corresponding values of the combined terms. Vector
B € R¥ is called the agglutination parameter vector.

Elimination: After agglutination and
renormalization, mode (i!) of P, - H, is eliminated if
its weight is small, i.e., if

F,
k< 6.
Constant § is called the elimination parameter.

Once the three preceding simplifications have been
implemented, the remaining coefficients kiF » (after
relabeling) are renormalized. The new filtering density

becomes
Nfn

Fy =Y k"N (X, — ",V

i=1

37)

which is a Gaussian sum like F,_; in (27). However,
the number of terms is, in general, not the same:
an increase (N*¥ > N»-1) or a decrease (N*¥ <
NFa-1), may occur. Here resides the ability of F, to
concentrate or to spread out, eliminating or creating
new modes adaptively, according to the data. The
number of terms N is called in the sequel the filter
dimension.

Fig. 4 summarizes the propagation algorithm
F,_1-+F, just described. The design parameters J,

B, and § must be adjusted to the problem under study
and tuned by simulation.

F. Initialization

Acquisition problems are concerned with the lack
of knowledge about initial conditions. This is captured
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Fig. 4. Block diagram of propagation algorithm £, _; 2 Fy developed in Section III. Updating of filtering density is accomplished in
two steps: prediction and filtering, guided by current observations z,.

by modeling the initial condition as a random variable
with appropriate probability density function p(x;).
This function works as the prediction density in the
first iteration: Py = p(xy).

G. Estimator

At each time step, the optimal estimate is the
conditional mean (19) which, for F, given by (37),
takes the form

Nfn  F, F,
o _ i kit
n = Nfa  Fp -
>z k;

Note: The use of Gaussian functions in building
nonlinear filters is not new (see [20 and 21].) The
present work departs, however, from those approaches
mainly in the following points:

(38)

1) In [20 and 21], the densities are approximated
according to a minimal norm criterion (Wiener
approximation theorem [20] or related criteria [21]). In
[21], the nonlinear observations are linearized around
the means of each term of the prediction density,
leading to a bank of filtering steps, with no creation
of new modes. Additional terms may be created in the
prediction step if the individual variances are to be
controlled in order to guarantee the nondivergence of
each local estimator. The algorithm applied in [22] to
cyclic phase and frequency estimation belongs to this
class of implementations.

2) Our realization exploits the peculiar features of
the periodic sensor factor H,, preserving its relevant
shape (information content); in this sense it is a
problem-matched solution. The representation of
H, as a train of Gaussian functions with a common
variance leads to a bank of filters with only one Riccati
equation. Each filter is driven by pseudomeasurements
(which are located at the maxima of H,) with a
common adaptive noise variance (see 24).
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IV.  ACQUISITION

In this section, we study, in the context of absolute
phase acquisition, the behavior of the NLF developed
in the previous section. The phase space for these
problems is the real line R! when the process is first
order and the plane R? for second-order dynamics.

In acquisition, the goal is to overcome a large initial
uncertainty regarding the phase (and possibly its
derivatives.) Recalling decomposition (6), the major
task is to estimate the counting process L(¢). This

is conceptually a detection problem. As such, it is
important that the estimator incorporates a mechanism
deciding when acquisition has been accomplished.

In radar/sonar applications, this flags the end of the
acquisition step and the beginning of the tracking
stage.

A. First-Order Dynamics

Consider the scalar phase process modeled by the
difference stochastic equation (10), and assume that
Py = p(x1) is uniformly distributed on [Xpin, Xmax]; this
expresses the total lack of information about the initial
phase range within the considered interval.

Since Pj is not Gaussian, an appropriate
initialization procedure is needed before applying the
recursive algorithm F,,_; 2, F, to this particular phase

dynamics.

Initialization: From the first observation z; obtain
H, according to (23), and consider F; formed by the
minimum number of terms of A spanning the support
of Py, ie, Nfi = Axy,/(2m) +2.

The filtering density F; has now the form of (37)
(defined on R"), with k[ = 1/N%,

The optimal estimate is the conditional mean given
by (38).

1) Simulation Example: The following example
is presented with the goal of gaining insight on the
behavior of the NLE
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Fig. 5. Typical acquisition behavior of the proposed NLE Starting
with a large indetermination expressed by a multimodal
configuration of Fy, the filtering density F, eventually concentrates
around the true phase trajectory. This is accompanied by
convergence of the estimate £, to the correct value x,.

Fig. 5 shows the evolutions of x, and of the phase
estimate £, provided by the NLF, and represents
the shape of F, at four different iterations (n =
1,21,43,51). This figure also lists the values of the filter
parameters (J, 3,6) and of the model constants (a,q,r).
The support of P is the interval [Xmin = 0,Xmax = 25].

