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ABSTRACT

We study the distributed Kalman filter in sensor networks where
multiple sensors collaborate to achieve a common objective. Our
motivation is to distribute the global model that comes from the state-
space representation of a sparse and localized large-scale system into
reduced coupled sensor-based models. We implement local Kalman
filters on these reduced models, by approximating the Gaussian er-
ror process of the Kalman filter to be Gauss-Markov, ensuring that
each sensor is involved only in reduced-order computations and lo-
cal communication. We propose a generalized distributed Jacobi
algorithm to compute global matrix inversion, locally, in an itera-
tive fashion. We employ bipartite fusion graphs in order to fuse the
shared observations and shared estimates across the local models.

Index Terms— Large-scale systems, Sparse matrices, Distrib-
uted algorithms, Matrix inversion, Kalman filtering

1. INTRODUCTION

Recent technological advances in solid-state electronics and wire-
less communication have made it possible to monitor very large-
scale dynamical systems, e.g., power grid, weather forecast systems,
and earthquake tracking systems, using sensor networks. These ge-
ographically distributed sensors take measurements of the variables
pertinent to the system. These measurements, in addition to be em-
ployed in other tasks, are used for state estimation. State estimation
is essential to these dynamical systems for control, tracking and nav-
igational purposes. We develop a distributed Kalman filter for the
multisensor large-scale dynamical systems with localized and sparse
structure.

With sensor networks the observations of the field of interest are
distributed across different sensors. All these observations are to be
incorporated in the implementation of the Kalman filter to ensure
optimal performance. Collecting these observations at a single lo-
cation (fusion center) implements a centralized Kalman filter. The
fusion center then communicates the estimates back to the sensors.
In large-scale dynamical systems, the centralized Kalman filter is im-
practical because it requires: (i) long-distance communication since
the sensors span a large geographical area; and (ii) high computa-
tion because the state-space models coming from such large-scale
systems have high-dimensional state vectors. Furthermore, a cen-
tralized scheme has the disadvantages of large latency and a single
point of failure.

This work was partially supported by the DARPA DSO Advanced Com-
puting and Mathematics Program Integrated Sensing and Processing (ISP)
Initiative under ARO grant # DAAD 19-02-1-0180, by NSF under grants
# ECS-0225449 and # CNS-0428404, and by an IBM Faculty Award.

To reduce the inordinate communication requirements, Kalman
filters have been implemented by replicating the global model at
each sensor. This is still computationally expensive involving nth or-
der matrices and vectors (where n is the dimension of the large-scale
system). Much of the existing research addresses this problem of re-
ducing the communication burden, but, by replicating the nth order
global dynamics at each sensor, which, in general, requires O(n3)
computations. In this paper, we present a solution that reduces the
communication as well as the computation requirements. In our ap-
proach, we distribute the global dynamics into reduced-order local
dynamics. This reduces the computational burden at each sensor,
since the computations are of the order of the local reduced-order
models, nl, where nl � n. We devise local Kalman filters that are
efficient for large-scale systems and avoid at each sensor the draw-
backs, extensive computation and inordinate communication, of the
centralized implementation.

Decentralizing Kalman filter dates back to [2, 3, 4], requiring
all-to-all communication networks and nth order replicated models.
A decentralized Kalman filter where the observations are fused us-
ing local communication and iterative consensus filters is provided
in [5]. Distributing the communication requirements in the presence
of uncertain communication links and packet losses is addressed in
[6], where the problem of target tracking is considered, see also [7].
The problem of target tracking requires a few state variables, e.g.,
velocity and acceleration, and has an inherent structure of decoupled
dynamics in the case of multiple targets. All these decentralized
schemes reduce the communication burden but replicate the nth or-
der Kalman filter at each sensor with O(n3) computational require-
ments, a practically infeasibility when n is large.

