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Hyperspectral Imagery
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Abstract—Hyperspectral sensors collect hundreds of narrow

target detection and recognition because it provides both spatial

and contiguously spaced spectral bands of data. Such sensorsand spectral features about the targets and backgrounds in the

provide fully registered high resolution spatial and spectral images
that are invaluable in discriminating between man-made objects
and natural clutter backgrounds. The price paid for this high

resolution data is extremely large data sets, several hundred of

imagery. It has been shown that the spectral characteristics of
natural clutter differ in significant ways from the spectral char-
acteristics of man-made objects [1], thus, they can be a tremen-

Mbytes for a single scene, that make storage and transmission dous aid in discriminating between the two classes.

difficult, thus requiring fast onboard processing techniques to
reduce the data being transmitted. Attempts to apply traditional
maximum likelihood detection techniques for in-flight processing
of these massive amounts of hyperspectral data suffer from two
limitations: first, they neglect the spatial correlation of the clutter
by treating it as spatially white noise; second, their computational
cost renders them prohibitive without significant data reduction
like by grouping the spectral bands into clusters, with a conse-
quent loss of spectral resolution.

This paper presents a maximum likelihood detector that suc-
cessfully confronts both problems: rather than ignoring the spatial
and spectral correlations, our detector exploits them to its advan-
tage; and it is computationally expedient, its complexity increasing
only linearly with the number of spectral bands available. Our ap-
proach is based on a Gauss—Markov random field (GMRF) mod-
eling of the clutter, which has the advantage of providing a di-
rect parameterization of the inverse of the clutter covariance, the
quantity of interest in the test statistic. We discuss in detail two
alternative GMRF detectors: one based on a binary hypothesis ap-
proach, and the other on a ‘single’ hypothesis formulation. We an-
alyze extensively with real hyperspectral imagery data (HYDICE
and SEBASS) the performance of the detectors, comparing them
to a benchmark detector, the RX-algorithm. Our results show that
the GMREF ‘single’ hypothesis detector outperforms significantly
in computational cost the RX-algorithm, while delivering notice-
able detection performance improvement.

Index Terms—Gauss—Markov random field, hyperspectral
sensor imagery, maximum-likelihood detection, ‘single’ hypoth-
esis test.

. INTRODUCTION

HE use of hyperspectral sensor imagery (HSI) for auto-
matic target detection and recognition (ATD/R) is a ref?
atively new and exciting area of research. Hyperspectral s

sors are passive sensors that simultaneously recmdidus of

narrow bands from the electromagnetic spectrum, and group
bands in what is called a hyperspectral data cube. Our focu
on using hyperspectral sensor data for the detection of ano
lous man-made objects in natural clutter backgrounds. Hyp
spectral sensor data shows great potential for use in autom
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Hyperspectral Imagery: Computational Challengddy-
perspectral imagery collected by airborne sensors pose the chal-
lenge of efficiently processing the massive amount of data that
results from the combination of spatial and spectral informa-
tion acquired by the sensors. The hyperspectral data sets, with
hundreds of spectral bands collected in a few minutes, run in
the hundreds of megabytes, often in excess of gigabytes. Such
high data rates necessitate the implementation of onboard pro-
cessing, since they push the limits of today’s technology. Much
of the current research focuses on the development of compu-
tationally efficient detection algorithms that can be used to de-
termine regions of interest (ROIs) in the data. One idea for pro-
cessing HSI data is the “directed vision concept,” where HSI
data cues a high resolution electrooptical (EO) sensor, and high
spatial resolution single-band image chips of only the regions
of interest are transmitted to the ground, thus reducing the ini-
tially overwhelming amount of data collected by the hyperspec-
tral sensor. The single-band chips that are transmitted down to
ground stations can be evaluated further by an image analyst
(1A) for final classification of the detected objects. In this di-
rected vision processing scenario, there are two important re-
guirements with which any successful detection algorithm must
comply. First, the algorithm should be computationally efficient
in order to meet the real-time nature of the onboard processing
system. Second, the algorithm should perform effectively with
respectto the false alarmrate, so that the image analyst receiving
the detection cues is notinundated with false positive detections.
Anomaly Detection: The GMRF Approaclgeneral con-
ideration for any detector is the typesgbriori information that
$assumed about the targets and clutter. We can consider three
cases: known target model parameters (or statistics) and known
%%tter statistics; known target model and unknown clutter statis-

