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Abstract—Hyperspectral sensors are passive sensors thatplanning, geography, cadastral mapping, cartography, and the

simultaneously record images for hundreds of contiguous and
narrowly spaced regions of the electromagnetic spectrum. Each

image corresponds to the same ground scene, thus creating a

cube of images that contain both spatial and spectral information

military. Applications have included the following: remote
sensing the earth resources from space, mapping the earth,
helping manage water or agricultural resources, monitoring

about the objects and backgrounds in the scene. In this paper, we the environment, forestry, detecting and classifying hidden
present an adaptive anomaly detector designed assuming that the targets in operational theaters. For example, in the U.S., starting

background clutter in the hyperspectral imagery is a three-di-
mensional Gauss—Markov random field. This model leads to an
efficient and effective algorithm for discriminating man-made
objects (the anomalies) in real hyperspectral imagery. The major

in the mid-1960’s, with the Earth Resources Survey (ERS)
program, and from the early 1970’s on with the launching
of the first ERS satellite, later renamed Landsat 1 (launched

focus of the paper is on the adaptive stage of the detector, i.e., thein July 1972), NASA has conceived, designed, and utilized

estimation of the Gauss—Markov random field parameters. We
develop three methods: maximum-likelihood; least squares; and
approximate maximum-likelihood. We study these approaches
along three directions: estimation error performance, computa-
tional cost, and detection performance. In terms of estimation
error, we derive the Cramér—Rao bounds and carry out Monte
Carlo simulation studies that show that the three estimation
procedures have similar performance when the fields are highly
correlated, as is often the case with real hyperspectral imagery.
The approximate maximum-likelihood method has a clear ad-
vantage from the computational point of view. Finally, we test
extensively with real hyperspectral imagery the adaptive anomaly
detector incorporating either the least squares or the approximate
maximume-likelihood estimators. Its performance compares very
favorably with that of the RX algorithm, an alternative detector
commonly used with multispectral data, while reducing by up to
an order of magnitude the associated computational cost.

Index Terms—Anomaly detection, Cramér—Rao bounds, Gauss—
Markov random field, hyperspectral imagery, least squares, max-
imum likelihood, multispectral imagery, ultraspectral imagery.

. INTRODUCTION

systematically multispectral scanner instruments to sense the
earth remotely. Onboard the Landsat satellites were successive
generations of multispectral scanner instruments, including
the multispectral sensor (MSS) with four bands, the thematic
mapper (TM) with seven bands (six in the visible range and
one in the thermal range), the enhanced thematic mapper
(ETM) with seven spectral bands and one “panchromatic”
band (black and white), the enhanced thematic mapper plus
(ETM+), and the high-resolution multispectral stereo imager
with four high-resolution bands, one panchromatic band, and
with stereo capability. Other countries have had their own
remote sensing programs including, for example, the “Systéme
Pour L'Observation de la Terre” (SPOT) program, initially
proposed by France, now a major international satellite-based
remote sensing program—SPOT 1 was launched in February
1986, while SPOT 4 was launched in March 1998. Good book
introductions to some of these topics in the context of remote
sensing include [1]-[3].

In the above sensors, as well as in several others that were de-
veloped in the 80’s for both commercial and military purposes,

PECTRAL imaging, also referred to as Spectroscopy |rﬁhe number of bands is Usua”y relatiyely Sma”, say below or

spectrum to probe the composition of a material, or to dete&@W the first spectral sensor in remote sensing collecting data
mine features of interest in a remote scene. In a sense, spedfr@everal hundreds of contiguous narrow spectral bands—the
imaging extends to multiple bands color photographic sensoféborne visible/infrared imaging spectrometer (AVIRIS)—de-
Remote sensing uses a variety of sensors flown onboard satgloped by NASA, tested in 1987, launched in 1989, and cur-
lites or aircraft. These sensors employ several bands and hi&lly flown on the NASA ER-2 airplane (a modification of