Kalman filters with reduced models were addressed in [8]. This
work was further extended in [9]. In their work, the reduced models
at each sensor are decoupled, forcing the model matrix to be block
diagonal. Furthermore, the network topology is either fully con-
nected, [8], or is close to fully connected, [9], requiring long distance
links that are expensive. Willsky et. al. [10], have also addressed the
problem of combining estimates from the subsystems of a global
system, but in their implementation the local sub-systems are decou-
pled, making the sub-systems independent Markov processes. This
solution does not address the problem we consider here of coupled
large-scale dynamical systems.

We present a fully distributed Kalman filter, implemented on
sensor-based reduced models and distributed observations. In order
to achieve this, we distribute the state-space models coming from the
large-scale dynamical systems, into reduced coupled sensor-based
models at each sensor1. These reduced models exploit the localized

1We assume that the state-space model cannot be decoupled under any
model preserving transformation of the state vector.
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and sparse structure of the system dynamics2. Local Kalman filters
are then implemented on the reduced models. Each local Kalman fil-
ter computes local variables, a subset of the global variables (state,
observations, error covariances) required in its centralized counter-
part. Hence the computations required at the sensors are signifi-
cantly reduced. Coupling between the reduced models is preserved
and global performance is achieved by exchanging messages across
different sensors using only local communication.

We distribute the Information filter form of the Kalman filter3.
In the process, we assume information matrices in the Information
filter to be L-banded (we refer to a matrix as an L-banded matrix
(L ≥ 0), if the elements outside the band defined by the Lth upper
and Lth lower diagonal are zero.) This assumption is equivalent to
forcing the Gaussian error processes to be Gauss-Markovian and is
optimal in Kullback-Leibler or maximum entropy sense [12]. This
assumption helps us in making the computations and communica-
tions to be local. It will be shown that without this assumption a dis-
tributed implementation is not possible, requiring either global com-
munication or computing global variables. Simulations in [13] show
that the centralized Information filter with L-banded approximations
is virtually indistinguishable from the exact centralized Information
filter.

We provide the global model and centralized Information filter
in sections 2 and 3, respectively. We will discuss the sensor-based
reduced models in section 4. The local Information filters are divided
in section 5 and section 6, with results and conclusions in section 7.

2. GLOBAL MODEL

We assume that the dynamical system follows an n-dimensional
state equation

xk+1 = Fxk + Guk, (1)

where k is the discrete time index, xk ∈ R
n is the state vector,

F ∈ R
n×n is a sparse localized model matrix, uk ∈ R

m is the state
noise vector and G ∈ R

n×m is the state noise matrix, and x0 are the
initial conditions such that x0 ∼ N (x0,Σ0). We assume that the
random field (1), is monitored by N sensors. Observations at sensor
l are,

y
(l)
k = Hlxk + w

(l)
k , (2)

where Hl ∈ R
pl×n is the local observation matrix, and w(l) ∈ R

pl

is the local observation noise with the covariance matrix, Rl. We
can get the global observation model by stacking the observations at
each sensor in a global observation vector, yk ∈ R

p×n given by

yk = Hxk + wk, (3)

2Sparse dynamical systems span a large variety of interesting applica-
tions, e.g., image reconstruction problem where the pixel values depend on
the neighboring pixels, random fields obtained by discretizing PDEs, power
grids. Localized structure on the global dynamics refers to systems where the
correlations among the states farther apart in the state vector decay rapidly. A
broad range of sparse systems, not exhibiting the localized structure, can be
converted into sparse banded systems with highly localized structures, using
parallelized iterative solvers, e.g., Reverse Cuthill Mckee (RCM) reordering,
[11].

3Information filters [9], are algebraically equivalent to the Kalman filter
[1]. In Information filters the information matrices (inverse of the error co-
variance matrices) are iterated at each time step.

where we have

yk =

�
���

y
(1)
k
...

y
(N)
k

�
��� , H =

�
��

H1

...
HN

�
�� , wk =

�
��

w
(1)
k
...

w(N)

�
�� .

(4)

We adopt the standard assumptions on the statistical characteristics
of the white noise sequences, {uk}k≥0, and {wk}k≥0, with

E[uku
H
j ] = Qδij and E[wkw

H
j ] = Rδij . (5)

We also note that R = blockdiag[R1, . . . ,RN ].