; or both unknown targetmodel and unknown clutter statistics.
e third set of assumptions is the most general, and is more real-
Jstic when performing onboard processing of real hyperspectral
g a, since the impact of the atmosphere on spectral content, as
well as the variability of target signatures, makes it difficulato
g’i‘iori train on the data. In this paper, we present a aeamaly
detection algorithm for hyperspectral data, i.e., adetector that as-
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field (GMRF), which presents several advantages. We often refgr reducing the number of spectral bands used for processing.
to the detector as the GMRF algorithm. A GMRF is a spatiallyhese algorithms fall into two basic categories: spectral-only,
andspectrally coloredrandomfield, so accountingforboth spatiahd spatial-spectral algorithms. The spectral-only algorithms al-
and spectral correlation ofthe clutter. Secondly, because GMRRigst all rely on a known spectral signature for the target or tar-
parameterize directly the inverse of the covariance matrix, thets of interest. Basically, they are classification rather than de-
GMRF algorithm does not necessitate the inversion of alarge dégation algorithms. Algorithms that fall into this category are
covariance matrix that hinders other maximum likelihood (MLjhe spectral matched filter [5], the spectral angle mapper [6],
detector approaches. Thisimpacts the computational complextyd linear mixture models [7]-[9]. For a good overview of spec-
of the GMRF detector, which increases linearly with the numb#nal-only algorithms see [10]. The main limitation of these spec-
of spectral bands. This efficiency permits using as many bandsig-only algorithms is that, in addition to ignoring the available
necessary when processing hyperspectral data; thus, the GMiR&tial information, they require a known target signature. Reli-
detector has room to adapt to the increased capabilities of futai#e target signatures are difficult to ascertain due to variations
hyperspectral and ultraspectral sensors. This is a significant adthe target signature that result from atmospheric and illumi-
vantage over othermaximum likelihood detection algorithmsthiaation effects.
are computationally severely limited to a small number of bands.Principal component analysis (PCA), related to the
Goals of the Work:Our goal is to design an adaptiveKarhunen-Loéve or Hotelling transform, is most often used
anomaly detection algorithm that is computationally efficiergrior to another detection or classification algorithm for
and exhibits alow false alarm rate with high detection probabilitgurposes of reducing the dimensionality of the hyperspectral
We develop two adaptive maximum likelihood GMRF anomalglata sets, thus making the applied detection and classification
detection algorithms: a binary hypothesis detector and a ‘singl@gorithms more efficient computationally. However, principal
hypothesis detector. These detectors adapt to the unknaemponent analysis is, itself, a computationally undesirable
clutter statistics by using the approximate maximum likelihoatsk. In addition, the reduction of redundant information with
estimation technique, one of three studied in [3]. We shoprincipal component analysis is based on reconstructing the
that the GMRF adaptive ‘single’ hypothesis anomaly detectdata using a subset of the principal components. Most often, the
outperforms the GMRF binary hypothesis detector and tleemponents used for reconstruction are those associated with
RX-algorithm [4]. The RX-algorithm is the benchmark anomalyhe largest eigenvalues. Researchers have shown [5], however,
detection algorithm, originally developed for uftispectral that components associated with lower order eigenvalues often
imagery but that, at the time of this study, was consideredcantain important features for target discrimination. Thus,
prime candidate for local anomaly detection wiiplrspectral there is ambiguity as to what are the “appropriate” principal
imagery. Our resultsillustrate that the GMRF ‘single’ hypothessomponents to use for data reduction.
anomaly detector provides asignificant computational advantagéVe are interested ianomalydetection algorithms. By def-
over the RX-algorithm, while achieving better detection perfoinition, anomaly detection algorithms apply when there is no
mance. These characteristics led this GMRF anomaly detectoktmwn target spectral signature, [10]. Basically, in our problem,
be chosen as one of the processing algorithm candidates fonileeare simply attempting to locate anything that displays dif-
U.S. Defense Advanced Research Projects Agency’s (DARP#&Jent spatial and/or spectral characteristics from its surround-
Adaptive Spectral Reconnaissance Program (ASRP). ings. This leaves us with the class of algorithms that use both
Paper Survey:In the following sections, we provide anspatial and spectral features from the hyperspectral imagery. In
overview of the available detection algorithms for hyperspectrgéneral, spatial-spectral algorithms can be further divided into
imagery and highlight the need for a new computationally effiecal anomaly and global anomaly detectors.
cient algorithm geared toward true hyperspectral data. In Sec-
tion 1l we present, in detail, the new modeling framework foA, Local Anomaly Detectors
hyperspectral clutter backgrounds, and, in Section IV, use th

Socal ly detect Il windows of the HSI i
model to develop both binary and ‘single’ hypothesis formulab- ocaranomaly Celectors process sma windows oTine n

rder to compare the spatial and spectral properties of the cen-

tions of the maximum likelihood detector. In Section V, usingr . . . . .
. ' ally located pixels in the windowdrget regior) with the prop-
real hyperspectral sensor imagery, HYDICE and SEBASS, ies of the perimeter pixelslQtter region). Those pixels that

Zh?wtt.he S|gnf|f|cant computggogatl)ai\r/]an(t;aa%;a:ng t?e |tmprc|>v spatially—spectrally different from their surrounding back-
etection periormance provided by the etector algfr, \nds are considered detections.

rithm over the RX-algorithm. Finally, Section VI concludes the | | [4], an algorithm, commonly referred to as the RX-algo-

paper. rithm, is derived. This is the benchmark anomaly detection al-
gorithm for multispectral data, which, in contrast with HSI, is
II. LITERATURE SURVEY characterized by less than 20 spectral bands. The RX-algorithm

) is a maximum likelihood (ML) anomaly detection procedure
Due to the large amounts of data that are collected with hyp@kat simplifies the clutter to being spatially white. The RX-al-

spectral sensors much of the prior work has focused strictly gByithm uses a binary hypothesis approach to detection, and im-

compression of the data sets for storage and transmission. M@ments a generalized likelihood ratio test (GLRTgvalua-
recently, work has been published in the context of detection

and C_IaSSiﬁlcation' Much Of_ ithas actually emphasized applyinng GLRT replaces unknown parameters in the likelihood ratio by their max-
algorithms intended for mitispectral data toyperspectral data imum likelihood estimates.
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tion of the ML-detection statistic requires full spectral sampleut they are limited by a need to know the number of classes
covariance matrices to be estimated and then inverted, or thehe scene.
evaluation of their determinants. Extending application of the The majority of global anomaly detectors employ two-dimen-
RX-algorithm from multispectral to hyperspectral imagery susional (2-D) Markov random field (MRF) modeling in order to
fers from two major limitations. First, the clutter model impleincorporate spatial features into the segmentation process, since
mented in the RX-algorithm is restricted to being spatially uMRFs have been proven to be quite powerful models in the
correlated, or spatially white. This model neglects the poteolassification of 2-D images. For instance, the Bayesian clus-
tially valuable spatial correlation information of the clutter. Theering algorithm presented in [14] uses causal MRF'’s to incor-
second limitation is its computational cost arising from the exorate contextual information, and is developed for the purpose
pensive inversion or determinant evaluation of the covarianosubpixel anomaly detection. Contextual information refers to
matrix of the HSI data under each of the hypotheses. Even undepriori knowledge that adjacent pixels tend to belong to the
the simplifying spatially white clutter assumption, the compuwsame class. Although it is a simple matter to compute the prob-
tational complexity of this detector increases\§$, where N, ability of each pixel with respect to its classification once the
is the number of spectral bands. For HSI, where the numbmaodel has been formed, formulation of the model requires that
of spectral band#v, runs into the hundreds, the RX-algorithrthe Hotelling Transform [15], [16] be applied to the data. For
rapidly becomes unfeasible. However, due to the algorithm susperspectral data, evaluation of the Hotelling transform is in
cess with multispectral data, it has been incorporated into titself significantly challenging computationally.
DARPA ASR program (see end of Section I) as one of the base-The algorithms described in this section represent the most
line processing algorithms. To run the RX-algorithm on the hysrominent methods for detection being applied to hyperspectral
perspectral data collected by ASRP, either a subset of bandgriagery today. The algorithm that has received the most
used, or the bands are aggregated. attention in the hyperspectral detection community is the local