been used in various fields including geology, hydrology, urbdfe U2 plane) at an altitude of 20 km, and speed of 730 km/h.
Since 1989, several generations of AVIRIS have seen its tech-
, _ , _ nology progressively improved. AVIRIS belongs to a new class
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commercial hyperspectral sensors, and also portable hypersgéts inversion grows with the third power of the dimension of
tral cameras. this covariance, i.e., it increases with the cube of the number
Anomaly Detector:Hyperspectral sensors collect the spe®f spectral bands. Direct application of the RX algorithm to the
tral signature of a number of contiguous spatial locatiorall assortment of spectral bands in hyperspectral imagery be-
(pixels) to form an image—the hyperspectral sensor imagecpmes rapidly infeasible. There is a clear need for computation-
The use of this imagery for automatic target detection ardly efficient detectors for hyperspectral sensors that can jointly
recognition is a relatively new area of research. The focus pifocess all the available spectral bands, and that can exploit si-
this paper is on using hyperspectral data for the detectionrafiltaneously the spatial and spectral correlation properties of
anomalousman-made objects in natural clutter backgroundthe clutter.
In other words, our goal is to design a detector that flagsIn [11], we present a promising new detector for hyperspec-
small regions in the hyperspectral imagery, extending oveal data—the Gauss—Markov random field (GMRF) algorithm.
a few pixels, that correspond to anomalies in a relativelphe GMRF algorithm addresses the concerns described in the
homogeneous background. Hyperspectral imagery shows giadve paragraph. First, the GMRF approach models the clutter
potential for this task because it provides both spatial and spes-a spatially and spectrally colored random field, and so ex-
tral features about the targets and backgrounds in the imagetgits the information on the spatiahd spectral correlation of
There is reason to believe from published studies, [4]-[&he clutter. Secondly, it models directly the inverse of the co-
that the spectral characteristics of natural clutter differ wariance matrix, rather than the covariance matrix. Finally, re-
significant ways from the spectral characteristics of man-madall that the probability density of multivariate Gaussian data,
objects, thus hyperspectral sensors can be a tremendous aihith hence the likelihood function, is expressed in terms of the
discriminating between the two classes. inverse of the covariance matrix of the data. Since the GMRF de-
One of the challenges of working with hyperspectral imagetgctor has an explicit representation of this inverse, it then avoids
is computational: processing efficiently the massive amourttse inversion of large covariance matrices, which hinders the RX
of data collected by the sensor. For example, when sensorsalgorithm and other likelihood ratio detectors.
flown on manned or unmanned aircraft it is important to processFully Adaptive Detector—Clutter Statisticdn practice, the
the data on board to identify regions of interest and reduce ttlatter is unknown to the anomaly detector. Our emphasis in
need for transmitting to a ground station a large volume of dathis paper is in designing a fullgdaptiveGMRF anomaly de-
The idea is that only high spatial resolution image chips of thesetor, i.e., an algorithm that adapts to the unknown character-
regions of interest are transmitted to the base station. istics of the background (clutter). We considgmeralizedie-
Many existing algorithms for processing hyperspectral datectors where the unknown data statistics are estimated from the
are the direct outgrowth of algorithms that were developed fdata and used in the detector. To make the detector fully adap-
single band or for multispectral sensors where the numbertife, we fit the inverse of the covariance matrix of the hyper-
bands is small. These approaches resort to a variety of apprayectral data to the clutter. This is highly appropriate since, as
mations with the goal of simplifying the computational burderabserved in the previous paragraph, the likelihood functions are
For example, they often ignore the spatial structure of the cluttexpressed directly in terms of this matrix.
working simply with the spectral signature at each pixel of the With the GMRF assumption, the inverse covariance is highly
image. Other methods bin the data, reducing it to a subsetstfuctured, is sparse, and is described by very few parameters.
spectral bands. Still others achieve data reduction by some §the main task of the fully adaptive GMRF algorithm is then
tistical procedure that abstracts from the data a relatively smadtuced to estimating this small number of unknown quantities
number of features. Important questions in these approachedlirat parameterize the inverse covariance matrix.
clude the following: which bands to discard, or, equivalently, the The paper studies this estimation problem and its impact on
optimal choice of relevant features; which data-reduction statibe detector. We present the log-likelihood function, and then
tical procedure to use, e.g., principal component analysis; dafbte that optimization of this function with respect to the un-
nition of a good performance metric that can assist in the selémown parameters, i.e., maximum-likelihood estimation, is a
tion of bands or definition of features. convex optimization problem—the log-likelihood function is
A widely used anomaly detector fonultispectral data, i.e., convex on the constrained parameter space, and this parameter
developed for sensors with a reduced number of spectral basdace is convex. We establish the Cramér—Rao bounds on the
(ten or less) is the algorithm presented in [7]-[10], commonlypean-square error of any estimate of the parameters. To com-
referred to as the RX algorithm, after the initials of its propgpute this bound, we write explicitly the log-likelihood function
nents, Reed and Xiaoli Yu. The RX algorithm is a likelihoodn terms of the unknown parameters. This leads to an explicit
ratio detector based on a number of simplifying assumptiorexpression for the Fisher information matrix.
Extending the RX algorithm to hyperspectral imagery suffers The paper then focuses on analyzing the advantages and lim-
from two major limitations. First, the model assumed by thigations of methods for approximating the maximume-likelihood
RX algorithm is limited to clutter that ispatiallyuncorrelated, (ML) estimates of the GMRF parameters: a direct optimization
or spatially white. This model neglects the potentially valusf the maximume-likelihood function, which will be referred to
ablespatialcorrelation information that is present in the clutteras ML estimates; a least squares (LS) approach—the LS esti-
Second, the RX algorithm does not scale well: itis computatiomates; and optimization of an approximate log-likelihood func-
ally expensive, since the RX detector requires evaluating the tren—the approximate ML estimates, or AML estimates. The
verse of the sample covariance matrix of the hyperspectral ddédter are constructed assuming that the Markov parameters are
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close to the boundary of the parameter space. We presentdhe essentially modeled by a three—dimensional (3-D) GMRF
three methods and study their performance in two contexts:faswhich the Markov parameters are distinguishable from those
accurate and reliable estimators; and, more importantly, as pafrthe clutter background. We present detection performance re-
of the fully adaptive GMRF anomaly detector. The appropriatsults for the adaptive anomaly detector using the alternative es-
ness of the estimation techniques for use in the GMRF detectionation methods when processing real hyperspectral imagery
is analyzed in terms of both their computational cost and théiom the HYDICE and SEBASS sensors. These experimental
detection performance on real hyperspectral data. results compare very favorably with the detection results of the

