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ABSTRACT

LDPC codes, with performance extremely close to the
theoretical limit, are gaining increased attention of the com-
munication systems designers. LDPC codes with good girth
properties are of particular interest, In this paper, we de-
sign large girth regular LDPC codes in a turbo-like man-
ner. Specifically, we describe codes that are two sub-trees
interconnected by an interleaver. Careful design of the in-
terleaver block eliminates short cycles in its factor graph.
We present designs for turbo-like LDPC codes with column
weight 7 > 3 and girth at least 8 and with column weight
4 = 2 and girth at least 16, These proposed codes support a
wide range of code rates and code block length, suitable for
most practical applications.

1. INTRODUCTION

Low-density parity-check (LDPC) codes [1], error ¢or-
recting codes based on very sparse parity check matrices,
exhibit performance close to the Shannon limit using iter-
ative decoding [2]. Extensive research on turbo codes and
LDPC codes has shown that, when decoded by the itera-
tive message passing algorithm, L. DPC codes show better
decoding performance than turbo codes as the block length
increases. Moreover, the high computational complexity as-
sociated with the BCJR algorithm is a major drawback for
using turbo codes, while LDPC codes can be iteratively de-
coded using the sum-product algorithm with comparatively
less complexity. Therefore, LDPC codes are actively being
considered in numerous applications, including magnetic
recording channels, optical fiber transmission, or wireless
communications (ﬁxed or mobile), For example, [3] stud-
ies LDPC codes for communication systems with multiple
antennas, and [4] applies LDPC codes to orthogonal fre-
quency division multiplexing (OFDM) systems in different
fading environments.

LDPC codes can be represented by a bipartite graph,
its factor graph [5]. These are composed of two sets of
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nodes, namely, variable nodes and check nodes. Each vari-
able node represents a bit in a code word and each check
node corresponds to a parity-check constraint. If a variable
node is constrained by a check node, there is an edge con-
necting these two nodes. The girth of the code, defined as
the length of the shortest cycle in its factor graph, is a cru-
cial parameter since large girth leads to reduced dependence
in the message passing and more efficient iterative decod-
ing when using the sum-product algorithm [6]. Moreover,
large girth guarantees large minimum distance dpin between
codewords, [7], therefore mitigating the error floor at high
Ejy/Nyp. Hence, it is of increasing interest to design LDPC
codes with good girth properties, [6].

In general, LDPC codes are generated by randomly con-
structing a low-density parity check matrix from a suitable
ensemble, [8]. However, structured regular LDPC codes are
particularly desirable to simplify the hardware implementa-
tion of the encoding and decoding systems.

Cyclie and quasi-cyclic LDPC codes [9], a type of struc-
tured LDPC codes, are of much recent interest, [6, 10].
They have low-complexity encoding and can be constructed
algebraically. Though having relatively simple algebraic de-
scriptions, their girth is guite limited. Tanner, [10], proved
that all codes with column weight 7 > 3 whose parity check
matrices are constructed from circulants must contain a 6-
cycle, so the girth of such codes is at most 6. For column
weight j = 2 quasi-cyclic LDPC codes, Tanner, [6], alsc
showed that the girth of the corresponding factor graph can-
not be greater than twelve. This implies that the codes will
fail to show the logarithmic relationship between girth and
the code block length, [1]. For sufficiently long lengths, ran-
dom LDPC codes outperform cyclic and quasi-cyclic LDPC
codes. Hence, their short girth properties seriously limits
the application of cyclic or quasi-cyclic LDPC codes when
very long codes are desired. Another drawback of such
codes is that there are only a limited range of code lengths
and code rates available, not flexible enough to be suitable
in many tasks.

To overcome the above difficulties, we consider a new
class of structured LDPC codes using turbo designs. The
factor graphs of such codes contain two sub-trees that con-
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nect to each other through an interleaver. This structure
helps to create LDPC codes with large girth and flexible
code rates. Another significant feature of turbo-like LDPC
codes is that they require surprisingly small memory in its
encoder and decoder design, which leads to low-complexity
hardware implementations.