In [11], an adaptive spatial/spectral detection method is prenomaly detection RX-algorithm, which, as mentioned before,
sented in which it is originally assumed that the clutter is fullis the benchmark algorithm for multispectral data. As discussed
spatially and spectrally correlated. However, in evaluating the Section 11-B, several of the global detection algorithms have
spatial-spectral covariance matrix the cross-covariance termsorporated the RX-algorithm for use after segmentation.
are neglected in order to improve the computational cost of thgwever, the RX-algorithm is limited by its assumption of
algorithm. By eliminating these cross-covariance terms, the cepatially uncorrelated clutter, and, like most of the algorithms
relation between bands, i.e., the spectral correlation, is basicalbscribed above, it involves computationally demanding matrix
ignored. Computationally, the algorithm in [11] suffers from thénversions (or determinant evaluations). Application of the
same problem as the RX-algorithm when applied to hyperspegex-algorithm to hyperspectral data can only be made possible
tral imagery: It requires taking the inverse of a spectral covally preprocessing the data to reduce the number of spectral
ance matrix that has dimensions equal to the number of spectiahds.
bands used for processing. There is a need for computationally efficient detectors for
hyperspectral sensors that can jointly process all the available
spectral bands, and that can exploit simultaneously the spatial
and spectral correlation properties of the clutter. Our GMRF ap-

In global anomaly detection, the image scene is first segroach to anomaly detection addresses both of these concerns.
mented into its constituent classes, then detection is achieWd describe the GMRF detector in the remainder of the paper,
by determining the outliers of these classes. In general, the ahd we use the RX-algorithm as the baseline to which we con-
gorithms vary in the method of segmentation, but tend to usast the GMRF algorithm.
ML-detection once the classes are determined.

One approach to global anomaly detection, which has been
incorporated into the DARPA's ASR program, is stochastic IIl. GMRF CLUTTER MODEL
expectation maximization (SEM) coupled with ML-detection
[12]. This algorithm uses the stochastic expectation max-We capture the highly correlated spatial and spectral nature
imization clustering algorithm, as presented in [13], as @ the background clutter in hyperspectral sensor imagery using
preprocessing stage to the detector. The number of classea mncausal, GMRF. GMRF models are desirable because they
assumed to be knowanpriori. The clustering algorithm models possess two important properties that are intrinsic to most spa-
each class with an ensemble of Gaussian random variabléd,phenomenon: noncausality and Markovianity. Noncausality
using only spectral information. Basically, once the image hasfers to the notion that the field at any pixel is influenced by the
been segmented, the RX-algorithm, discussed in Section Illfeld in all directions around it; there is no preferred direction of
is used on each class to determine anomalous pixels. A similipendence. Markovianity is the statistical formalization of the
approach usingK-means clustering in conjunction with thenotion of locality, i.e., that the field at a pixel is regressed on
RX-algorithm is presented in [14]. Although the stochastithe values of the field at neighboring pixels. The GMRF model
expectation maximization and thiE-means algorithms both that we implement extends these properties to a three-dimen-
provide performance improvements over direct application sfonal (3-D) field that is appropriate for hyperspectral imagery.
the RX-algorithm, they are not only challenged computatioms first suggested in [17], we assume that the Gaussian process
ally due to the need to invert a large data covariance matroescribing the dominantimage background has a slowly varying

B. Global Anomaly Detectors
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l Fig.2. Three-dimensional Markov random field. In a first order field, a pixel is
- J - -—— N — dependent on its six nearest neighbors: four spatial and two spectral neighbors.
]

Fig. 1. Sectioning of the hyperspectral image cube. Processing is donefgssesses several properties which enable us to derive explicit
small homogeneous windows of data (left). The processing window is further

divided into a set of subcubes, called Markov windows. Within each MarkcﬁXpress'on_S for the e'genvalues’ e'g?nveCtorS* _and the dete.rm"
window, a 3-D finite lattice field is defined (right). nant of the inverse of the clutter covariance matrix. An extensive

list of these properties can be found in [18] and [15].

covariance structure. Consequently, processing is done on sub- o
blocks of data for which the clutter is assumed to be statisﬁ—' Vec Operator
cally homogeneous. In this section, we develop, in detail, theThe vec operator stacks the transposed rows of a matrix one

3-D GMREF clutter model. on top of the other to form one long vector [15]. This is the
lexicographic ordering of the pixels, or row major form. If the
A. Notation matrix is N; x N, the vector resulting from the vec operation

) . S will be of dimensionV,; N, x 1.
We fix notation. Considering the hyperspectral cube as a 3-D

finite lattice, the intensity at each pixel is referenced by the varﬂfi Spatially—
ablew and three subindicés;j, andk, which indicate the spatial o )
location and the particular spectral band in which the pixel lies, Within the Markov windowm, wil}, 1 < @ < N, 1 <

see Fig. 1. Processing is done on small regions of the data setis i, 1 < & < N, represents the 3-D finite lattice field
which the total number of rows, columns, and spectral bands &#@deling the clutter described by an extension of the minimum
represented by the variablés/, andK, respectively. The spa- Méan square error (MMSE) representation of Woods [19]

tial dimensions/ and.J, are chosen to validate the assumption

Spectrally Correlated Clutter

of homogeneous clutter. We divide tliex J x K processing wigg = P (w;'(’j_l)k + w%ﬂ)k)

window lattice into subcubes of siz€; x V; x N; as shown

in Fig. 1. We refer to these subcubes as Markov windows. Typ- + By (wg‘l—l)jk + w?il+1)jk)

ically, we use all the available spectral bants, = K. Pixels m m m

within the same Markov window are assumed to have signifi- + /s (wii(’v*D + wii(kﬂ)) T ik @

cant spatial correlation with each other, while the spatial cor-

relation between pixels of one Markov window and pixels ofN€ Parameters;,, 5, andj3; are the predictor coefficients for
another Markov window is assumed to be negligible. This a¥1€ Spatial and spectral dimensions, respectivelycfds the
sumption allows us to use the different Markov windows as ijprediction error that has a particular correlation structure dis-
dependent realizations of the clutter field, which is importafft'Ssed below. We are assuming a first order 3-D Markov model
to provide statistical significance when estimating the field p4ith zero Dirichlet boundary conditions. Itis assumed, without
rameters as we will discuss later in the paper. The pixels if@sS Of generality, that the clutter is zero mean. In practice, the
Markov window are compiled in vector form by the vec operatciPatially varying mean is locally estimated and then removed
explained below. As a result, the processing window is dividdiPm the data. In a first order 3-D Markov model, the inten-
into a set of» independent data vectors. These independent véy Of a pixel is described in terms of its six nearest neighbors:

tors are distinguished by the superscriptvherel < m < n. four spatial and two spectral neighbors, see Fig. 2. Higher order
- Markov models can be similarly defined. For the sake of sim-

plicity, we will restrict the discussion to first order fields.
We get a clutter vectoly,,, = [w™(1) ... w™(Ny)']’, by
To handle the representation of the GMRF clutter model, ve¢acking theV, vectorsw™ (k), each of sizeV; V; x 1. The vec-
use the matrix operator known as the Kronecker product [18prs w™ (%) result from applying the vec operator to theN;
The Kronecker product, which is useful in mapping low-ordgpixels in the Markov windownr. for each of thaV,, consecutive
matrices into high-order matrices, is mathematically defined apectral bands. The clutter vectdf,,, is of sizeV; N; Ny x 1.