The initializing procedure induces on F1, besides
the modes on the wrong 27 intervals, a mode on the
right cell, i.e., where the process xj really is. Starting
from Fi, the filter proceeds according to the algorithm
Fo1 = F, developed in Section III. At each iteration,
terms are eliminated when their weights get smaller
than 4, while the others are reinforced on account of
the normalization procedure. The optimal estimate £,
starts roughly from the central region of the interval
[0,25], evolves erratically, and finally converges to x,;
when this occurs, F, is practically concentrated on the
correct mode.

2) Acquisition Mechanism: As said in the
Introduction, absolute phase acquisition (global
ranging) raises global observability problems.

Consider the scalar dynamics x,4; = ax, (limit of
(10) as the driving noise variance goes to zero, g — 0)
with observations z, = [cos x,,sinx,]7 (limit of (8)
when the observation noise variance goes to zero,

r — 0). According to the initialization procedure, F;
is a train of equally weighted Dirac functions (limit
of the Gaussian terms of H, spanning P;) expressing
the exact location of x; on each of the possible

2w intervals. If a # 1, application of the recursive
algorithm F,_; = F, resolves the indetermination
in just one step: prediction imposes to each localizing
mode of Fi a different shift; filtering determines the
(only) mode of P, consistent (coincident) with H,.

If a = 1, the indetermination will persist (F,, = F,
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n=1,2,...). This means that the system is globally
observable only if a # 1.

Consider now the random dynamics (10) with noisy
observations (8). If 2 =0 (and thus the process {x,} is
a Brownian motion), the filtering density F, spreads
out by increasing the number of modes N, as
newcoming observations z, are processed. The initial
indetermination grows in this case. Whenever a # 0,
as exemplified in Fig. 5 (where a = (0.99), the trend is
to concentrate F,, reducing the number of its modes.
The initial multimodal configuration, characterized by
a large global variance, becomes practically unimodal
and the estimate £, gets close to the true phase value
x,. Once the initial indetermination has been resolved,
acquisition is considered accomplished and a tracking
stage begins.

To detect the transition from the transient
evolution period to the tracking stage, the NLF
incorporates an acquisition mechanism based on the
relative variance concept introduced below. Let ag" be
the global variance of F,, i.e., agF" = [(xs — £,)°Fodx,.
With £, and F, given by (38) and (37), respectively, we
have

N Nfn 2

op =+ k@Y - | Yok

i=1 i=1

(39

(O’F " is, as mentioned before, the common variance of
each term of F,).
The relative variance of F, is a ratio measuring the
concentration of F,, defined as
g

N'% L o N A
2imt ki (m; Y- (Z;:1 k;m; )
Q, = o =14+ UF,,

7

q

(40)
When F, becomes unimodal, «, reduces to unity, no
matter what the value of o» is; otherwise o, > 1.
Acquisition Time: We now consider that absolute
phase acquisition is accomplished when the measure
a,, given by (40), first crosses a given threshold .
Acquisition time is a random variable T,, formalized
as the corresponding first passage time. We call the
process {a,} and the threshold «, the acquisition
process and the acquisition parameter, respectively.
Note: The proposed method is a built-in decision
mechanism based on global information available
to the filter, i.e., the global shape of its conditional
probability density function. Local estimators, e.g.,
the EKBF (see the Appendix), cannot use an internal
criterion like the one just described simply because
they lack the information on which to decide.
Acquisition Performance: When a sample function
of {w,} crosses the threshold ¢, for the first time, two
situations can occur:

correct acquisition

<7
2 $ \2
= n " An 4
€ =(x x){ﬂ2 (41)

false acquisition
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i.e., the errors are either smaller than 7, in which
case we say that correct acquisition occurred, or
larger than 7, which leads to a false acquisition. The
acquisition performance, denoted by (, is defined as
the probability of correct acquisition.

The random variable 7,, characterized by
the probability density function p(7,), and the
probability of correct acquisition ¢, depend on the filter
parameters and on the acquisition threshold «,. Given
the complexity of the problem, it is not possible to get
formal expressions for p(7,) and (. Instead, Monte
Carlo simulations are performed and the numerical
results presented in graphical and table form.

3) Characterizing the Acquisition Behavior:
To characterize the behavior of the proposed
estimator/detector, the following procedure has been
adopted: for a given noise condition and a set of filter
and model parameters, M runs (of length N) are
performed and a number of meaningful statistics are
computed.

As usual in phase estimation studies [11-13], the
noise condition is expressed in terms of the steady
state (tracking) error variance that would be achieved
if the observations were linear. This value, denoted
by V., is provided by the associated Ricatti equation
(see the Appendix). In the PLL literature [8, 6], Vo is
the inverse of the (carrier) signal-to-noise ratio in the
(linearized) loop bandwidth.

Besides V', the simulation program accepts as
input: 1) the model parameters a,q,r, and the initial
phase indetermination [Xmin, ¥max] and 2) the filter
parameters J, 3,6, and the acquisition parameter o,.