2. TURBO DESIGN OF LDPC CODES

Our designs are similar to the turbo structure: we intercon-
nect two tree structures to create LDPC codes with large
girth. The factor graph of such a code contains two height-
balanced sub-trees, denoted as an upper-tree Ty, for which
the leaf nodes are variable nodes, and a lower-tree 17, for
which the leaf nodes are check nodes. We represent the
height of T7; and T7., say, its number of tiers, by k. The
first tier of Ty contains only one check node—the root, as
shown in figure 1. On the other hand, the root of T, (shown
in figure 2) is a variable node. The two trees are “com-
bined” in a turbo-like manner such that the leaf-nodes of
Ty, are connected to the leaf-nodes of Ty, see figure 3. We
call the structure formed by the connecting edges between
the leaf-nodes of Ty, and Ty an “interleaver.” All the vari-
able nodes have uniform degree j and all the check nodes
have the same degree k, except for the roots of Ty; and 77,
whose degrees are set to be £ — 1 and 7 — 1 respectively. For
example, a turbo-like LDPC code with oA = 4, 7 = 3 and
k = 4 is shown in figure 3, To make the code exactly reg-
ular, we connect the root (a check node) of Ty and the root
(a variable node) of Ty, directly by an edge, hence forming
a regular LDPC code shown in figure 3. It is easy to derive
that the code rate p = 1 — £. For a given code rate p*, just
choose the two parameters § and % to satisfy the equation
pF=1- % for example, for p* = 8/9 and column weight
3, simply let § = 3 and k = 27 in each of the component

Fig. 1. Upper tree Ty of a turbo-like LDPC code with col-
umn weight 3, row weight 4 and height 4

The significance of the above structures lies in that it
makes the design of large girth LDPC codes easy. As in
isolation, no cycle exists in either of the sub-trees, the cy-
cles in turbo-like LDPC codes are introduced by the inter-
leaver. This paper discusses methods to devise interleavers
that guarantee that the resulting turbo-iike LDPC codes have

Fig. 2. Lower tree Ty, of a turbo-like I.DPC code with col-
umn weight 3, row weight 4, and height 4

Fig. 3. Turbo-like LDPC code with column weight 3, row
weight 4 and height 4

girth greater than or equal to 8. In particular, column weight
2 turbo-like LDPC codes can be further made free of any
cycles with length less than 16.

3. CONSTRUCTING LARGE GIRTH LDPC CODES
USING TURBO DESIGNS

QOur goal in this section is to build turbo-like LDPC codes
with large girth. For convenience, we introduce “auxiliary
nodes” (represented by solid triangles) as shown in figore 4.
For each leaf node in the upper tree Ty, since it connects to
7 — 1 check nodes in the lower tree T, we add 7 — 1 aux-
iliary nodes to it and let these auxiliary nodes be its descen-
dants, Similarly, we introduce auxiliary nodes to the lower
tree T, such that each leaf node of T, has k& — 1 auxiliary

Fig. 4. Auxiliary nodes in a wrbo-like LDPC code with
column weight 3, row weight 4 and height 4
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nodes as its descendants. There is a one to one correspon-
dence between auxiliary nodes of Ty and auxiliary nodes
of T7.. Figure 5 shows a path connecting Ty;’s leaf node
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Fig. 5. Auxiliary nodes of Ty and T,

A to Tp’s leaf node B through Tp;’s auxiliary node €' and
Tr’s auxiliary node D. That means, in the original factor
graph, nodes A and B are directly connected by an edge.
Therefore, our task can be equivalently expressed as finding
an appropriate one-to-one mapping between auxiliary nodes
of Ty and auxiliary nodes of 7}, that guarantees large girth.
As mentioned, no cycles exist in any of the sub-trees in iso-
lation, so cycles present in the codes must contain “auxiliary
nodes.” which is at least four (two auxiliary nodes of Ty and
two auxiliary nodes of 771). We classify the cvcles into two
disjoint categories: type-I and type-II cycles, depending on
how many auxiliary nodes a cycle contains. Type-I cycles
contain four and only four auxiliary nodes and are denoted
by Cf; type-1I cycles contain more than four auxiliary nodes
and are denoted by Crj.

" Recall that & denotes the degree of the check nodes
in a factor graph, or equivalently, the row weight of the
corresponding parity-check matrix; j denotes the degree of
the variable nodes. We introduce a p-g-alternate decimal
to index all the auxiliary nodes of Ty and a g-p-alternate
decimal to index all the auxiliary nodes of T, where p =
k—1and g = j — 1. This will be useful in preventing
short cycles. We introduce it through an illustration. As-
sume the p-g-alternate decimal representation of an index
is @y az @z aa . It relates to its value in the decimal
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system as follows:
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where 0 < a1 €<p—-1,0<a3€¢g-1,0<a3<p~-1,
and0 <ag <g—1.

The symbol-wise reversal wg("@y _a; @3 aj )isde-
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fined as 7-'5(\(1; Gy @3 04} = O3 @3 O3 41 =
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(a4 xpPg+ag x pg+azx p+ay)g. After symbol-wise rever-
sal, a p-g-alternate decimal number becomes a g-p-alternate
decimal number. According to this type of index representa-
tion, we have the following theorems to maximize the girth

of type-1 cycles.