B. Kronecker Product

—m

A®B = [a(m,n)B].If AisasizeM x M matrixandBisasize This process is repeated for each Markov window within the
N x N matrix, the resulting matrix is siz&/ N x M N. The Kro- processing window leading to a setsofata vectors. An error
necker product provides a simple means of representing certa@ttor, ¢, is formed in the same manner by beginning with the
large structured matrices. In addition, the Kronecker produtD lattice of prediction errors;’, .
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Incorporating the clutter vector notation into (1), the data can As an example, we present the inverse clutter covariance ma-
be compactly represented by the matrix-vector equation trix using N; = N; = Ny = 2. The B, C, andD components

of X! are
Amnl = S'rna (2) B _ 1 _/3h C _ _/311 0
A1 AQ - —ﬁh ]_ ’ o 0 _ﬁu ’
- D= s 5
A= . 3) { 0 —/JJ ®)
0 Ao and the overall inverse covariance matrix is
As Ay B ¢ D o
; ) 4 1 |¢c B 0 D
InKronecker notationd = Iy, ® A; +Hj, ®Az. The matrices Yy = 2|Db o B C}- (6)
Ay, Ay, B, C, andD are themselves structured and defined as 0 D C B
1 . . .
Al =In @B+ H}\g C. Ay=Iy @D, ¥+ is a highly structured sparse matrix that is completely de-

. fined by the four scalar parametetg, 3, 3., and3,. When
B =ty +1y;, C=—Puln, using real data, these four parameters are to be estimated from
D = —ply;. the data. Although we address the issue of parameter estimation
in another paper [3], we briefly present the results of that work
The symbolsl, , In;, andIy, are identity matrices, while in the next section.
Hj). ,Hy , andHy, are Toeplitz matrices which have zeros
everywhere except for the first upper and lower diagonals whi€h Approximate Maximum-Likelihood Estimates
are composed of all 1's. The subscript denotes the size of thgn [3] we deve|op several parameter estimators for 3-D
matrices. GMRFs: maximum likelihood (ML), least squares (LS), and
The matrix A, referred to as the potential matrix, is sparsgpproximate maximum likelihood (AML). The results in [3]
block tridiagonal, and contains the relevant information I’%—uggest that the AML technique is a good cost/performance
garding the GMRF structure [20]. The subcomponents of tR@mpromise, and we adopt it for our GMRF fully adaptive
potential matrix also display a highly sparse structure. Thgomaly detector. In this paper, we refer the reader to [3],
blocks A, and A, are block tridiagonal and block diagonalsimply present the AML estimates and use them in our GMRF
respectively. The subcomponents,C, and D are either detector. The Markov parameter AML estimates, assuming
tridiagonal or diagonal. spatially—spectrally correlated clutter, are shown in (7)—(9) at

It is shown in [19], [20] that the set of error vectoks,, the bottom of the page where the quantities x., and x.,
are samples from a zero-mean Gaussian colored noise proggsed the one-step-ahead correlations, are

that has covariancE. = ¢2A. A main advantage of Gauss N
and Markov models is thelr parameterization of the inverse (

! . _ =S W, (In, © In, ® HY ) W,
clutter covariance matrixy,!. Starting from (2), [21], the AT — N AN Ny
inverse clutter covariance matrix is simply a scaled version of n N, Ni—1 N,

the potential matrixy ! = (1/02?)A. In Kronecker notation,
the inverse covariance matrix is expressed as

IPIPIP I LA (10)

m=1¢=1 j=1
n

[3 h

1 _ ! . 1 .
Y, = iv @Iy, @ Iy, - 51y, © In, © Hy, =2, W, (In, @ Hy, @ In;) W,,,
/l‘ /5 n N;—1 N;
I]\’ ®H]\r ®I]\’ __H]\r ®I]\ ®I]\f
=2 > wakw(z+l)1k (11)
(4) m=1 =1 j=1k
B; _ £Xh (7)
|Xh|cos(,\ )+|X |COS(N+1)+04|X5|COS(A +1)
|X]L|COS(]\ )+|XL|COS(N+1>+O‘|X5|COS(1\ +1)
= s

|Xh|cos(,\ )+|X |COS(N +1) + axs |COS(,\ +1)
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Xs = Z E:n (H]]i‘rk ®I]\‘ri ®I]Vj) mrn
m=1
n N; Nj Ny—1
D 3D 3) B DRV L) I
m=1i=1 j=1 k=1
anda = (Np(N; — 1)/N;(N, — 1)), £ =0.5—-6,andéis a
small number (for examplé,= .01) included to ensure that the
parameter estimates are within the parameter space.
It can be shown that the estimate ott\he/gcalingAparaméer,
is a linear combination of the estimatgs, 3., andj3, N J

]

5 . o ~ Fig. 3. Sectioning of the processing window for parameter estimation. The
g —(Sa; — 28X — 280X — 2/35)(5) (13) window is divided into 2 regions: Alutter region and arunknownregion of

nNiN; Ny, size N, x Ny.
n
!
S = Z W W, the clutter region, and theobservationvectors,Y ,,....Y |
";,:IN_ v wherem = (N?/N;N;), are those vectors from thenknown
V4 3 ¥ ke . . . . . .
_ Z Z Z (wT’,»’k) 2 (14) region. Re_call, the dimension of the processing windaiwig/,
Pt w and the dimension of the Markov windows ake x V;. Al-
though we only need to estimate four scalar parameters, the use
The quantitys., is the power of the field. of all the Markov windows is necessary since our assumption
about homogeneous clutter is, in general, not valid. By aver-
IV. DETECTORSTRUCTURE aging the statistics over the entire processing window, false de-