The computed statistical data (i.c., the simulation
results) are as follows.

a) The acquisition histogram
HIST(n)

a

Hist(n) = =12,...,N (42)
where HIST(n) counts the number of acquisitions that
occured at iteration n, and p, is the total number

of acquisitions in the M Monte Carlo runs. The
histogram Hist(#) is thus an estimate of p(7,). The
mean acquisition time T, (computed from Hist(n)) is

also provided. The running sum of Hist(n), ie.,

P.(n)= iHist(i)

i=1

(43)

gives an estimate of the probability distribution of T,.
From P,(n), the program obtains the time 7} at which
P,(n=T;) =0.95.
b) The acquisition performance, estimated by the
relative frequency
¢ = fe

Ha

where ., is the number of correct acquisitions in the
M Monte Carlo runs.

(44)

¢) The percentage of false acquisitions as a
function of n

HiStf (n)

Histm) < 10

Pofa(n) = (45)
where Histy (n) is the histogram of false acquisitions.
d) The mean square error at the acquisition
instants
— &2
&= (46)
where €2 has been defined in the previous section.

¢) The average acquisition process
1=, 0
an=M;an, i=12,...,N. (47

The crossing point of &, with the threshold «,,
denoted T>, can also be used as a figure of merit.
f) The average filter dimension,

M

B _ 1 F,

Vs ®
which is a measure of the computational effort
(complexity).

4) Adjustment of Filter Parameters: As said in

Section IIIE, the filter parameters J, §, and 6, must be
adjusted to the problem under study. Here, we adapt
them to absolute phase acquisition, which also involves
the setting of the acquisition parameter «,.

Multiplication Parameter J: Returning to Fig. 3,
one may ask how many terms are taken in (23)
to compute (25). There is no advantage in taking
more than two Gaussian functions to describe #;
increasing this number does not change significantly
the Kullback distances D(k || k). From this fact, and
from the definition of the multiplication parameter J,
we conclude that J =2 is a good choice. We confirmed
this by simulation; even for strong noise conditions,

J > 2 does not induce any noticeable improvements on
Cand T,.

Agglutination Parameter 3: Ultimately, absolute
phase acquisition is a decision based on modes lying
about 27 apart. For this reason, the criterion for
choosing the value of the agglutination parameter
{3 takes 27 as a reference; namely, we adopt the
constraint /3 < 0.1 x (27). The value 3 = 0.25,
verifying this constraint and being sufficiently large to
avoid a high filter dimension N%», has experimentally
proved to be a reasonable option.

Elimination Parameter 6: Fig. 6 illustrates the
influence of the elimination parameter 6 on the
filter behavior. Except for the value of 4, all the
conditions, including the parameter values and the
noise sequences, are the same in (a) and (b).

1) In Fig. 6(a), at iteration n = 21, the filter is
propagating only two modes, one of which is the
correct one. In subsequent iterations, the mode
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Fig. 6. Influence of elimination parameter 6 on behavior of NLE

(a) With 8 = 0.001, estimator able to converge to right solution.
(b) With & = 0.01, correct mode around x, is prematurely
eliminated and 2, evolves wrongly along an almost parallel

trajectory.

corresponding to the false location gets to be much
larger during a certain period, as illustrated at iteration
n = 51. However, the correct mode has not been
eliminated, the filter being able to recover and
cventually concentrate significant probability mass
in this mode (see F7g). Before converging to x,, the
estimate %, evolved along a trajectory parallel to that
of x, while the incorrect mode dominated. Finally, the
situation was inverted.

2) With a ten times larger value for the elimination
parameter 6, the filter is not able to converge to
the correct mode, as shown in Fig. 6(b). Here, up
to iteration n = 55, the evolutions of %, and F, are
similar to the corresponding ones in Fig. 6(a). At this
iteration, the excessively large value of 6 causes a
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Fig. 7. Experimental results concerning mean acquisition time Ta
and number of false acquisitions pf, as functions of:
(a) elimination parameter § (with acquisition parameter a, = 9);
(b) acquisition parameter a, (with § = 0.001).

premature elimination of the correct mode, the filter
density reduces to the incorrect mode and the estimate
%, is forced to follow a trajectory nearly parallel to £,.

Fig. 7 reports simulation results obtained by running
1000 sample functions of length 100. Fig. 7(a) (where
a, = 9) shows the influence of the elimination
parameter 6 on T, and on jg,. For § < 0.01, there

is no variation in 7,. The value é = 0.01 leads to an
unacceptably large number of false acquisitions, while
¢ = 0.0001 induces a high acquisition performance,

at the cost of a much larger filter dimension
(computational effort). Consequently, the intermediate
value 6 = 0.001 is adopted as a wise compromise.