Regarding their performance as estimators, we present RX algorithm on the same data, while the GMRF algorithm is
sults with synthetic data, and compare the mean-square errorsignificantly faster than the RX algorithm. Finally, Section VIl
tained by Monte Carlo simulations with the Cramér—Rao bounslimmarizes the paper.

There is good agreement, with some degradation, as expected,
of estimation performance for the approximate maximum-like-

lihood estimates when the parameter values are away from the
boundary. Hyperspectral sensor imagery is often described as a data

Because the approximate maximume-likelihood estimates atabe where the images of a scene at different wavelengths are
the least squares estimates have similar performance on higétgcked together in the wavelength dimension. We can consider
correlated data, and maximum-likelihood estimation is compthe hyperspectral cube as a 3-D finite lattice, where each pixel
tationally significantly more costly than the other two, whetocation in the image cube is referenced by the variablgsand
making the GMRF detector fully adaptive, we consider onlf, which indicate the spatial location and the particular spectral
the least squares and the approximate maximum-likelihood ésnd in which the pixel lies. Clutter in hyperspectral imagery
timation procedures. Our overall conclusion, based on detég-usually highly correlated. After a preprocessing step that re-
tion results of the fully adaptive GMRF anomaly detector witinoves the spatially varying mean of the hyperspectral data, we
real hyperspectral imagery, is that the least squares and apprordel this highly correlated spatial and spectral clutter with a
imate maximume-likelihood approaches display nearly identicabncausal Gauss—Markov random field (GMRF). In addition to
detection performance. Most significantly, the level of perfoicapturing the noncausal property of the data, this clutter model
mance achieved by the GMRF algorithms even with a reducadcounts for the important Markov nature of the spatially—spec-
number of spectral bands is as good as (if not better than) thally correlated background. We refer the reader to the work in
performance provided by the RX algorithm, while being appr¢t2]-[14]. These references discuss in depth the Markov prop-
ciably less challenging computationally. In terms of overall deerty and the specification of two-dimensional Markov random
tection and computational performance, the results highlight thelds (MRF). Modeling the statistics of the clutter with mean
approximate maximume-likelihood algorithm as a good estimaemoved as a Gaussian field is clearly an approximation. This is
tion technique to incorporate in the GMRF anomaly detectoften assumed, see for example the work in [7] with multispec-
for hyperspectral imagery. Because of the good computatiotial data, to simplify the computational cost of the detector. How
characteristics of the GMRF adaptive detector and its good @mod is a detector designed on the basis of such an assumption,
tection performance with real hyperspectral imagery, the GMRIS with any other model assumed, it remains, of course, to be
anomaly detector is one of the candidate anomaly detectionjaldged in the final analysis by testing the detector with real hy-
gorithms to be flown with a new sensor under development Ipgrspectral imagery, as done in Section VII. Distributions with
the Adaptive Spectral Reconnaissance Program (ASRP) of tieavier tails may be more appropriate and will be considered in
U.S. Defense Advanced Research Projects Agency (DARPAjuture research.