Theorem 1 To maximize the girth of type-I cycles, connect
auxiliary nodes in the lower tree Ty, indexed by the q-p-
alternate decimal x4y, 10 auxiliary nodes in the upper tree
Tis indexed by the p-q-alternate decimal Tg(xq_p).

Proof: From its definition, C} contains four auxiliary nodes,
say, ai, ag, a3, and a4, as shown in figure 6. Let the distance
between @y and a» within the sub-tree Ty as dy{ai, as),
and the distance between a3 and a4 within the sub-tree T,
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Fig. 6. Type-1 cycle containing two Ty’s auxiliary nodes ¢;
and as and two T s auxiliary nodes a3 and a4

by dr.{as, a4). The length of Cy is dy (2, as)+dy (as, aq)+
2. The minimum value of dy (a3, a4) is 2 when a3 and a,4
are both descendants of the same leaf-node of T¢. For this
situation, to maximize the length of C7, dy (a1, as) should
be as large as possible. However, for T7; of height h, the
maximal value of dy7(e;,as) is 2h. Therefore, the girth of
C7 is less than-or equal to 2k + 4. If we show, following
the connecting rule in theorem 1, that all Cy formed have
length at least 2A + 4, then theorem 1 is proved.

For T}, of height h, we need i symbols in the g-p alter-
nate decimated labelling of all auxiliary nodes of T7,. Num-
ber the corresponding h coordinates of indices from 1 to A,
starting from the rightmost coordinate. Similarly, h sym-
bols are needed in the p-g-alternate decimated labelling of
all Ty;’s auxiliary nodes and we number the corresponding
h coordinates of their indices from 1 to A, also starting from
the rightmost coordinate. The distance within T between
two auxiliary nodes with indices T and 7 is d. (T, 7) = 2k,
where k is the leftmost coordinate where the indices Z and
¥ differ from each other. This also applies to the distance
within Ty; between two auxiliary nodes with indices 7g(T)}
and 7g (). After symbol-wise reversal, the s and ¥'s sym-
bols at the coordinate & become 75(%)’s and 75(F)’s sym-
bols at the coordinate A+ 1—k, respectively. So the symbols
of ng{Z) and wg(y) at the coordinate 2 4+ 1 — k must also
be different. Therefore,

dy (7s(z),7s(y)) 2 2(A +1 - k)
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From figure 6, the length of such a C7 is then

Lo = di(®,9) +dy(rs(T), ns(y)) +22 2k +4
From the above analysis, all type-I cycles Cr that result
from the construction in theorem | are at least of length
2h + 4. This completes the proof.

We introduce now two operators + and —. The operator
+ denotes the symbol-wise addition over the q-p-alternate
decimal or p-q-alternate decimal while the operator — de-
notes the symbol-wise subtraction. Define the symbol-wise
shift S as any p-q-alternate decimal number that has the
same number of coordinates as w¢(Z). Theorem 1 is ex-
tended to theorem 2 using these concepts.

Theorem 2 To maximize the girth of type-I cycles, connecr
the auxiliary nodes in Ty, indexed by the q-p-alternate dec-
imal T4_y, to the auxiliary nodes in Ty indexed by the p-q-
alternate decimal T5{Zq—p)+(S)p.-q.

The proof of theorem 2 is similar to the proof of theorem 1.
We do not provide the details. What theorem 2 says is that
we are free to choose the value of (S}),, in connecting
Tg—p 10 T5(Ty—p)+(S)p—q. In the next step, we exploit
this freedom in designing codes free of short type-II cycles.

Fig. 7. Length 4 type-II cycle in trbo-like LDPC codes
with column weight j > 3

Consider length 4 type-11 cycles first. A length 4 type-II
cycle is shown in figure 7. Here we need to introduce the
concept of group. Auxiliary nodes in Ty, belong to the same
group if the symbols at the leftmost coordinate of their p-g-
decimated indices are the same. T};’s leaf-nodes are in the
same group if their descendants (auxiliary nodes) are in the
same group. According to this definition, the leaf-nodes of
T3s can be divided into p = k —1 groups. We notice that, the
p groups correspond to p main branches of Ty;. The auxil-
iary nodes and leaf-nodes of 77, can, likewise, be classified
into ¢ x p = (f — 1){k — 1) different groups, which corre-
spond to (7 — 1)(k — 1) main branches of Tr.. The applica-
tion of symbol-wise reversal guarantees that each leaf-node
of Ty is connected to ¢ = § — 1 groups out of totally gp
groups in Tt.. Let leaf-nodes of Ty in the same group be
connected to the same ¢ = 7 — 1 groups in T, and we col-
Iect the indices of the q groups in a set. Make such sets of

T3:’s leaf nodes in different groups to be distinct from each
other, then length-4 type-II cycles are avoided.

