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ABSTRACT

In this paper we construct two classes of LDPC codes
with girth 16 and 20, respectively, based on graphical mod-
els. These codes are well-structured, regular, and with col-
umn weight § = 2, which greatly simplifies their imple-
mentation. The codes with girth ¢ = 16 have code rate
7 = 1/2. And the codes with girth g = 20 have code rate
r = 1/3. Simulation results compare their bit-error-rate
(BER) decoding performance in AWGN channels with ran-
domly constructed LDPC codes.

1. INTRODUCTION
LLDPC codes, i.e., Gallager codes [1], can perform very
close to Shannon capacity limit in additive white Gaussian
noise (AWGN) channels [2] when iteratively decoded by the
sum-product algorithm [3].

‘We address in this paper the design of structured regular
LDPC codes with large girths. Their structore and regularity
simplify their implementation.

Cycles in the Tanner graphs of LDPC codes prevent the
sum-preduct algorithm from converging [4, 5]. Further, cy-
cles, especially short cycles, degrade the performance of
LDPC decoders, because they affect the independence of
the extrinsic information exchanged in the iterative decod-
ing. Hence, LDPC codes with large girth are desired. The
girth of a Tanner graph is the length of the shortest cycle in
the graph.

Gallager proved in his original work [1] that LDPC codes
with column weight j > 3 have a minimum distance that
grows linearly with block length n for given j and row
weight &, and that the minimum distance of an LDPC code
with j = 2 can only grow logarithmically with n. There-
fore, most of the previous research on the design of LDPC
codes has focused on the LDPC codes with column weight
7 =2 3. However, Song, Lin, and Kumar [6] pointed out
recently that LDPC codes with column weight j = 2 have
less computational complexity and better block error statis-
tics properties than those with § > 3. Our work in this
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Fig. 1. A 6-cycle in an H matrix and its structure graph.

paper focus on the design of LDPC codes with j = 2 and
large girth g.

Let H be the parity check matrix of an LDPC code
with v parity check equations, i.e., H is v X n. We represent
these parity check equations by a set X of v points, which
is called the point ser of the H matrix. For LDPC codes
with column weight 5 = 2, each column of the A mairix is
represented by an edge between two points in the set X that
correspond to the two nonzero elements in this column. We
call the resulting graph the structure graph for the LDPC
code associated with the H matrix, Figure 1 shows a 6-
cycle in the H matrix of an LDPC code with 7 = 2 and its
structure graph.

The structure graph helps to identify easily cycles in the
H matrices. Two distinct edges between two nodes in a
structure graph stand for a 4-cycle. A 6-cycle is just a tri-
angle comprising three points and three edges between any
two of them. In general, a K-cycle is a loop composed of
K/2 points and K /2 tail-biting edges.

In this paper we construct two classes of LDPC codes
with large girth. In section 2, we introduce the design of the
codes with girth g = 16 and code rate r = 1/2. Then we
construct the codes with girth g = 20 and code rate r = 1/3
in section 3. We provide simulation results in section 4,
Finally, section 5 concludes the paper.

2. LDPC CODES WITH GIRTH ¢ = 16
In this section, we consider the design of LDPC codes
with girth g = 16. This means, we design codes whose Tan-
ner graph has no cycles of length smaller than 16. Assume
the number of parity check equations is v = 8p, where, in
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Fig. 3. Edges with specific slopes.

the case under study and as we will discuss below, p > 23
to guarantee the existence of successful constructions. The
point set X has then v points. We divide these points into
8 subsets of equal size, namely Xy, X3, -- , X7, and the
points in each of the subsets are aligned in a vertical line.
These subsets comprise a loop; each point in subset X; can
only connect to points in the previous or next subset, i.e.,
Kmod(i—1,8) OF Xmod(i41,8), and cannot connect to points
in X;. The overall structure looks like a cylinder, and we
call it a cylinder structure. Figure 2 gives an example of
this cylinder structure.

Before describing the construction, we introduce needed
definitions.

Definition 1 (section) All the edges berween two neighbor-
ing subsets X; and Xy oq(:11,8) in @ cylinder structure com-
pose a section S;.

Since there are only 8 subsets X, X1, - -, X7, there can
be only 8 sections Sp, 81, , Sy.

Definition 2 (slope) The slope s of the edge connecting a; €
Xy and bj € Xpogrer1,8) i5 defined as s = j — i.