The organization of the paper is as follows. In Section Il, As first suggested by Hunt and Cannon in [15], we assume
we present a brief overview of our GMRF modeling frameworthat the Gaussian process describing the dominant image back-
for hyperspectral clutter. Section Il describes the optimal maground has a slowly varying covariance structure. Consequently,
imum-likelihood approach to estimation. It presents the logirocessing is done on subblocks of data for which the clutter is
likelihood function, and then uses the GMRF model to derivessumed to be statistically stationary. The processing region is
explicit expressions for this function and to determine the cofurther divided into sublattices of siz&; x N; x Ni where
strained space of the Markov parameters. In Section IV, we d¥;, is equal to the total number of available spectral bands,
rive the least squares method which is a nonparametric estirmae Fig. 1. We refer to these sublattices as Markov windows.
tion procedure, and, in Section V, we detail the approximaieéhis is similar to the sectioning done in Besag's coding method,
maximum-likelihood technique. In Section VI, we analyze thevhich he discusses in [12]. Basically, we adjust Besag'’s coding
performance of the three estimation methods. We compute thethod so that our Markov windows do not overlap. The as-
Cramér—Rao bounds for the unknown, deterministic Markov psumed Markov nature of the data implies that pixels within the
rameters, and then compute by Monte Carlo simulations the b&sne Markov window are all that is necessary to completely de-
and the mean-square error associated with the estimates puasibe the intensity of the center pixel of that window, i.e., the
vided by the three methods. In this section, we also study thtarkov windows are mutually independent. The pixels in each
computational cost of the anomaly detector when it incorptdarkov window are lexicographically ordered to form a set of
rates each of the three estimation procedures. The detector fisguddndependent data vectors.
we will use is derived in detail in [11], and briefly described in  Within each Markov window, we let;;;, 1 < i < N,
Section VII. The target data are assumed to be stochastic, dnd j < IV;, 1 < k < N, represent a three-dimensional finite

Il. GMRF CLUTTER MODEL
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Hy, H}\J andH}, are Toeplitz matrices that have zeros ev-

erywhere except for the first upper and first lower diagonals,
Fig. 1. The hyperspectral image cube is processetl»n x K subcubesin \yhich are composed of dlls. The subscript denotes the size of

which the clutter is homogeneous. The image is further partitioned into mutuaﬂ){e matrices

independent Markov windows, denotedbf;,, 1 < p < n (n =9). ; . L
The matrix A, referred to as the potential matrix, is a sparse

lattice field. The intensity:; ;. of each clutter pixel is describedPlock tridiagonal matrix and contains all the relevant informa-
by the minimum mean-square prediction error (MMSE) repré’-On regarding the GMRF structure [17]. The error vectoin

sentation, [16], [L7]. This autoregressive formulation is equivi2) 1S a23amp_le from a colored noise process with covariance
Y. = o“A. This leads to the direct parameterization of the in-

lent to the Gibbs distribution formulation, [12]-[14]. For sim- . 1 oo .
plicity of presentation, we adopt a first-order, homogeneouErse of the clutter covariance mathix'”. Beginning with (2),
noncausal GMRF described by it can be shown [17] that, by application of the orthogonality
principle
Tijk = Br(@igg-1r + Tig+or) + Be(T—1)ik + T+1)5k) 1
o= A (10)