Acquisition Parameter «,: Designing the optimal
threshold of a detector is an important issue. In the
problem under study, the value of the acquisition
parameter o, is a tradeoff between acquisition
performance ¢ and acquisition time 7.

In Fig. 7(b), the number of false acquisitions py,
and the mean acquisition time 7', are plotted for a set
of values of ¢,. Increasing the acquisition parameter
(s = 50,100), tends to reduce T, at the expense of
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an exceedingly large number of false acquisitions. Our
experiments showed that a, = 9 is a reasonable choice.

S) Evaluation Results: The usual benchmark in
phase tracking experiments is the EKBE In absolute
acquisition, however, this filter alone would follow the
corresponding initializing mode, the initial global error
persisting as an offset. For comparative studies, an
alternative to the NLF under test has been developed
by associating an EKBF to each Gaussian mode of
Fi. In this way, N i jdentical estimators are run in
parallel, guided by the same noise sequence.

The bank propagates the filtering density
representation

NA —
Fr= Y KN (s —m0™%)

i=1

(49)

where kiF’:, niF':, and o are computed according to
the expressions in (59), (60), and (61), respectively.
Coupling of elementary modes, and thus the shaping
of the multimodal density F}, is imposed by the
normalizing condition [ F,(x)dx = 1.

Starting with N¥! modes, the NLF evolves
adaptively by expanding or contracting its dimension
NE according to the data; the bank of EKBFs
(BEKBF) has not this ability, being of constant
dimension (Nf» = N7).

Given the form of F), the measure of relative
variance, previously developed for F,, can be directly
incorporated in the BEKBE The NLF and the BEKBF
are thus equipped with the same acquisition detection
mechanism.

To evaluate and compare the NLF and the BEKBF,
concerning their acquisition ability, a set of simulations
have been performed, according to the procedure
outlined in IVA3.

Fig. 8 shows, for both filters and for V, = —20,
—15, —10, and —5 dB, the acquisition histograms
Hist(n), the acquisition accumulated probabilities
Pr(n), and the percentage of false acquisitions %f.(n).
Also marked on abscissae are the mean acquisition
times T, and the times 7y such as Pr(T;) = 95%. The
crossing points of @, with ¢, denoted by T3, can only
be seen on the NLF plots. The following parameters
have been kept constant: [Xpin = 0,X2max = 25];

a = —-0.99; a,(NLF) = a,(BEKBF) = 9; M = 10000.

The histogram plots provide significant information.
We enphasize the two following points.

1) For each value of V, the histograms for NLF
and for BEKBF are different . These differences are
specially significant for the last two noise conditions
(Voo = —10, —5 dB); namely, the NLF histograms are
sharper.

2) From all the plots of the percentage of false
acquisition %f,(n) we can also conclude that the
early acquisitions are false with high probability. They
correspond to premature decisions which occur more
frequently with the BEKBE

Fig. 9(a) shows, for both estimators, the
dependence of ¢ on V. For a given acquisition
parameter «,, the acquisition performance of the NLF
is consistently higher than the one of the BEKBE
The gain A¢ = ((NLF) — ((BRKBF), negligible for
Voo = =20 dB (A¢ = 0.07% with o, = 9), becomes
significant for Vi, = —5 dB (A( = 8.45% with o, = 9).
A smaller acquisition threshold, for example ¢, =5,
leads to better percentages of correct decisions at the
cost of extending the acquisition times.

For low level noise (V. = —20, —~15, —10 dB)
the algorithms are equally fast in solving the initial
ambiguity (see Fig. 9(b)). For higher noise power
(Voo = =5 dB) the NLF, taking advantage of its
adaptive features by increasing or decreasing its
dimension according to the data, takes longer to reach
a decision than the BEKBF avoiding more often wrong
carly detections. This justifies the above mentioned
better performance as measured by ¢ and €2.

Under the experimental conditions considered, the
following approximate relation has been observed:
T1(Veo) = Th(Veo) ~ kT a(Vo ), Where k is a constant.
Therefore, estimating T, provides additional
information about p(7,).

Fig. 9(c) shows that, for V, = —5 dB, the mean
square residual error €2, after correct acquisition,
is smaller for the NLF, than with the BEKBFE This
emphasizes the relative superiority of the first
estimator in absolute phase tracking (when acquisition
is detected, the estimator enters the tracking stage).

Note: In all the situations discussed, a = 0.99
(i.€., the system (10) is stable). Similar results and
conclusions can be obtained with other values of q,
including @ > 1 for which system (10) is unstable. For
lack of space these results are not reported here.

B. Second-Order Dynamics

In this subsection, we consider the second
order phase dynamics modeled by the stochastic
difference equation (12), with b = 0. The initial
indetermination about phase (range) and phase rate
(velocity) has probability density function Py = p(x;),
assumed uniformly distributed over the rectangle of
RZ: ([xl,lm'm: X11 max] X [lemimx2,l max]) The initial
range indetermination encompasses a multiple of
wavelengths: Axy; = X1,1max — X1,1min = 27L + X115
LeN, % € [—m, +7]

Like in Section IVA, to apply the propagation
algorithm F,_; -2+ F,, an appropriate initialization is
needed.