3. CENTRALIZED INFORMATION FILTER

The estimator and the predictor in the Information filter domain are�zk|k= Zk|k�xk|k, and �zk|k−1= Zk|k−1�xk|k−1, respectively, where
the Information matrices, Zk|k, and Zk|k−1, are the inverses of the
estimation error covariance matrix, Sk|k, and prediction error covari-
ance matrix, Πk|k−1, respectively. Let the nth-dimensional global
observation variables be ik= HT R−1yk and Ik = HT R−1H and
the nth-dimensional local observation variables be il,k= HT

l R−1
l y

(l)
k

and Il,k = HT
l R−1

l Hl. It can be shown that [9]

ik =

N�
l=1

HT
l R−1

l y
(l)
k =

N�
l=1

il,k (6)

Ik =

N�
l=1

HT
l R−1

l Hl =

N�
l=1

Il,k (7)

The centralized Information filter equations for the global model (1)
and (3) contain initial conditions, a filter step, and a prediction step.
The initial conditions are Z0|−1 = Σ−1

0 and �z0|−1 = Z0|−1x0. The
filter step of the centralized Information filter is given by

Zk|k = Zk|k−1 +

N�
l=1

Il,k, (8a)

�zk|k = �zk|k−1 +

N�
l=1

il,k. (8b)

The prediction step of the centralized Information filter is given by

Zk|k−1 = Π−1
k|k−1 = (FZ−1

k−1|k−1F
T +GQGT )−1, (9a)

�zk|k−1 = Zk|k−1

	
FZ−1

k−1|k−1�zk−1|k−1



. (9b)

4. SENSOR-BASED REDUCED MODELS

In this section, we present the model distribution in order to obtain
reduced sensor-based models at each sensor. At the lth sensor, we
choose an nl × n selection matrix, Tl, see also [9], such that it
chooses the nl local states in the local state vector, x

(l)
k , from the

global state vector, xk,

x
(l)
k = Tlxk. (10)

The choice of the selection matrix, Tl, is such that, if a sensor l
observes a linear combination of states through the local observation
matrix, Hl, all these states are included in the local state vector, x(l)

k .
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For example, if we have a 5-dimensional system with sensor l having
the local observation matrix,

Hl =

�
h11 h12 0 0 0
0 h22 h23 0 0

�
, (11)

the selection matrix is,

Tl =

�
� 1 0 0 0 0

0 1 0 0 0
0 0 1 0 0

�
� . (12)

A detailed model distribution procedure for obtaining reduced order
sensor-based models using a graph theoretic approach is provided in
[14]. The reduced model at sensor l involves x

(l)
k as a local state

vector. Putting (10) in (1) and defining Fl = TlF and Gl = TlG,
we have

x
(l)
k+1 = Flxk + Gluk (13)

We partition Fl into a reduced model matrix, F(l), which corre-
sponds to the reduced state vector, x

(l)
k , and an input matrix, D(l),

which corresponds to the rest of the states not included in the re-
duced state vector, x(l)

k (these states that are not included will be the
inputs to the reduced model so that we can preserve the coupling and
in turn the global model). Notice that, since the model matrix, F, is
sparse and localized, most of the columns in D(l) will be zero and
we retain only its non zero columns, with their corresponding states
in an input vector, d

(l)
k . We also retain only the state noise sources

relevant to the reduced model. Now the reduced model at sensor l
becomes

x
(l)
k+1 = F(l)x

(l)
k + D(l)d

(l)
k + G(l)u

(l)
k (14)

y
(l)
k = H(l)x

(l)
k + w

(l)
k (15)

Note that the reduced local observation matrix, H(l) ∈ R
pl×nl is

different from the local observation matrix, Hl ∈ R
pl×n. The term

D(l)d
(l)
k in (14), arises because the local model at sensor l is coupled

to the local models at those neighboring sensor (recall F is sparse
and localized), which model the states, in d

(l)
k , in their local model.