+Bs(Tijn—1) + Tijatn)) +€igre (1) 2 T3

The parameterg;, (3., andg, are the minimum mean-squareUsing (4)—(9) in (10), the inverse covariance matrix of the field
error predictor coefficients for the spatial and spectral diX is expressed in Kronecker notation as

mensions, respectively, and;, is the prediction error. At . B L 1

the boundaries of the Markov window, the model in (1) i¥x =~ 2 Un@In©Hy )45 Iy @1y, @1y))
completed by appropriate boundary conditions. We assume T T,

zero Dirichlet boundary conditions. Other boundary conditions By L 8, L

could be adopted, e.g., Neumann or cyclic boundary condi- ~ — 3 (Iv @Hy, @1n;) =5 (Hy, @Iy, @1x;). (11)
tions, see [12], [18]. The noise field;;, is correlated, with T T,

correlation structure discussed below. Equation (1) correspongg identify the four main components of the equation by the

to a first-order three-dimensional Markov model. Itis assumeghriables?:, 7y, 75, and 7.

without loss of generality, that the clutter is zero mean. In The parameterizaﬂon ot andi}m is a function 0f0—2 and of

practice, the spatially varying mean is locally estimated anfe three Markov parameters,,, 3., ands3,. With higher order

removed from the data. The window size to remove the spatial¥arkov models, the parameterization f ' would involve a

varying mean is optimized to minimize the third moment of thgsw additional parameters. To make the detector adaptive to the

data, which tends to make the data histogram look closer tgknown clutter as when using real data, these parameters are

Gaussian density. estimated from the data. We now turn our focus to the issue of
Using (1), the data within a Markov window can be compactlystimation.

represented by the matrix—vector equation

AX = ¢ @) lll. MAXIMUM LIKELIHOOD

A. Parameter Space and Eigenstructure

where We first discuss the maximum-likelihood method for esti-
A A mating nonrandom parameters [21]. Under the GMRF model
Ay o 0 discussed in Section I, the joint probability density function
A= . . . 3) (pdf) for a set ofn independent real-valued data vectors is a
' : multivariate Gaussian density. Using (10), the joint pdf of the
0 Lo Ay independent field samples, , ..., X,, factors as
Ay A 3
: : . p(ilv o 7£n|Q) = |147?,N7-NjN;\,
We use the Kronecker product [19], [20] to represent this matrix (2ro2)—=
in a concise manner 1 &
cexp | —— X! AX,., (12)
A=1In @A + H]l\rk ® Az (4) < 207 m=1 )
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TABLE |
PROPERTIES OFLINEAR ALGEBRA AND THE KRONECKERPRODUCT

1.1 If C = A® B and the eigenvectors of C, A, and B are 9y, z;, and yj;, respectively,
then ¢, =2; @y; where 1 <i<m, 1< j<n,and1 <k <mn

2. | If C = A® B and the eigenvalues of C, A, and B are i, A;, and p;, respectively,

then vy = Xy where 1 <i<m,1<j<n,and 1 <k <mn

p(A ® B) = (pA) ® B, where p is a scalar

eig{pA) = pleig(A4)), where p is a scalar and eig(A) refers to the eigenvalues of A.

5. | eig(A + B) = eig{A) + eig(B) iff the eigenvectors of A and B are equal

- w

where X, is anV;[V; Ny x 1 observation vector formed from thevalue of A to be positive translates into the following parameter
mth Markov window,q is a3 x 1 vector containing the Markov space constraint:
parameters, andindicates a matrix transpose. 7f 7f 7f

Parameter SpaceWe start by determining the valid param-wh| o8 <Nj+1 ) 18] cos <Ni+1> + [ cos <Nk+1>
eter space of the Markov coefficients by analyzing the eigen- 1
structure of the covariance matrix, which is basically the same ] . . <3 ) (16).
as analyzing the eigenstructure of its inverse, or of the potentzfluation (16) defines a diamond shape in three-dimensional
matrix A. Space.