Slopes take values in the range —(p—-1) < s < (p—1),
and the number of edges with slope s is (p — |s|). Figure 3
gives examples of edges with slope +2 and —4 whenp = 8,

Definition 3 (admissible slope pair (ASP)) Assumev = 8p,
ie, the size of each subset is p. A slope pair (s;, ;) Is an
admissible slope pair (ASP), iff

s; = —sgn(s;) - (p — {s4])-

Fig. 4. The planar form of a cylinder structure.

In section S;, all edges with the slopes in an ASP will
increase the degree of each point in X; and Xy04(i41,8)
by 1. Slope Qitself can be regarded as the special ASP (0,0).

Definition 4 (mirror slope) In an ASP. the two slopes are
mirror stopes of each other.

We introduce two types of cycles in a cylinder structure.
Type I cycles are defined as those that pass all the 8 sections
80,81, , S7 in the cylinder structure. For girth g = 16,
these cycles are of no concern, since their minimal length
is 16, and we only need to avoid cycles with length ! < 14,
Type 1I cycles are those that only pass through some of the 8
sections, but these sections must be consecutive. This type
of cycles can have only length 4m, where m is an arbitrary
positive integer, since they are composed of an even number
of edges. Therefore, to design an LDPC code with girth
g = 16, we only need to avoid Type II cycles with length 4,
8and 12,

Our method is as follows. For each section of the cylin-
der, we try to find as many ASPs as possible without intro-
ducing cycles with length 4, 8, and 12. All sections have
the same number of ASPs. In fact, each section has only
two ASPs, and we only introduce edges with slopes belong-
ing to these ASPs. In this case, the degree of each point is
4, and the code rate is 1/2.

We develop a searching algorithm tc find the two ASPs
of each section. At first, we convert the cylinder structure
to a planar form, as shown in Figure 4. Note that any points
in subset X; can only connect to the points in X, oa:—1,8)
or Xpnod(i+1,8)- Any Type II cycle can be regarded as two
different paths joining a pair of points. Figure 4 gives an ex-
ample of a cycle of length 12 composed by the two indicated
paths between points @ and b.

To design an LDPC code with girth ¢ = 16, we find
two ASPs for each of the sections Sp, Sy, - ,87. One of
these two ASPs can be chosen to be the special ASP (0,0),
whose two slopes are simply slope 0. This corresponds to
connecting all the points in each row of Figure 4 by hori-
zontal edges—note that the first and last point of each row
are also connected. This ASP can enly introduce cycles of
length 16. We consider now how to introduce the second
ASP for each section. We do so, one section at a time. We
can start with any of the sections, say section 8. Except
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Fig. 5. The paths and the coordinate system.
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Fig. 6. The derivation of new paths.

for ASP (0,0), the second ASP for the first section 8y can
be chosen arbitrarily. Because we assume p > 23, and the
other sections contain up to now only ASP (0,0}, this second
ASP will only introduce cycles of length { > 16.

- We consider now introducing the second ASP for the re-
maining sections Sy, - - - , 37. Assume we have already done
so for several sections, We consider now section 8;.

Pick an arbitrary point a in X}, call it the reference point,
and make it the origin of a two-dimensional coordinate sys-
tem we now introduce, see figure 5. From the reference
point a, we can draw many paths, for example, paths abed,
or aef, or aghij. If two paths meet at a point, they form
a cycle whose length is twice the number of edges in the
cycle,

Any path starting from a can be represented by the se-
quence of coordinates of the points in the path. For example,
the coordinates of points b, ¢, and d are (1,1}, (1, —1), and
(=1, ~2), respectively.

Assume a path reaches point (z,y) at the current step,
and 4 edges converge to the point {z,y); each edge is ta-
belled by its slope, as shown in Figure 6. Except for the
edge that the current path comes from, i.e., the solid line in

Figure 6 with slope s, each of the additional edges (dashed -

lines) is a candidate to be added to the current path to form
a new path at the next step, i.e., the current path can be
expanded to three new paths ending at points (z + 1,y),
(x —1,y)and (z — 1,y — 3), respectively.

When we use the search algorithm to look for the second
ASP for S;, we first list all possible ASPs and test each of
them, till we find one that is acceptable. For each candidate
ASP, we list all the possible paths starting from the reference
point in subset X;. For a given ASP, if there are no two paths
that meet each other in the first m steps, i.e., no cycles with
length { < 4m are introduced, this ASP is an appropriate
choice. Otherwise, we discard it and check another ASP,
until an ASP is found for S;. We then move on to the next
section S; 4, till we reach S;.

To minimize the search space for the algorithm, we pro-
vide as many constraints as possible to the set of possible
ASPs in each section. We use A; to represent the set of se-
lected ASPs for section 8;, and we call it the ASP set. Each
ASP set contains (0,0) and another ASP. It can be shown
that the constraints on ASPs in A; are as follows.