If we ignore this term, we reduce our model to decoupled local sub-
systems as in [10, 9]. We do not ignore this coupling and require it
to be communicated from the neighboring sensors. Because d

(l)
k is

not available, we use �d(l)

k|k as inputs, which is communicated from
the neighboring sensors that are modeling the states in the vector dk,
in their reduced models.

The local Information filters are now based on (14) and (15). The
local Information filters contain a local filter step and local predic-
tion step, divided in the next sections. The local filter step (section
5) requires observation fusion and estimate fusion because reduced
models across different sensors may have overlapping states. The
fusion is carried out with the help of bipartite fusion graphs, sec-
tion 5.1. The local prediction step (section 6) requires a global vari-
able because the reduced models are coupled; we avoid computing
this global variable by using iterative generalized distributed Jacobi
algorithms.

5. LOCAL FILTER STEP

Define nlth-dimensional reduced local observation variables i
(l)
k =

(H(l))T R−1
l y

(l)
k and I

(l)
k = (H(l))T R−1

l H(l). Then the local filter

x1 x5x4x3x2

s3s2s1
Fig. 1. Bipartite fusion graph for a 5-dimensional system with the
global and local observation matrices of equation (17).

step is given by

Z
(l)

k|k = Z
(l)

k|k−1+I
(l)
f,k, (16a)

�z(l)

k|k = �z(l)

k|k−1+i
(l)
f,k, (16b)

where the fused observation variables I
(l)
f,k and I

(l)
f,k are discussed in

section 5.1.1.We go from the estimates in the Information filter do-
main, �z(l)

k|k to the estimates in the Kalman filter domain, �x(l)

k|k, by
solving a linear system of equations Zk|k�xk|k = �zk|k, which re-
quires long distance communication and extensive computations for
arbitrary estimation information matrices, Zk|k. If we approximate
Zk|k to be an L-banded matrix ∀k, a solution with only local com-
munication and computations with local variables is possible, using
an iterative distributed Jacobi algorithm for vectors (DJV), see also
[15].

5.1. Bipartite Fusion Graphs

After the model distribution step introduced in section 4, several sen-
sors may share states in their reduced models (14). This is equiva-
lent to saying that the local state vectors, x

(l)
k , for all the sensors

may overlap and hence the sensor-based reduced models share the
overlapped states. Recall that the choice of the selection matrix,
Tl, is based on the local observation matrices, Hl. So the sensors
having shared states have different observations of the shared states.
The observations corresponding to the shared states need to be fused
in order to guarantee global performance. Since each sensor imple-
ments a separate local Information filter, the estimates corresponding
to the shared states also need to be fused across the sensors contain-
ing those states. We implement the fusion procedure with the help
of bipartite fusion graphs, introduced below.

We present a simple example illustrating the bipartite fusion
graphs. We can easily extend this illustration for the case of higher
order state-vectors and a large number of sensors. Consider a 5-
dimensional system observed by N = 3 sensors, where the global
observation matrix, H, composed by local observation matrices Hl,
see equation (4), is given by

H =

�
� H1

H2

H3

�
� =

�
� h11 h12 0 0 0

0 h22 h23 h24 0
0 0 h23 h24 h25

�
� . (17)

A bipartite fusion graph, B = [X ∪ S, E], where X = {xi}i=1,...,n

is the state-set and S = {sj}j=1,...,N is the sensor-set, consists of
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the partitioned vertex set, X ∪ S, and an interconnection matrix, E.
The structure of the interconnection matrix, E, is imposed by the
global observation matrix, H, in the following way. The sensor, si,
is connected to the state variable, xj , if si observes the state variable,
xj . In other words, we have an edge between the sensor, si, and the
state variable, xj , if the local observation matrix, Hi, at sensor si,
contains a non-zero in its jth column. The bipartite fusion graph, B,
for the global observation matrix, H in (17), is shown in figure 1.