We present two approaches to detection: the binary Hy_ctions due to nonhomogeneous clutter are reduced. An entire
pothesis technique using a deterministic target model, aREpcessing window of data produces the detection statistic for
the ‘single’ hypothesis method using an implied GMRENE pixel; the center pixel of the window. An output statistic for
target model. In both cases, the direct parameterization Sf€"Y Pixel in the image is obtained by moving the processing
the inverse clutter covariance matrix that is provided by odfindow throughout the image. Using this window formulation,
3-D GMRF modeling framework [see (4)] reduces the final® @ssume that, when a target is centrally located in the pro-
detection statistic to an evaluation of scalar quantities; §§SSing window, the detection statistic will be maximized.
matrix inversion is required. The computational advantages of ' "€ Markov parameters for the clutter background are esti-

the ‘single’ hypothesis test, as well as its ability to model tH@atéd using theluttervectorsX . The GMRF model assumes
target stochastically, make it a promising alternative. that the clutter is zero mean, thus, prior to estimating the Markov

We discuss the general setup of the detection problem in SBRI@meters, the mean,, of the clutter vectors is removed

tion IV.A, assuming that the parameters defining the GMRF 1
model have been estimated using the AML method summa- m, = — Z&F (15)
rized in Section IlI-E. In Section IV-B, the binary hypothesis "=t

approach is derived, and the deterministic model that is associ-
ated with the targets is presented. In Section IV-C, we preset Binary Hypothesis Testing
the ‘single’ hypothesis paradigm. For both detection methods,

we incorporate the GMRF modeling framework and present theln the_ binary hypothesis te.stllng parad|gm, the detection
; AT problem is formulated as a decision at each pixel as to whether
resulting simplifications.

only clutter is present or clutter plus target. Formally, the binary

A. Problem Formulation hypothesis testing problem is described by
Regardless of which detection approach is used, we first sepa- Ho:Z,=Y,-m, =W, 1<g<m
rate the processing window into two regions: a perimeligtter Hy :Z,=Y,—m,=W+R,. (16)

region and an interiounknownregion of dimensionV, x N,
asis done in [22] (see Fig. 3). Since we realistically assume tidte Y 's are the independent observation vectors from the
the first and second order statistics of the clutter data are umknownregion of the processing window, th€ 's are the
known, this sectioning of the processing window is necessargservation vectors with the clutter mean removéd,s the
for estimating all the parameters that will completely define thadutter, a zero-mean GMRF process defined by the second
clutter statistics. order statistics derived in Section 11I-D, and the variable

Each of the regions shown in Fig. 3 is further divided into inrepresents the target spatial-spectral signature associated with
dependent Markov windows as discussed in Section IlI-A (sé®e observation.
Fig. 1). By applying the vec operator to each of the Markov win- 1) Target Signature:We use a deterministic, additive, model
dows, in each region, we obtain two sets of independent vectdis, the target spatial-spectral signature, similar to the one used
referred to as thelutter and observationvectors. Theclutter in the RX-algorithm [4], [23]. In this model, the target signal is
vectors.X |, ..., X, , wheren = ((I* — N7)/N;N;), are from represented by the matrik{™® = bs/, where the vectob, of
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wherel < k < N. Equation (17) is a weighted average of
the pixels in theobservatiorwindow: those pixels for which the
target is a stronger reflector, i.e., for which the target pattern
values are closer to 1, are weighted more heavily than those
pixels for which the target is a weak reflector.

The target spatial-spectral signatukg, is a vector of dimen-
sion V; N; N x 1. Itis obtained by applying the vec operator
to the matrifoImp as shown in (18) at the bottom of the page.

2) Generalized Likelihood Ratio TestWe use the GLRT to
decide between hypothes&s and H; at each pixel. Lettind
be a vector of the unknown Markov parameters, the procedure
is to estimated assumingH; is true, then estimaté assuming
Hg is true, and use these estimates in a likelihood ratio test as if
dimensionV;, x 1, contains the additive spectral signature dué@ey were correct [2]. Mathematically, the GLRT is
to the target in each of the spectral bands, ane= vec(S,) AZ Z)
whereS, is anNV; x N; matrix indicating the target spatial pat- Sl Sm I
tern within a Markov window. The, matrices are subsets of a _ <maXel 11 P(Z1s -5 L |61 H1)> > (19)
larger Ny x N; matrix, S, that contains the spatial pattern de- - \maxe, |, P(Zys s Zp | 00, Ho) }?077
scribing the entire target. Th&, matrices are formed by sub-
dividing the full target spatial pattern into blocks of the sam&here

Fig. 4. Gaussian 2-D target spatial pattern.

dimension as the Markov window subdivisions made inthe ~ P(Z1:---,Z,, | 6;, Hi) joint probability density function
knownregion of the processing window (see Figs. 1 and 4). The (pdf) of the set of observation vec-
interpretation of the model is that, for any pixel locati¢,;) tors; .
in which target energy is present, the overall energy contribu-Z1: - -+ » Zm observation vectors with the Markov
tion to each spectral band, due to the target, is proportional to parameters estimated assuming hy-
the value of the target spectral signature in bant(k). The pothesisH; is true; _
amount by which the spectral signature is weighted depends o nonnegative threshold that, ide-
the spatial location [24]. ally, is determined using the
The general target spatial pattern is assumed to be known, Neyman-—Pearson Criterion [2].

and, in practice, is often taken to be a 2-D Gaussian, as sholf#f Probability density functions for a set of independent
in Fig. 4 [22]. Patterns, such as the 2-D Gaussian, that do fgServation vectors factor as

rely on detailed shape or orientation information, only require .

a priori knowledge of the approximate size of the targets of in- Ho:p(Z,, m,Zm 18, Ho)

terest. The value at each location in the pattern matrix indicates _ |E$1| ’ ox 1 zm: (Z’ A )

the proportion of the energy reflected, or emitted, at that loca- g N P g TaTw = e

tion due to the target. The remainder of the energy recorded for I

that location is due to the reflection or emission properties of the Hy :p(Z,,....Z, |0,H) = |Ew |

clutter. A value of 1 indicates that the pixel location is purely —Em o i TN

target, while a value of 0.5 indicates that half the recorded en- 1M

ergy is due to the target, and half is due to clutter. X exp <—§ Z(Zq - Eq)’E;l(Zq - Eq)>
Although we assume that the target spatial pattern is known q=1

a priori, the target spectral signature is assumed to be unkno%erez_l is defined by (4), andZ, is defined by (16)
. H H w 1 =q h

and must be estimated using data from tiénownregion of " general detector structure, after parameter estimation, re-

the processing window. For computational simplicity, we USE ces to

a LS approach to estimating the spectral signatursee [25].