(D) If (s, s") € A;, then (s, 8'), (—s, (—s)') ¢ A, where
A= Anodti—2,8)Y Amed(i~1,8) YA mod(i+1,8) Y Amod(i+2,8)-

(2) Assume v = 8p. To check if the ASP (s, s”) is a pos-
sible choice to include in A;, we need to calculate the least
common multiple of |5 and |s’|, 1.¢., lem(}s|, |s]). Then the
minimal length L of the cycles resulting from ASP (s, ')
and (0,0) in A; is

L = 4{tem([s],|s'[)/[s] + lem(Jsl,|s')/Is']] .
The ASP (s, 5"} is a possible choice only when L > 14,

There is also a constraint on the paths. For a given path,
if any two points in this path are the same, then this path
should be discarded.

‘We consider the initializations of the search algorithm.
Initially, each of the ASP sets Ag, -, A7 includes only
ASP (0,0). Based on the constraints for ASP selection dis-
cussed previously, we establish the set By of all possible
ASP choices for Ag, and call it the candidate ASP set for
Ay. The searching algorithm is described in Construction 1.

Before moving on to the construction, care must be taken
regarding the value of p that must be large enough to guar-
antee that there exists an appropriate choice of the second
ASP for each section. We use the search algorithm to look
for the minimal valid value of p. For girth ¢ = 16, we find
that p must be no lower than 23. Since the number of parity
check equation v = 8p and the block length n = 2v = 16p,
we have v > 184 and n > 368. We can select a p value
according to the desired block length.

Construction 1 (LDPC codes with girth 16)

1. Select an arbitrary ASP from By, and add it into
Ap. Seti =1

2. Based on the constraints for ASP selection, estab-
lish the candidate ASP set B; for A;.

3. Select an arbitrary ASP (s,s') from B;, and add
it temporarily to A,. If B, is an empty sef, the construc-
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Fig. 7. H matrix for LDPC codes with ¢ = 16, n = 4800
and r = 1/2.

fion is terminated, and an error message Is generated,
Otherwise, go to 4.

4. Starting from the reference point of subset X, de-
rive all the possible paths in the first 3 steps. At each
step, derive new paths using the slopes in the relevant
ASP sets, and discard invalid paths based on the con-
straint on paths. If there are no two paths that meet
each other in the first 3 steps, (s, s') is an appropriate
ASP for A;, and go to 5. Otherwise, (s, s) introduces
cycles of fength 1 < 16, so we need to delete (s, 8") from
A; and B;, and go to 3.

5 Leti=1+ 1. Ift > 7, go to 6. Otherwise, to 2.

6. End. The sets Aq,--- , A7 are the desired ASP
sets. The corresponding LDPC code has girth 16.

Achievable code rate: Since there are only two ASPs in each
ASP set, the degree of each point in the structure graph is
4, i.e., the row weight k of the corresponding H matrix is
4. Since the column weight is §j = 2, the code rate is r =

(k- 3)/k = 1/2.

Given the number of parity check equations v, we can
generate many different LDPC codes, all with code rate 1/2
and girth 16, by choosing different initial ASPs and making
different choices in Step 1 and 3 of Construction 1. When
v = 184, ie., p = 23, one solution for the 8 ASP sets is
{(Oa 0), (_ 11, 12)}! {(07 0)7 (—' 107 13)}’ {(0: 0): (_ 9, 14)}1
{(01 O)y (_ 11, 12)}= {(Os 0): (_ 10: 13)}: {(O:O)a (_ 9, 14)}1
{(0,0),(— 8,15)}, {(0,0), (— 5,18)}, respectively. The
corresponding H matrix is well structured and completely
determined by p and ASP sets Ag,--- , A;. Figure 7 gives
one of the many possible H matrices when v = 2400,
n = 4800,and r = 1/2.

3. LDPC CODES WITH GIRTH g = 20
With small modifications on Construction 1, we can ob-
tain LDPC codes with girth 20 and code rate 1/3.

Assume v = 10p, where p > 13 to guarantee the exis-
tence of successful constructions, and divide these v points
into 10 subsets of equal size. Although the girth is now
g = 20, larger than the girth g = 16 in the previous section,
the value of minimum p is smaller because the code rate is
lower, We can establish a cylinder structure with 10 sec-
tions. Qur task is to find 10 ASP sets, i.e., Ag, - , Ag. The

ASP sets with even indices include two ASPs, and the ASP
sets with odd indices include only one ASP. The first ASP
in each ASP set can be chosen to be the special ASP (0,0).
Therefore, we only need to find the second ASP for those
ASP sets with even index. The constraints on ASP selection
and paths are the same as described in the previous section.
The search algorithm is described in Construction 2.