Initialization: With a second order dynamics two
observations, z; and 2, are necessary to construct the
filter density F; as a sum of bidimensional Gaussian
functions. The procedure is as follows.
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at acquisition instants E%, versus Voo

1) From z; obtain f; and consider F; formed by
the minimum number of terms of H, spanning the
prior phase range (N = Axy1/27 +2).

2) Predict P, according to model (12).

3) From z; obtain H, and consider F, formed by
the minimum number of terms of P>F, whose means
subtend the domain where the process x,, is expected
to be found at iteration n = 2, i.e., usually the support
of Pz.

1) Acquisition Detection: The acquisition
mechanism of Subection IVA is now extended to
the 2-dimensional model (12). The global covariance
matrix of F, (as given by (37) in Section IIIE) is

NFn
Vé:n = yin + ZKianiFn (T’iF">T _ nF,, (,,,,)T (50)
i=1

where n¥ = %, is computed according to (38).
The processes {1, }a>2 and {ag,},>2 defined by

F, F,

Qg = Vl]g . oy = V22g (51)
n= F, * W F,
Vll VZZ

are measures of the relative dispersion of F, along the
orthogonal components x,, and x3,, respectively. The
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Fig. 10. Simulation example illustrating acquisition behavior for
second-order dynamics (12). Plots represent simultaneous evolutions
of: (a) acquisition processes a1(n) and a;(n) given by (51), and
the filter dimensions N »; (b) phase x1, and its estimate £q,,;
(c) phase rate x;, and its estimate £ ,,.

decision criterion consists in detecting acquisition when
the double condition

{al,n < al,a (52)

Qyp < Q2gq4

is met for the first time. Thresholds ¢, and oy,
are the acquisition parameters; the process {a, =
[al,,,;az,,]T},lzg is called the acquisition process.

The acquisition time 7, is thus the random variable
defined as the first passage time of the vector process
{an}n>2 across the double barrier o, = [alya;ayﬁ]T.

Generalization of the above concepts and criteria
to the kth-order dynamics (9) is straightforward.

2) Simulation Example: Fig. 10 represents typical
evolutions (single run) of: phase and phase rate
processes, {x1,,} and {x2,}, and their respective
estimates {£;,} and {£,,}; the two components of
the acquisition process {o,} and {¢,,}; and the filter
dimension N, Simulation parameters are: initial
conditions [X11min = 70; X11max = 75] and [xo1 nin =
—1;X21max = 1]; noise condition V31, = —20 dB (see
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Simulation outputs showing effects of changing initial indetermination. Simulation parameters of (a) and (b) are the same, with

one exception: (a) Axyy = 75— 50 =25; (b) Axy; =125-50=75. In case (b), although starting with a larger number of modes, the
estimator/detector exhibits practically the same acquisition features of case (a).

IVB3); filter and model parameters J = 2, g; = 0.025,
B8, =0.5,6 =0.001, A =1, and a = 0.001.

Notice that, for o1, < 10, phase acquisition can
usually be taken for granted. Since convergence of
fan to x2, has also been accomplished, with «g,
taking small values. This is the pattern generally
observed: phase and phase rate acquisitions are
strongly correlated. This is intuitively pleasing. The
process xo, Is the discrete version of the derivative
of the phasc process. It is thus natural that when the
phase xy, has been acquired, acquisition of x;, has
also occured. In general the converse is not true,

i.e., acquisition on the derivative x2,, does not imply
acquisition on its intcgral xy .

Thus, instcad of testing all the components of «,,
as suggested in B, we can take as acquisition process
simply its first component {«g ,}. Accordingly, there is
acquisition if

X1 < Ul,a (53)

for the first time. This decision is considered correct if
2 o N2 2
En = (Xl‘n —I) < (54)

otherwisc it is labeled as a falsc acquisition.
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The set of simulations reported in the next section
is carried out according to the above simplified
criterion.

3) Evaluation Results: Since the acquisition
mechanism is structurally the same for vector and
scalar models, the experimental procedure of IVA3
is again used. Where necessary, scalar quantities are
substituted by the equivalent vectors.

In the sct of simulations presented below, the filter
parameters (J =2, 8y =0.25, 8, = 0.5, 6 = 0.001)
and the initial phase rate indetermination [x(min =
—1,X21max = +1} are not changed. Noise condition is
now expressed in terms of the first diagonal element
of the asymptotic steady statc covariance matrix, Ve
(see the Appendix).

By changing input parameters (a,V]100, AX11,04 =
«1,) and comparing results, the following conclusions
arc drawn.