The LS estimates of th&/;, elements of the spectral signature NZy,....Z,)

are defined by o L,

-~ DO I
7 s L. pZ?"'7Z7n H,e ‘ w |6 >
= E?:H 2]215(%])%% = Z, |, Al) = 22 (20
ok) = =R o o (17) P(Z1,-- 2y | Hob0)  |v—1 | Hy
Ei:l j=1 S(Il’?j) w | 6o

R, = vee (25

= [b(D)sg(1), ... D(D)sg(NiN), .., B(VR)5g (1), - .., BNk )s(N:N)T - (18)
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where|X™ 15 | is the determinant of the inverse covariance mder this local clutter background that is adapted to fit the data

trix evaluated with the estimates of the potentials under hypothrough estimation of the Markov parameters.

esisH;. The ratio of determinants is straightforward to calculate The ‘single’ hypothesis test statistic measures the distance be-

since the GMRF model provides us with a direct parameteriZ¥teen the data vectors in thargetwindow and theclutter, to

tion Of the inverse Covariance matrix from Wh|Ch explicit exdecide if the target vectors belong to the Clutter Gaussian diStri-

pressions for the eigenvalues can be derived. The eigenval@dtion. The data vectof¥, are the target vectors derived from

of the |nverse Covariance matr&_ . are Obtained from the the Centralunknownreg|0n d|scussed |n SeCtIOI’l IV-A. NOW

w9 1 in addition to the clutter, the target is also modeled as a 3-D-

eigenvalues of the potential matrix sinde~ %/ w8 and are a GMRF, albeit with different Markov parameters. The clutter

function of the estimates of the Markov parameters (see [3]).model is fit according to the approximate maximum-likelihood
For a first-order spatially—spectrally correlated GMRF, thgstimates given in Section IlI-E, and detailed in [3]. Mathemat-

eigenvalues of4 are shown in (21) at the bottom of the paggcally, the distance measure for the setoindependent target
wherel < j < N;, 1 <i < N;,andl < k £ Ng. The quan- vectors is

—~H; —~H; ~ H; . .
tities 3, ,3, ,andgs are the estimates of the first-order m -
GMRF parameters assuming hypothdgigs true. Substituting Bl Z d2 Z mm)'ZEI(X —m,)
the product of the eigenvalues for the determinant terms in (20), m= ! !
and taking the logarithm, the GLRT detector, in its final form, is —
=trXyts (23)
lnA(Z17"'7an) /\1 . .
= wherem,, andX,,~ are the the mean and inverse covariance
_ Ml %0 matrix estimates for the clutter, and
2 'Z
1 m
N N N 5:(1/m)Z(Y -m )Y, —m,)
H H g pj\d g T Ly
+3 Z Z Z [ln ()‘Zﬂl& ) ()\Uz( ))i : q=1
=1 j=1 k=1

(22) isthe sample covariance of the data vectors in the target region,
assuming they have the mean of the clutter. The distance defined
As an alternative to the deterministic target model presentbd (23) reveals two computational advantages of the ‘single’
in this section, we consider using a stochastic target model digpothesis test over the binary hypothesis method. First, the
to the variation in target signature that results from atmosphelstngle’ hypothesis paradigm avoids the estimation and removal
and illumination effects. This presents difficulties with the biof the target spectral signatu®, . Second, the computation of
nary hypothesis problem. In particular, if we use a 3-D notthe determinant oE, is not required.
causal GMRF to model the target, in addition to the clutter, Substituting the spatially—spectrally correlated Kronecker pa-
and assume that the GMRF parameters defining the target gigeterization from (4) foEwl into (23), and lettingz, =
different from those that describe the clutter, it eliminates th_eq — m,, the statistical distance between the observation vec-
main advantage of the model: its ability to simply, and directlyors and the clutter vectors becomes
parameterize the inverse clutter covariance matrix. Ba3|cally

m

the Markowanlty of the data is lost sind&,, + %,) ! 2= 1 7' Az
Yo' + X1 So, to develop an anomaly detector that can ef-m z_: mo? ;(_q Z,)
f|C|entIy handle both the clutter and target being modeled by m
GMRF’ s, we Ioc_)k to an alternative detection approach: ‘single’ - LA Z[Z;(T‘* — BT — BT — BT3)Z,]
hypothesis testing. 2
(24)

C. ‘Single’ Hypothesis Testing

A 'single’ hypothesis test, as described by Fukunaga in [26yhere
is useful for situations in which one class is well-defined and 71~ = In, @ Iy, @ Hy;
the others are not. Although various types of natural clutter are’>2 =1Iy, ® HN ® IN ;
presentin the imagery, we work with the underlying assumptionZ3 = HNk @Iy, @ IN;'
that within thel x J processing block, see Fig. 1, thereisonly 13 = In, @ In, @ In;;

one type of clutter present, i.e., the clutter is locally homog@re used to represent the four Kronecker terms in the parame-
neous. Section IlI-D presented a 3-D noncausal GMRF modetization of£3! [see (4)].

. —H; Vs —H; s ~ H; k
(A= |1—20, — 28, — 284 21
- o () () ()]
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By simplifying terms, (24) can be written as 3,N,, = 3andN,, = 27,N; = 9,N,, = 3. These rep-
m m resent the smallest and largest window combinations that are
1 Z 2 = LA Z(Sy _ //3;% _ ffvyv _ /3:375) (25) appropriate for detecting the targets of interest in 1 m spatial
m3 T me? =1 resolution data. To more easily see where the cross-over points
. . between the algorithms are, we include in Fig. 5(b) a zoomed
wherefsy,, 8,, 85, ando? are the estimates of the Markov pain portion of the left bottom part of the plot that appears in
rameters using the data in thiitter region, and the quantities Fig. 5(a). Most noticeably, the GMRF algorithms have the ad-
Yu, V.., Vs, andS,, are the one-step-ahead correlations and tvantage that the total number of FLOPS increases linearly with
autocorrelation for the data in the unknown region. These quahe number of spectral bandé,. This contrasts with thev}?
tities are computed as in (10)—-(12) and (14), respectively, witlependence of the RX-algorithm. The three algorithms show a
the fieldw;;, replaced byzfjk that is the clutter-mean-removedsimilar dependence with the window sizes.

intensity of a pixel in theinknowrregion at spatial locatiod j, Fig. 5(b) shows that the GMRF-SH algorithm is always com-
spectral band, and within theyth Markov window. putationally superior to the GMRF-BH algorithm and computa-
tionally more efficient than the benchmark RX-algorithm when