Construction 2 (LDPC codes with girth 20)

1. Establish a candidate ASP set By for Ag. Select
an arbitrary ASP from By, and add it to Ag. Set i = 2.

2. Based on the constraints on ASP selection, estab-
lish the candidate ASP set B; for A;.

3. Select an arbitrary ASP (s, s') from B;, and add
it temporarily to A;. If B; is an empry set, the construc-
fion is terminated, and an error massage is generated.
Otherwise, go to 4.

4. Starting from the reference point of subset X;, de-
rive all possible paths in the first 4 steps. At each step,
derive new paths using the slopes in the relevant ASP
sets, and discard invalid paths based on the constraint
on paths. If there are no two paths that meet each other
in the first 4 steps, (s,8') is an appropriate ASP for
A;, and go 10 5. Otherwise, (s, ') introduces cycles of
length I < 20, so we need to delete (s,8") from A, and
B;, and goto 3.

5. Leri=1+2.Ifi > 9, goto 6. Otherwise, to 2.

6. End. The sets Ay, - ,Aq are the desired ASP
sets. The corresponding LDPC code has girth 20.

Achievable code rate: Since there are two ASPs in each
ASP set with even index and only one ASP in each ASP
set with odd index, the degree of each point in the structure
graph is 3, ie., the row weight % of the corresponding H
matrix is 3. Since the column weight is j = 2, the code rate
isr=_(k—7)/k=1/3.

To make sure that we can find two ASPs for each ASP set
with even index, v must be large enough. We find that the
minimal valye of v is 130, i.e., p = 13. In this case, the 10
ASP sets are {{0,0), (-~ 6,7)}, {(C,0)},{(0,0}, (- 5,8)},
{(0,00},{(0,0), (=8, 7)},{(0,0}},{(0,0), (- 5,8) }, {(0,
0}, {(0,0), (- 2,11)}, {(0,0)}, respectively. The corre-
sponding H matrix is well structured and completely deter-
mined by p and the ASP sets Ag,--- , Ag. Figure 8 gives
one of the many possible H matrices when v = 3970,
n = 5955, and r = 1/3.

4. SIMULATION RESULTS
We studied by simulations the bit-error-rate (BER) de-
coding performance of the two classes of LDPC codes in
AWGN channels, adopting the sum-product decoding algo-
rithm and the rate-adjusted signal to noise ratio used in [7].

Figure 9 compares the BER performance of an LDPC
code with girth g = 16 and a randomly constructed LDPC
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Fig. 8. H matrix for LDPC codes with g = 20, n = 5355
and r = 1/3.
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Fig. 9. BER performance comparison between LDPC codes
with girth 16 and randomly constructed LDPC codes.

code over AWGN channels. Both of them have column
weight 7 = 2, block length n = 4368 and code rate r =
1/2. The code with girth 16 has worse performance in
the low SNR region. However, in the high SNR region,
it outperforms the randomly generated code by 0.8 dB at
BER=10"5,

We have similar results for LDPC codes with girth 20.
Figure 10 compares the BER performance of an LDPC code
with girth ¢ = 20 and a randomty constructed LDPC code
over a AWGN channel. Both of them have column weight
4 = 2, block length n = 4395, and code rate ¥ = 1/3. In
the high SNR region, the code with girth 20 outperforms the
randomly generated code by 1.1 dB at BER=1075,

For an LDPC code with column weight 2 and girth g,

i ¥ 25
-h i

Fig. 10. BER performance comparison betwgen LDPC
codes with girth 20 and randomly constructed LDPC codes.

the minimum distance dyn = ¢/2. Therefore, the codes
with girth 16 and 20 have dy3, = 8 and 10, respectively,
much larger than that of a randomly constructed code whose
dmin = 2 due to the presence of 4-cycles. In the high SNR
region, d,,;, is the dominant factor for BER performance;
consequently, the codes with larger girth give better perfor-
mance. At this time, we are still investigating the behavior
at low SNR. One possible explanation is the cycle disiri-
bution. A preliminary analysis shows that the codes with
large girth have more cycles of length equal to girth g than
randomly constructed codes, which may overwhelm at low
SNR the benefit our structured code derives from its large
girth,
5. CONCLUSION

We construct two classes of regular LDPC codes with
column weight 2 and girth ¢ = 16 and g = 20, respectively.
These codes are well-structured; their parity check matri-
ces can be effectively represented by a set of integers. Our
codes outperform randomly constructed codes in the high
SNR region in AWGN channels,
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