1) The acquisition histogram Hist(#n), and the
detector performance ¢ do not depend significantly on
the initial phase indetermination Ax;;. This is seen by
comparing Fig. 11(a) (where Axy; = 25) and Fig. 11(b)
(where Axqp =75).
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Fig. 12. Simulation outputs showing the effects of changing acquisition parameter a,. Simulation parameters of (a) and (b) are the
same, with one exception: (a) as = 9; (b) aa = 5. Decreasing «, yields a larger mean acquisition time T', and a better acquisition
performance ¢.

2) Decreasing the acquisition threshold «, induces

a shift of Hist(n) to the right and a better detector s oo :"z:;?ﬂa
performance (. These effects, and a shape modification C H ﬂ | - X1ae= 75
in Hist(n), are apparent from Fig. 12(a) (where o, =9) T *ymin =30
and Fig. 12(b) (where o, = 5). They would be much o *2max™ !
more pronounced under the conditions of Figs. 12 *amin =
and 13. : /\

3) Smaller values of g, which in the ranging
problem correspond to motions closer to being radial,
produce longer acquisition times and worse detection
performance. This is seen from Fig. 12(a) (where a =
0.0005) as compared with Fig. 11(a) (where a = 0.001).
As for the remaining simulation parameters, both
figures are equivalent.

4) The same happens if a is kept constant and
the noise condition degrades (V71 increases). In
Fig. 10, the acquisition histogram grows slowly between
n =10 and n = 60. During this period most of the
decisions have been wrong, as is clear from the plot
of the percentage of false acquisitions %f,(n). This
behavior, observed also under several other conditions,
confirms (now with a second order dynamics) that Fig. 13. In terms of simulation parameters, this Figure differs

early acquisitions are false with high probability. They from Fig. 11(a) only in the noise condition: here V100 = —10 dB,

correspond to premature decisions. while V.lloo = —'?.,0 dB in Flg. 11(a). Not¥ce<t.hc effec.t of degrading

the noise condition (increasing 714 ): significant shift and spread

of the acquisition histogram, most of the early acquisitions being
wrong (see plot of % fq(n)).

0 20 40 60 8G 00 120 140 =«

In summary, the acquisition characteristics found
with the scalar dynamics (10) have also been observed
with the second order model (12). They are general
features for the class of linear models (9) considered in
this work.
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C. Acquisition Threshold

In all simulations performed we have considered
the acquisition threshold as a constant paramcter
«,, not depending on the time index n. Decreasing
«, induces a shift of Hist(n) to the right and reduces
the number of false acquisitions. On the other hand,
most of these false acquisitions are early events. This
suggests that in practice one may want to design a
time dependent threshold a,(n) that avoids premature
detections and that shortens the long right tail of
Hist(n). A Neyman-Pearson type criterion can be
adopted: keep the probability of false acquisition
(false alarm) below a preset value and maximize
the probability P,(Tmax) of detecting within a given
maximum delay Tpax.

V. CONCLUSIONS

This paper is concerned with ranging, the first stage
in range/Doppler radar/sonar systems. We cast the
problem as the acquisition step in phase/frequency
demodulation. Ranging, or acquisition, is a global
problem which is intrinsically nonlinear. Linearized
solutions as the EKBF or the PLL arc not suitable.
These perform well as trackers, where one is interested
in following the local dynamics, but fail to provide
global observability.

An implementation of the optimal NLF was
developed by exploiting the relevant characteristics
of phase estimation. Under the setup studied here, the
filter nonlinearity resides in the filtering step, in which
the prediction density is multiplied by the periodic
sensor factor. The adopted approach associates
a Gaussian function to each period of the sensor
factor, as explained and discussed in Subscction IIIB.
The resulting filtering density is a weighted sum of
Gaussian functions with common covariance matrix.

Acquisition is formalized by introducing an internal
measure of dispersion of the filtering density, which
relates its global covariance matrix with the common
covariance matrix of its modcs. Acquisition time
is then defined as the first passage moment of that
measure (acquisition process) across a suited threshold.
Incorporating this mechanism, the NLF becomes an
estimation/detection structure.

A first-order phase dynamics was used to illustrate
the behavior of the NLF and to study its performance
via Monte Carlo simulations; these include a
comparison of the proposcd structure against the
BEKBFs equipped with the same detcction scheme.
To characterize the acquisition mechanism, a set of
statistics were obtained, the most important being
the acquisition time histogram and the detector
performance. The NLF (which can adapt to the data
by creating new modes) cxhibits better performance.

The acquisition characteristics found for the scalar
dynamics were also obscrved with the second-order
model.
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APPENDIX. EKBF/PLL

This Appendix derives, for reference purposes,
the equations of the discrete EKBF corresponding to
models (8) and (9).