Since A is the inverse of a covariance matrix, it must be 8
positive-semidefinite matrix. This constraint is equivalent to re-
quiring that the minimum eigenvalue df be nonnegative. We  With the parameter space defined by (16), we now proceed in
will look for nondegenerate models and work withbeing pos- deriving the maximum-likelihood estimates.
itive-definite. We determine, analytically, the eigenvalues of the Structure of the Negative Log-Likelihood Functiobue to
potential matrix. the properties of the logarithm function, maximizing (12) with

Beginning with (11), we use properties of linear algebra aff§spectto the unknown parameters is the same as minimizing the
the Kronecker product to derive expressions for the eigenvectdggative of the log-likelihood function. From (12), the negative
and eigenvalues of the potential matrix [19], [22]. Table I list®9-likelihood function, ignoring constant terms, is
the properties which we take advantage of in the derivation tHatX1 - - -, X,,|6)
follows. We first determine the eigenvectors of the four terms _ nNiN; Ny, lno? — ghl|A| + % tr(AS) (17)

highlighted in (11). We represent the eigenvectors of the ma N . .
ghlighted in (11). We represent the eigenvectors of the v?/hereS is the sample covariance matrix

. Nonlinear Optimization

tricesHy, , Hy,, andHy by ém,, dn,, andeu,, respectively. Lo
Recalling that any nonzero vector is an eigenvector of the iden- S== Z X, X .

tity matrix [22], we letdr, = ¢m,, ¢1, = ¢m,, andér, = ¢, . =

Then, by Table I, Property 1, we can choose a common set ofl € second term in (17), which is dependent only on the po-
eigenvectors for each of the terrifs, 75, T3, andZy in (11), ten'uall matrix A, is refgrred to as thenodel term M (8), anq
which are¢, © ¢u, ® ¢r,. Now, we use Properties 2, 3, 4,the third term, which is dependent on bathand the data, is
and 5 in Table | along with the fact that all eigenvalues of thgferred to as thdata term D(X,, ..., X, |6). _
identity matrix are equal to one to obtain the expression for theUsing the Kronecker representation far which appears in

eigenvalues\;;;(A) (11), we can express t#e data term as

Nijr(A)=1=Bu X\ (HY) = B (HE )= Bsh(HY, ) (13) DXy, Xo|0) = o5 t{[Ts = 511 = BT — B.13] 5}
where)\j(H]{,j), 1 £ 5 £ N; are the eigenvalues (Hlfj, and (18)
similarly for X;(H}, ) andA.(Hy, ). whereT:, T,, and; are defined in (11). Equation (18) is equiv-

The matrixH 3, can be associated with the Even Sine Transdent to 1
form, and has the following set of eigenvalues [23]-[26]: D(X,,....X, |0 = 303 (Se — 28ux10 — 2BuXe — 28sXs)
[0}

Ap(HE) = 2 cos <Np—i1 . fori<p<N. (14 (19)
Combining (14) with (13), theV; N; N}, distinct eigenvalues for where n N; N; N
the potential matrix are gompletely defl_ned by the Markov pa- S, = Z Z Z ( x;?k)Q (20)
rameters3;,, 3., 3., ands*, and by the dimensions of the cube mel im1 j=1 ke1
of data being processed. They are given by n N Nj-1 N,
Aije(A) =1 = 2f, cos < = ) — 20, Xh = Z Z Tk (21)
Ny +1 m=1 i=1 j=1 k=1
T km n N,—1 N; N
- cos — 283, cos < ) 15 . mm
<Ni + 1> Net1) Xo =) D D whaln (22)
wherel < j < N;, 1 << N;,andl £k < Ny. m=1 i=1 j=1 k=1
Depending on the signs of the Markov parameters, the min- n Ni N, Ne—1

imum eigenvalue occurs when the cosine terms are at either their Xs = x?;kx?;(k+1)' (23)
minimum or maximum values. Requiring the minimum eigen- 4

3
3
Il
—
<
Il
-
.
Il
-
o~
Il
-
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The quantityz7?, represents the intensity of the pixel at spa- To perform the optimization for the Markov parameters,
tial locationt, 7, spectral band:;, and within themnth Markov we use the Polak—Ribiere conjugate gradient method as im-
window. plemented in [32]. This implementation performs a series of
For the model term, we use the product of the eigenvaluesie—dimensional (1-D) line minimizations rather than a more
defined in (15), to obtain a parameterization for the determinasdmplex multidimensional optimization. To incorporate the

of the potential matrix in terms ¢;,, 3., andg, parameter space constraints into the optimization, we use a
iw modification to the bracketing scheme that was suggested by

Al =TT IT II {1 — 28, cos <N» 1) Balram and Moura [23]. The bracketing scheme uses (16)
i J ok it to ensure that the ML estimates remain within the parameter