The bipartite fusion graphs provides a natural way of selecting
the sensors required in the fusion corresponding to each state. For
example, figure 1 suggests that: for state x1, no observation fusion
or estimate fusion is required since it is observed and hence mod-
eled only at sensor s1; for state x2, observation fusion and estimate
fusion is required on the sensors s1 and s2; and so on. In this way,
we distribute the global observation into local observation fusion for
each state, where only the information from neighboring sensors is
required.

We provide some notation for the next subsections. Let G be the
sensor communication graph; this entails the sensor communication
pattern. For each state, xj , let Gj be the induced subgraph of G, such
that the vertices of Gj are all the sensors connected to the state, xj , in
the bipartite fusion graph, B. It is obvious that, to properly carry out
the fusion procedure, we require G and Gj∀j to be connected. We
present observation fusion in subsection 5.1.1 and estimate fusion in
subsection 5.1.2.

5.1.1. Observation Fusion

With the help of the above discussion and (6), we establish the fu-
sion of the local observation variables. Let the entries of the nl × 1
reduced observation vector, i(l)k , at sensor l, be subscripted by the nl

state variables modeled at sensor l. In the context of our example
system in (17) and figure 1, we have

i
(1)
k =

�
i
(1)
k,x1

i
(1)
k,x2

�
, i

(2)
k =

��� i
(2)
k,x2

i
(2)
k,x3

i
(2)
k,x4

��� , i
(3)
k =

��� i
(3)
k,x3

i
(3)
k,x4

i
(3)
k,x5

��� .

(18)

For each state xj , the observation fusion is carried out on the sensors
attached to this state in the bipartite fusion graph, B. The fused
observation vector, for instance at sensor 2 denoted by i

(2)
f,k, is given

by

i
(2)
f,k =

��� i
(2)
k,x2

+ i
(1)
k,x2

i
(2)
k,x3

+ i
(3)
k,x3

i
(2)
k,x4

+ i
(3)
k,x4

��� . (19)

Generalizing to the arbitrary sensor l, we may write the entry, i(l)f,k,xj
,

corresponding to xj in the fused observation vector, i(l)f,k, as

i
(l)
f,k,xj

=
	
s∈Gj

i
(s)
k,xj

, (20)

where i
(s)
k,xj

is the entry corresponding to xj in the reduced observa-

tion vector at sensor s, i(s)k .
Since the communication network on Gj will not be, in general,

all-to-all, an iterative weighted averaging algorithm [16] can be used
to compute the fusion in (20) over arbitrarily connected communica-
tion networks with only local communication. A similar procedure
on the pairs of state variables and their associated subgraphs, Gjm,
can be implemented to fuse the reduced observation matrices, I(l)

k .

5.1.2. Estimate Fusion

For each state xj , each sensor s ∈ Gj has an estimate, 
x(s)

j,k|k. If
Gj contains more than one sensor, there are multiple correlated esti-
mates of the same state, which should be fused in order to obtain an
estimate with smaller variance, for vector extensions, see e.g., [10].
At each sensor s ∈ Gj , let π

(s)
j be the variance of the jth state esti-

mate, 
x(s)

j,k|k, where π
(s)
j is a diagonal element in the local estimation

error covariance matrix, S(s)

k|k, at sensor s. We fuse the estimates us-
ing the parallel fusion of estimates formula, which can be derived by
using Lagrange multipliers,


xj,k|k =

��	
s∈Gj



π

(s)
j

�−1

��−1��	
s∈Gj



π

(s)
j

�−1 
x(s)

j,k|k

�� . (21)

Both sums in (21) can be carried out using the weighted averaging
algorithm [16].