The discrete EKBF operates in two steps:
prediction and filtering, There is however no
representation of the sensor factor H, as in Section
IIIB; instead, the nonlinear functions of the
observation model (8) are linearized in each filtering
step around the mean of the prediction density, which
is assumed Gaussian:

P, x N'(x, — " VFn). (55)
As a consequence of this linearization, the observation
factor looses its multimodal structure reducing to the
Gaussian form

H! & N (x1, — 7, r) (56)
where
N 4 P P
=+ 2, cos() ") — Zuesingm ). (57)
Filtering: Multiplying (55) by (56) leads to
F, = k7 (x, — nf, V™) (58)
with
ol Pl 7] PI
Kb o Ny = Vi +1) (59)
P! . P
' ' 22, COS ") — Z1., 81N "
o = s 4 Z2n 080y 3) 1,07, ")
VH" +r
P,
Vll
Vi
v =vP. _ 1
Vlll)" +r
P,
v,» 0 0
x| | Vh (61)
P,
v,y 0 - 0

When using the EKBF alone, there is no need for
computing the factor k% ». In a structure formed by a
parallel of EKBF, as considered in Section IVAS, the
weights work as coupling elements, being calculated
and normalized in each iteration.

Prediction: TFrom the convolution of (58) with (17)
one has again a Gaussian prediction density, P41,

nfai = Anfs (62)
Vi = AVEAT + BQBT (63)
597



The estimate is, at each iteration,

Ry =m' ", (64)

Equations (61) and (63) are algebraic Riccati
equations describing the deterministic evolutions of
V¥~ and VP, Starting with V7, the covariance matrices
eventually reach the steady state characterized by

Vi =vE  and VPR =vVE (65)
Equations (60) and (62) become then a constant gain
estimator, formally equivalent to the PLL. In this
paper, when referring to the PLL, this asymptotic,
constant gain EKBF is meant.

The first diagonal element of the steady state
covariance matrix, obeying (65), coincides with
the phase variances V., and V1, expressing noise
conditions in Section IV: (V5 = ¢/),_ o, = Vi,
for scalar dynamics; (lel")n_,Oo = V1o for vector
dynamics.

REFERENCES

[1]  Moura, J. M. F (1979)
Passive systems theory with narrow-band and linear
constraints: Part I1l—Spatial/temporal diversity.
IEEE Journal of Oceanic Engineering, OE-4 (July 1979),
113-119.

[2] Moura, J. M. E (1981)
The hybrid algorithm. A solution to acquisition and
tracking.
Journal of the Acoustical Society of America—JASA, 69
(June 1981), 1663-1672.

[3] Bucy, R. S, and Joseph, P. D. (1968)
Filtering for Stochastic Processes with Applications to
Guidance.
New York: Wiley, 1968.

[4] Moura, J. M. F, and Belo, C. A. C. (1989)
Threshold extension by nonlinear techniques.
In Y. T. Chan (Ed.), Underwater Acoustic Data Processing.
Boston: Kluwer Academic Publishers, 1989, 433-452.

[5] Moura, I. M. E (1987)
Stochastic filtering: Linear and nonlinear.
In J. L. Lacoume and R. Stora (Eds.), Signal
Processing—Les Houches XLV .
Amsterdam: North-Holland Publishing Co., 1987, invited
chapter.

[6] Meyr, H., and Ascheid, G. (1990)
Sinchronization in Digital Communications.
New York: Wiley, 1990.

[7]  Moura, J. M. E (1979)
Passive systems theory with narrowband and linear
constraints: Part II—Temporal diversity.
IEEE Journal of Oceanic Engineering, OE-4 (Jan. 1979),
19-30.

8l

(101

[11]

(12]

(13)

(14)

(15]

(16]

17

(18]

(19]

[20]

(21

[22)

Viterbi, A. J. (1971)
Principles of Coherent Communication.
New York: McGraw-Hill, 1971.
Bethel, R. E., and Rahikka, R. G. (1992)
Multisignal time delay detection and tracking.
IEEE Transactions on Aerospace and Electronic Systems, 28
(July 1992), 675-696.
Bethel, R. E., and Rahikka, R. G. (1992)
Multisignal time delay detection and tracking.
IEEE Transactions on Aerospace and Electronic Systems, 28
(July 1992), 675-696.

Bucy, R, Hecht, C., and Senne, K. D. (1972)

An engineer’s guide to building nonlinear filters.
Technical report SRL-TR-72-0004 (Vol. 1 and 2), Frank J.
Seiler Research Laboratory—USAF Academy, 1972.

Bucy, R. 8., and Mallinckrodt, A. J. (1973)

An optimal phase demodulator.
Stochastics, 1 (1973), 3-23.

Bucy, R. S, Moura, J. M. E, and Mallinckrodt, A. J. (1983)
A Monte Carlo study of optimal absolute phase
demodulation.

IEEE Transactions on Information Theory, IT-29 (July
1983).