23 i 23 km 24 space.
— 2P cos N;+1) fa cos N.+1/|° (24) The nonlinear optimization that is required to obtain the ML
estimates is computationally expensive, which is not desirable

Using (24), the model term is expressed as when trying to develop an overall detection algorithm that is

n i N M jr implementable in real time. Therefore, we look to alternative
M(9) = 5 Z Z Z In {1 — 2f3, cos <N,» T 1) estimation procedures in order to reduce the computational load
i=1 j=1k=1 J of our GMRF detector.
0 kmw
~ 2B cos <Ni + 1) 2, cos <Nk + 1)} - (29) IV. LEAST SQUARES

Optimization of the Log-Likelihood FunctioriThe max- A. Least Squares Formulation
imum-likelihood estimation of the covarian&g, subject to the

. o . One alternative approach to the maximum-likelihood tech-
constraint, > 0 is trivially given by

nigue is the least squares method. This method is based on min-
Y, =S5. imizing the mean-square modeling error

n n
However, our problem belongs to the category of estimating / _ AX_ Y (AX 27
structuredcovariances where the structureXf is determined Z Emm Z (AX,) (AX;) 27)
by (11). The estimation of structured covariances has been cor#]- is the total ber of ind dent dat ¢ ithi
sidered in the statistical and signal processing literature, e. _,eren IS the fotal number of independent data vectors within
the processing window, and the subscriptienotes from which

[27]-[30]. In our case, the constraints are easily expressed’ilT : .
terms of the inverse of the covariance, which is given as a lindgticular Markov window the data vector was derived. The least

combination of known matrices, see (11) and (19) squares method provides computational advantages over the op-
From (20)—(23), we can see that the data term in the neéingjal approach in two respects: first, it avoids a nonlinear opti-
tive log-likelihood function is linear on the parameter©ur ization, and, second, since computing the likelihood function

estimation of the unknown parameters is a convex optimizatifﬁwnOt a part of the estlrr_]auon procngre, the least squares ap-
oroach does not necessitate constraining the parameter space.

problem: the log-likelihood function is convex on the param0 By taki d f the K K iond
eter space determined by > 0 (see condition (16)), and the _DBY taking advantage of the Kronecker representationAor

constraint set defined by (16) is convex. The positive-definigslVen in (4)—(9), and rearranging terms, we determine that
constraint onAd is commonly referred to as a linear matrix in- AX,, =X, — Gnb (28)
equality constraint in the parameters. This optimization problem

is an instance of a general optimization problem known in tHher

m=1 m=1

e

literature as a max-det problem, [31]. This guarantees the ex- G = [T1X,, TX,, TsX,] (29)
istence of a global extremum and no other local minima in the IR

0=[6n Bo B (30)
parameter space.

As a result of the logarithmic component present in th@nd 73, 73, and73 are the Kronecker expressions defined in
model term, the gradient of(X,,...,X,|8) cannot be (11). Using the above notation, the least squares estimates of
explicitly solved for the Markov parameters. However, ththe Markov coefficients are [33], [34]
maximume-likelihood estimate for the scaling parametécan N -1,
pe solved.for and is a linear combination of.the maximum-like- fro = G G G X . (31)
lihood estimates for the three Markov coefficients, 3., and ! !

Bs

The estimate for the scaling parametéris obtained by using
. 1 n o P
P Z X! AX, (26)_, and replacingl,,,; with A,,.
nNiN;Ny = Since there are three unknown scalar parameters, we see from
1 . . . (31) that least squares estimation requires taking the inverse of
= NN, (Se = 2Bnxn — 2BuX028s xs)  (26) a3 x 3 matrix. For hyperspectral data, this is significantly less
B _ ~challenging computationally than computing the inverse of a
wheres;, x., x», andy are defined by (20)-(23), respectivelyfy|| data covariance matrix, as for example in [7], [35], and is
IStrictly speaking, the data term is linear bfv? and a suitable normaliza- E_‘ISO ComPU'_‘a“(?”a”y better th_an the _maX|mum'“ke“hOOd non'
tion of the Markov parameters by this quantity. linear optimization presented in Section Ill. However, to obtain
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ands,, is defined in (20). Storing the 12 values defined above,
rather than theZ,, matrices, saves a significant amount of
storage, and therefore decreases the overall processing time.
In the next section, in an effort to reduce the computational
complexity even further, we look to another estimation pro-

UGTG cedure, approximate maximum-likelihood (approximate-ML).
Z m In addition, the approximate-ML procedure differs from least
m=1 squares in that it is a parametric approach that takes advantage

of the Gaussian pdf for the clutter background.