To study length 6 type-1II cycles, we need to apply theo-
rem 2. When connecting any auxiliary node of T in group
1 to any auxiliary node of Ty in group j, we let the symbol-
wise shift to be exactly the same, denoted as §; ;. For dif-
ferent 4, j, S; ; needs not to be the same. The problem is
now how to choose appropriate 5; ;, fori =0,1,...,¢gx p
and § = 0,1,...,p. The following theorem helps to choose
5 ; to eliminate length 6 type-1I cycles:

Theorem 3 When applying symbol wise reversal and shift
75(Z)+5;,;, a length 6 type-Il cycle Cyp exists if symbol-
wise shifts S; ; satisfy one of the three conditions:

{i) For three different groups 1, §, and k in Ty and three
different groups |, m, and n in Ty, one of the following
equations is satisfied:

Sig+8m+Skn = Sim+Sjn+Sky (1)
SigtSim+Skn = Sin+Siit+Skm 2)
Si,m4-5j,z+sk,n = Sisg-i-Sj,n-i*Sk,m 3
Sim+Sji+Skn = Sin+Sim+Se (4)
Si,n+8-,;+8k,m = Si’m‘i'Sj:n‘i'Sk’[ (5)
Si,n-i'Sj,m-i-Sk,z = Si,i-i-Sj’n-i—Sk’m (6)

(i) For two different groups i and j in Ty, and two different
groups m and n in Ty,

0< Sin~SintSim—Sim<p=k-1 (D

{iti) For two different groups i and j in Ty, and two different
groups mand n in 1y;,

0< Ws(Sf,n;Sj,n‘i'Sj,m;Si,m) <gp=(—-Lk-1)
(8)

Fig. 8. Length 6 type-II cycle (Type{a))

Equations (1-6) correspond to the type (a) length 6 cy-
cles shown in figure 8; inequality (7) and inequality (8) are
derived from type (b) cycles and type (c) cycles shown in
figure 9 respectively. Proof of theorem 3 is not provided
here. For details, please refer to [11]. According to the-
orem 3, by choosing suitable symbol-wise shifts S; ; for
i=0,1,---,k—1landj =0,1,---,(j — 1)(k — 1) that
do not satisfy conditions (1-7), we can avoid all length 6
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Fig. 9. Length 6 type-1I cycle

type-1l cycles while at the same time maximizing the girth
of type-I cycles.

As an illustration, we applied the above methods to con-
struct a (2457, 3, 9) regular LDPC code, rate 2/3, free of
any cycles with length less than 8 and whose structure is
shown by the 819 x 2457 parity-check matrix H shown in
figure 10. In this matrix, along the solid lines there is a sin-

Interleaver

Fig. 10. Parity-check matrix of a (2457, 3. 9) LDPC code
. with girth 8

gle 1 in each row, while along the dashed thicker diagonals
there are eight 1’s in each row, so that per row there are nine
1’s and in each column there are three 1’s.

In particular, for column weight § = 2 turbo-like LDPC
codes, we can further prove that the minimum length of
type-1I cycles is 8 and no 4k + 2,k = 2,3,4,... (e.g.,
length 10 and length 14) type-II cycles exist. Again, The-
orems 1 and 2 can be applied to maximize type-I cycles;
Several theorems similar to theorem 3 are then employed to
eliminate those length 8 and length 12 type-II cycles, hence
forming a code with girth at least 16. For details, refer to
[11].

4. CONCLUSION

In this paper, we propose a new class of well-structured
LDPC codes—turbo-like LDPC codes. As mentioned, we
can design large girth regular LOPC codes with fiexible
code rate in a turbo manner. Hence, large girth guaran-
tees fast convergence of iterative decoding algorithms, large
minimum distance between codewords, and alleviates error
floor problems at high signal to noise ratio.

Another advantage of these codes is their reduced mem-
ory requirements. We need nj memory units to represent

a randomly constructed (1, 7, k) LDPC code when using
look-up tables; look-up table has its drawback as it leads
to a complicated memory-access architecture. In contrast,
turbo-like LDPC codes can be described by a single {j —
Dk — 1) x (k — 1) matrix storing the symbol-wise shifts
S,;. For example, for the (2457, 3, 9) turbo-like LDPC code
constructed in this paper, instead of storing 3 x 2457 = 7371
row or column indices of those non-zero entries, we only
need to store (9 — 1)(3 — 1) x (9 — 1) = 128 entries of
the symbol-wise shift matrix S, a significant reduction over
look-up table methods.
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