V. PERFORMANCERESULTS using more than approximately 15 spectral bands of data. Under

We study the GMRF anomaly detection algorithm in terms> Pands, the GMRF-SH algorithm is more computationally in-
of computational and detection performance. For this evalfgnse than RX due to the overhead involved in estimating the

tion, we compare the GMRF ‘Single’ Hypothesis (GMRF-SH ar_kov parameters. However, the GMRF algorith_ms_ can po-
and Binary Hypothesis (GMRF-BH) algorithms to the RX_al_entlally perform even better, computationally, than indicated by
gorithm developed by Reed and Yu [4]. Fig. 5(b) because their C-code implementations have not been

fully optimized. The code for the RX-algorithm, on the other
A. Computational Performance hand, is a mature implementation that is distributed for use in
i&\dustry.
Another means of reducing the computational load of the
MRF algorithms is by using a subset of the data within the
gcessing window for parameter estimation. The justification
or this approach is in the fact that there are only three scalar pa-
To evaluate the computational effectiveness of the algorithrﬁ meters that need to be estimated from the data. Future research

we derive from the C-code implementation of each algorithrﬁ orts will focus on_detgrmini_ng a minimal_subset of_data that
an expression relating the number of floating point operatioﬁgn be used for estimation without degrading detection perfor-

(FLOPS) required to compute the detection statistic for o
pixel in the image set to the number of spectral badsused
for processing. This number of FLOPS is also dependent Bn
the sizes of the processintgrget and Markov windows that  We have shown that the application of a 3-D GMRF clutter
are represented b¥,,, N;, and V,,,, respectively. We obtain model to hyperspectral imagery produces a significant computa-
(26)—(28) shown at the bottom of the page. Tamgetwindow tional improvement over the RX-algorithm. We now verify that
is the same as thenknownwindow illustrated in Fig. 3. this computational gain is coupled with an increase in detection
The number of FLOPS as a function of the number of spectfarformance. In this section, we present detection performance
bandsV, used for processing is shown in Fig. 5(a). We show thmomparisons between the GMRF algorithms and the RX-algo-
results for two different window combinationd;, = 9, V; = rithm using receiver operating characteristic (ROC) curves. The

A goal in developing an anomaly detector for hyperspectr
imagery is to have a computationally efficient algorithm, pos-
sibly running in real-time, as the sensor is being flown over th%
area of interest. Computational considerations are, thus, of
upmost importance.

Detection Performance

= N - Ny = NL2() = Ny Ny NLQU Ny Ny
FLOPs(GMRF—SH) = N, <2 +1.5 . +2.5 N +25 N2 +0.5 Nz T 2 N TN
N? N?
+ N, <19.5N3, +0.5N, N, + N; +2 Nt - N7+ 2N31> —3N2 + 74 (26)
_ N, N _N? _N,N, _N: N,N,
FLOPs(GMRF—-BH) = N, <6+ 1.5 N +2.5 N +3.5 N2 +0.5 N 7 N T A

N2
+ N, <36.5N3, +0.5N, N, + 11 N; — 32N7 + 12N2, + 2Nm>
—6 (N, — N7) + 103 (27)
FLOPs(RX) = N2 + N} (4 + 2N — 2N7) + 12

N2
+ N, <2 +4.5N,, — 3.5N; + 3N2 4+ 3N, N, —3N? 43 N—') (28)
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Fig.5. (a) Computational comparison: GMRF versus RX for two window combinations. GMRF algorithms depend lin@&skatirer thanV?. The GMRF-SH
algorithm has a computational advantage over the GMRF-BH algorithm. (b) Magnified view of the left-bottom region of the plotin (a).

receiver operating characteristic curves plot the detection prdbe ‘single’ hypothesis formulation, which uses a stochastic
ability versus the false alarm rate perknThis conforms with target model, is the better detector choice for our GMRF fully
standard practice in these applications. adaptive anomaly detector on data of approximately 1 m spatial
We carried out experiments on several different hyperspectrasolution.
data sets from both the hyperspectral digital imagery collectionWe now compare the performance of the GMRF-SH detector
experiment (HYDICE) [27] sensor and the spatially enhanced that of the RX-algorithm. Fig. 7 shows the receiver operating
broadband array spectrograph system (SEBASS) [28] senstraracteristic curves for these detectors. The results illustrate
The data have a spatial resolution of approximately 1 metérat the GMRF-SH algorithm provides, at a minimum, a slight
Due to space limitations, we show the results for a subsetmdrformance gain over the benchmark RX-algorithm. More
the data processed. We refer to four data sets: DsetA, DseatBportantly, coupled with this improvement in performance
DsetD, and DsetE. In some cases, the data sets were brokea reduced processing time, even for as few as 19 spectral
down into specific portions of the electromagnetic spectrubands. Table | shows the average processing times for the
such as the visible-to-near infrared (VNIR) and the short-wa®®X and GMRF algorithms for various numbers of spectral
infrared (SWIR). The HYDICE sensor records 210 spectrbands on the different data sets. The times shown in the table
bands in the VNIR and SWIR, and the SEBASS sensor recom® for C-Code running on a 250 MHz UltaSparc server. All
256 bands in the mid-wave and long-wave infrared. For motimes would be significantly reduced by implementing on
information on hyperspectral imagery see [29]. DsetA anghrallel processors, since the GMRF algorithms, as well as the
DsetB are HYDICE data sets, while DsetD and DsetE aRX-algorithm, process on a small window of the data that is
SEBASS data sets. In all our examples, we have aggregatedrim/ed, pixel-by-pixel, throughout the image. The processing
total number of bands in order to be able to use the RX-algaithin each window is completely independent and could be
rithm for comparison purposes. This of course means that amplemented using separate processors.
comparison results do not show the full performance potentialAlthough the RX-algorithm processes slightly faster when
of the GMREF algorithm. It will be important to investigate theusing ten spectral bands, the processing times for all data sets
impact of the total number of bands used for processing on twéh over 19 spectral bands are far superior for the GMRF algo-
detection performance of the RX and GMRF algorithms. Wéthm. When using 105 bands, the GMRF algorithm takes less
intend to pursue this in future work. than one tenth the amount of time to process as the RX-algo-
We first compare the performance results of the binarthm. When using hyperspectral imagery, it is most likely that
hypothesis and ‘single’ hypothesis formulations of the GMRthe number of bands being used for processing will be more
detector. Fig. 6 shows the receiver operating characteridfian the 15 bands required to make the GMRF algorithm com-
curves for the two algorithms on four different data sets. lputationally less expensive than the benchmark algorithm. Com-
each case, the GMRF-SH algorithm significantly outperformsning this significant computational gain with the improved
the GMRF-BH algorithm. The number of targets in these datketection performance, clearly makes the GMRF-SH algorithm
sets varies between five and 20, and the number of spectra better overall performer in these cases. To generalize these
bands used for processing varies between 19 and 30. Sincer#sailts, it will be important to test the GMRF-SH algorithm on
GMRF-SH algorithm has also been shown to be computatiomtarger sampling of hyperspectral imagery, as it becomes avail-
ally superior to the GMRF-BH algorithm, we conclude thaable to the research community.
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Fig. 6. Detection performance: GMRF-SH (solid) versus GMRF-BH (dotted). (a) DsetA:SWIR, 22 spectral bands; (b) DsetB, 30 spectral bands;, (€9 DsetD4
spectral bands; and (d) DsetE, 31 spectral bands.