6. LOCAL PREDICTION STEP

We address the computation of the local prediction information ma-
trix, Z

(l)

k|k−1, first. Following (9a), it can be shown that the local
prediction error covariance matrix, Π(l)

k|k−1, is given by

Π
(l)

k|k−1 = FlZ
−1
k−1|k−1F

T
l + G(l)Q(l)G(l)T . (22)

We need to go from a local matrix, Z
(l)

k−1|k−1, resulting from the
local filter step (16), to a global matrix, Z−1

k−1|k−1, in order to com-
pute Π

(l)

k|k−1 from (22). This problem cannot be solved for arbitrary
symmetric matrices, Zk−1|k−1, since it will require long distance
communication and an n × n matrix inverse, infeasible to imple-
ment at sensors. To achieve this, we use a generalized distributed
Jacobi (GDJ) algorithm for banded matrix inversion presented else-
where, which iterates on local matrices and requires local communi-
cation. A distributed Jacobi algorithm to solve a single linear system
of equations with similar banded structure is presented in [15]. The
GDJ we propose here solves matrix inversion (n coupled linear sys-
tems of equations), with only local computation and local communi-
cation using L-banded theorems from [13].

We need to go from Π
(l)

k|k−1 (a submatrix in Πk|k−1) to Z
(l)

k|k−1

(a submatrix in Zk|k−1), where Πk|k−1 = Z−1
k|k−1. A solution

with only local communication and computations with local matri-
ces is possible, if we approximate the prediction information matrix,
Zk|k−1, to be an L-banded matrix ∀k, using the L-banded inversion
theorem in [12].

The second part is to calculate the local transformed predicted
estimate, 
z(l)

k|k−1. Following (9b) and the transformations in sec-
tion 3, it can be shown that


z(l)

k|k−1 = Tl
zk|k−1 = TlZk|k−1F
xk−1|k−1, (23)

where the product TlZk|k−1 contains the nl rows of the prediction
information matrix, Zk|k−1, corresponding to the locally modeled
states at sensor l. Here we recall that Zk|k−1 is an L-banded matrix,
which helps us in computing (23) locally. Notice that if we do not
use this assumption than the computation in (23) will require a linear
combination of arbitrary estimated states in 
xk−1|k−1, which will re-
quire long distance communication. Depending on the value of L,
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Fig. 2. Simulation Results: We show the original state variables
(solid/blue) and their estimates using the the proposed scheme (dash-
dot/black), which are virtually indistinguishable from the optimal
estimates using the centralized Information filter (dashed/red).

TlZk|k−1 will pick a linear combination of the entries in the vector
F�xk−1|k−1. Since the model matrix, F, has a localized/spare struc-
ture, the communication required will always be local. The commu-
nication might be multi-hop and will depend on the value of L.

7. RESULTS AND COCLUSIONS

We simulate a 5 dimensional system monitored by 3 sensors. We
implement the proposed scheme, with L = 1-banded approxima-
tion, and compare its performance with the centralized Information
filter estimates, figure 2. The original state variables are shown as
solid lines (blue). The optimal estimates, computed from the cen-
tralized Information filter, are shown as dashed lines (red). The
estimates using the proposed scheme are shown as dash-dot lines
(black), which are virtually indistinguishable from the centralized
estimates (red/dashed). It can also be shown that the local L-banded
Information filters and the centralized L-banded Information filters
have the same performance. To conclude, we comment on the com-
plexity of the distributed Kalman filter presented in the paper.

The computational complexity of the centralized Information fil-
ter is O(n3k) and for the Information filter with distributed observa-
tions in [5] is O((n3 + f(n)tc)k), where tc is the number of itera-
tions required for the consensus algorithm [5] (with complexity, say
O(f(n))) to converge. The computational complexity for the pro-
posed scheme is O((n3

l +n3
l tJ1 +n2

l tJ2 +n2
l tw)k), where tJ1 , tJ2

and tw are the iterations required for DJV, GDJ, and weighted aver-
aging algorithm to converge, respectively. Even for the toy-example
simulated here, where n = 5 and n1 = 3, n2 = 3 and n3 = 2,
the computational advantage at the sensors is evident. In this exam-
ple, typical values for tJ1 , tJ2 and tw (we used local degree weights
for observation fusion in [16] with a sensor communication network
1 ↔ 2 ↔ 3, other techniques e.g., semi-definite programming [16]
can be used to decrease tw significantly) are 6, 7 and 9 respectively.
The convergence rate of the iterative algorithms can be increased by
optimizing the communication network topology [17].
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