Moura, J. M. E, and Baggeroer, A. B. (1988)
Phase unwarping of signals propagated under the Arctic
ice crust: A statistical approach.
IEEE Transactions on Acoustics Speech and Signal
Processing, 36 (May 1988).

Leitdo, J. M. N, and Moura, J. M. E (1981)
Algorithm structures for cyclic phase estimation.
In GRETSI Symposium on Signal Processing, Nice, 1981.

Leitdo, J. M. N, and Moura, J. M. E (1981)
Implementation of a 2-dimensional phase estimator.

In R. Boite and P. Dewilde (Eds.), Circuit Theory and
Design.
North Holland: Delft University Press, 1981, 597-600.

Cover, T, and Thomas, J. (1991)

Elements of Information Theory.
New York: Wiley, 1991.

Kullback, S. (1978)

Information Theory and Statistics.
Peter Smith, 1978.

Leitdo, J. M. N, and Moura, J. M. E (1994)

Nonlinear phase estimators based on the Kullback
distance.

In Proceedings of the 1994 International Conference on
Acoustics, Speech, and Signal Processing—ICASSP'94,
Adelaide, Australia, 1994.

Lo, J. T. (1969)

Finite-dimensional sensor orbits and nonlinear filtering.
Technical report AE-114, U.S.C. Aerospace Engineering,
Aug. 1969.

Alspach, D. L., and Sorensen, H. W. (1972)

Bayesian estimation using Gaussian sum approximation.
IEEE Transactions on Automatic Control, 17 (Aug. 1972),
439448,

Tam, P. K. S., and Moore, J. B. (1977)

A Gaussian sum approach to phase and frequency
estimation.

IEEE Transactions on Communications, COM-25 (Sept.
1977), 935-942.

598 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 31, NO. 2 APRIL 1995



José M. N. Leitao was born in Aldeia Velha—Avis, Portugal, on September 9,
1946. He received the E.E. degree and the Ph.D. degree in electrical engineering,
in 1970 and 1983, respectively, from Instituto Superior Técnico (IST), Technical
University of Lisbon. He received his “Agregado” degree in electrical and
computer engineering, also from IST, in 1992,

He was with the Laboratory of Physiology of the Instituto Gulbenkian de
Ciéncia, in Oeiras, Portugal, from 1970 to 1972. After spending 3 years at the
University of Tubingen, Germany, he joined the faculty of IST in 1976, where he is
currently Professor Catedradtico with the Department of Electrical and Computer
Engineering, teaching courses on telecommunications and communication
theory. He is also the coordinator of the Communication Theory research group
in the Instituto de Telecomunicagoes, IST. His main research interests are:
communication theory, signal and image processing, and pattern recognition.

José M. F. Moura (S’71—M’75—SM’90—F94) received the engenheiro
electrotécnico degree in 1969 from Instituto Superior Técnico (IST), Lisbon,
Portugal, and the M.Sc., E.E., and the D.Sc. in Electrical Engineering and
Computer Science from the Massachusetts Institute of Technology (M.L.T.),
Cambridge, in 1973 and 1975, respectively.

He is currently a Professor of Electrical and Computer Engineering at
Carnegie Mellon University (CMU), Pittsburgh, which he joined in 1986. Prior
to this, he was on the Faculty of [ST where he was an Assistant Professor (1975),
Professor Agregado (1978), and Professor Catedratico (1979). He has had visiting
appointments at several Institutions, including M.LT. (Genrad Associate Professor
of Electrical Engineering and Computer Science, 1984-1986, also associated with
LIDS) and the University of Southern California (research scholar, Department
of Aerospace Engineering, Summers 1978-1981). His rescarch interests lie
in statistical signal processing (one and two dimensional), array processing,
underwater acoustics, and muitiresolution techniques. He has organized and
codirected two international scientific meetings on signal processing theory and
applications.

Dr. Moura has over 140 technical contributions, including invited ones,
published in international journals and conference proceedings, and is co-editor
of the books Nonlinear Stochastic Problems (Reidel, 1983) and Acoustic Signal
Processing for Ocean Exploration (Kluwer, 1993). He was elected Fellow of the
[EEE in November 1993 and corresponding member of the Academy of Sciences
of Portugal (Section of Sciences) in July 1992. He is a member of the IEEE Press
Board since 1991, a technical Associate Editor for the IEEE Signal Processing
Letters, and a member of the Underwater Acoustics Technical Committee of The
Signal Processing Socicty. He was an Associate Editor for The Signal Processing
Transactions (Sonar and Radar) from 1988-1992 and a member of the technical
committee of The IEEE International Symposium on Information Theory
(ISIT"1993). He is affiliated with several IEEE societies, Sigma Xi, AMS, IMS, and
SIAM.

LEITAO & MOURA: ACQUISITION IN PIIASE DEMODULATION 599