C. Effect of Window Size on Performance number of parameters in the GMRF model requires less data
for accurate and reliable estimation, thus allowing smaller pro-
We now investigate the impact of the size of the processiggssing window sizes. The smaller window sizes also help in
window on the performance of the GMRF and RX algorithmszalidating the assumption of homogeneous clutter, which leads
The size of the processing window is controlled by two factorgs improvements in detection performance.
statistically reliable parameter estimation, and the assumption ofig. 8 shows the receiver operating characteristic curves
homogeneous background clutter. There is a tradeoff betwggp the RX and GMRF-SH algorithms on DsetA:SWIR and
these two factors since reliable parameter estimation requimsetA:VNIR for various processing window sizes. For the
larger window sizes, while a homogeneous clutter assumptigVIR hyperspectral images the target and Markov windows
dictates smaller window sizes. Larger window sizes increase tiegnain fixed a® x 9 and3 x 3, respectively, while the size of
likelihood of there being different types of clutter in the windowthe processing window is switched frozf x 27 to 21 x 21,
as well as the likelihood of there being a target in the perimetgnd, finally, to15 x 15. With the VNIR image, we ustarget
region of the processing window; in either case, there is a sighd Markov windows both of dimensighx 3, and vary the
nificant impact on the computed clutter statistics. processing window fron21 x 21 to 15 x 15, and, finally, to
The GMRF algorithm has an advantage over RX. For a firs#-x 9. For the SWIR data, the performance for the RX-algo-
order GMRF, there are only four parameters to estimate rathighm remains relatively constant as the processing window
than the N, N,y /2 elements of the unstructured covariancsize is decreased. Basically, gains in performance due to a more
matrix that must be estimated by the RX-algorithm. The smdbmogeneous window of data are eliminated by performance
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Fig. 7. Detection performance: GMRF-SH (solid) versus RX (dotted). (a) DsetA, 41 spectral bands; (b) DsetB, 30 spectral bands; (c) DsetD3 hEhdpectra
and (d) DsetE, 41 spectral bands.

TABLE | the GMRF algorithm improves when moving from a 21 point
ALGORITHM PROCESSINGTIME COMPARISONBETWEEN GMRF AND RX to a 15 point processing window, and begins to degrade with a
Algorithm Processing Times nine-point window, but not to the degree that the RX-algorithm
Data Set/# Bands || Image Size | GMRF RX does. These preliminary results support the idea that the GMRF
DsetA /41 640 x 320 | 21.3 min | 127.3 min algorithm performs better on smaller processing window sizes
DsetB/10 960 x 320 | 25 min | 22 min than the RX-algorithm. Using smaller processing windows
DsetB/30 960 x 320 | 80 min | 165 min reduces the overall computation time of the algorithm.
DsetB/105 960 x 320 | 4.5 hrs 44.5 hrs
DsetD/19 6100 x 128 | 61 min | 99 min
DsetE/31 350 x 128 | 4.3 min | 13.9 min

VI. SUMMARY

degradations resulting from insufficient amount of data in Inthis paperwe presented two 3-D noncausal GMRF anomaly
the processing window for reliable parameter estimatiodetectors for natural clutter backgrounds in hyperspectral im-
The performance of the GMRF algorithm, on the other handgery. The GMRF model focuses on capturing the high levels of
improves with decreasing window size, because there is rsp@atial and spectral correlation that exist in the data.

the degradation associated with unreliable parameter estimate$Ve showed that GMRF modeling provides several major con-
Similar results are seen with the VNIR data. In this case, tlrbutions to the challenging problem of detection in hyperspec-
performance of the RX-algorithm steadily degrades as the sizal imagery. First, and most importantly, the model leads to a
of the processing window is made smaller. The performancedifect parameterization of the inverse of the clutter covariance
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Fig. 8. Detection performance for decreasing processing window size on (a) GMRF-SH algorithm on DsetA:SWIR (top left); (b) RX-algorithm on DRetA:SW
(top right); (c) GMRF-SH algorithm on DsetA:VNIR (bottom left); and (d) RX-algorithm on DsetA:VNIR (bottom right).

matrix. This parameterization avoids the expensive matrix ihypothesis GMRF detector and the benchmark RX-algorithm.

versions or determinant computations that challenge many otfiéle computational cost of the GMRF-SH algorithm increases

available detection routines. In addition, the parameterizatiinearly with the number of spectral bands, while the RX-al-

of the inverse clutter covariance matrix is completely characteyerithm grows with the third power of the number of spectral

ized by only four parameters?2, 3, 3.,, and,3,, which makes bands. This leads to a smaller number of FLOPS for our

it possible to use small sized processing and target windov&VRF-SH algorithm when using more than approximately 15

while still obtaining reliable parameter estimates. Finally, udands for processing.

like the spatially white assumption of the benchmark multispec- Finally, we analyzed the effect of the processing window size

tral RX-algorithm, the GMRF clutter model accurately assumem the overall performance of the RX and GMRF detectors.

that the clutter is both spatially and spectrally correlated: an &he results indicate that the GMRF detector performs well with

sumption that we predict will become increasingly significargmaller window sizes, in contrast with the RX-algorithm, which

with better spatial resolution data. leads to further reductions in the overall processing time for the
We formulated the ML-detector using the GMRF clutteGMRF algorithm.

model in conjunction with both binary (GMRF-BH) and

‘'single’ (GMRF-SH) hypothesis testing paradigms. The

GMRF-BH models the target as deterministic, while the ACKNOWLEDGMENT
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