V. APPROXIMATE MAXIMUM LIKELIHOOD

equ1va]ent For highly correlated three-dimensional fields, we have ob-
served that the maximum-likelihood estimates, as for two-di-
mensional fields [23], [18], tend to reside on the boundary of
the parameter space. In this section, we present an alternative
the@,,G,,, matrices in (31) through direct vector muItipIicationmeans_O]c estimating fche maX|r_num-I|I_<eI|hood pargmeters that
still requires significant processing, as well as a large amo proximates the optimal maX|ml_Jm-!|keI|hood estimates. The
of storage. In the next section, we show a means of reducg&proach assumes that real HSI is highly correlated, and takes
both the storage and processing required by the least squ \éantage of the fact that the parameter estimates should be
approach. close to the boundary of the parameter space, see also [23]. We
refer to this method as the approximate-ML approach.
B. Reduced Least Squares Approximate-ML makes use of a simple mathematical ap-

I N . roximation for thdn (1 — ») that is present in the model term
To minimize the processing involved in the least squares %s-

L efined in (25) in Section Ill. We use the second-order Taylor
timation method, we take advantage of the fact that the mat%proxim ation for the logarithm

> 1 GG, is symmetric and so only six of the nine com-

Fig. 2. Unique components @&/ G...: Only six of the nine components are
unique.

2

ponents are unique, see Fig. 2. The matriEgsl,, and7; are N 2
defined in (11). (1 =m) =-n -5 +o(n) (38)
We use properties of the Kronecker product [19], [20] to simMyhere
plify each of the six components into linear combinations of . .
one-step-ahead and two-step-ahead correlations — 923 J7 23 “n
P p 7 [;Lcos<Nj+1 + 28, cos N1
Z:z=l X;nTllTern = 2Sac - Sacp + 2Xh2 (32) ke
n )t _ + 24, cos . (39)
Ern:l XrnTQTQXrn — 2539 - Sacp? + 2)('1;2 (33) Nk =+ 1
2 om=t X 313X = 255 — Sups + 2xa2 (34)  Use of the Taylor series approximation in conjunction with the
Yot X T X = 2X 00 + 2X b2 (35) following two trigonometric properties:
Z:z=1 X;nTllT?)an = 2xsn + 2xsn2 (36) N i
St XT3 X = 20 + 2Xa02 (37) D cos <N+ 1) =0
=1
where N ]
N 2 z:(jos2 o = V-l
Zrn 1 Zz 1 Z - ( ;Yk) +(x;7])\’jk) =1 N+1 - 2
m 2
Sapz = Lmt iy Zk L (355" + (2% 1) leads to a simplified form for the model term
alc1’3 Zrn 1 Zz 1 ZJ 1( Ul) +( ZLN )2 N;
N;—2
v = Thoy Ty T B el — Y (e P ).
i=1 j=1 k=1
=2 =t E EJ =1 Ek 1 xukx(7+2)Jk (40)
]\]‘7
=Lt 23\ 1_121 Al _El TR 42) Using (40) in the likelihood function in (17), taking deriva-
Xho = Dot Doie 22 Zk 1 T (1) (1)k tives with respect to the Markov parameters, and equating to
N-—l N; 71 ici i
Xme =30 SN E Ek . $2(1+1)k37(z+1),k zero leads to explicit expressions &y, 3., andj3;
; N;—1 N.—1 re Xh
sh = ; j o= ik Ti(j : O = 41
Xsh = Dom=1 Ez 1 E]]\ 11 ?\’—11 TG4 (k1) P no?N;Np(N; — 1) (41)
- Ve — rn m
Xsh2 = Ern =1 27 =1 E] =1 k=1 1(]+1)kx11(k+1) B\ _ Xwv (42)
N-—1 Ne=l v 2N, Nu(N; — 1
Em 1 E E] 1 E k ka(z+1)1(k+l) hd k( )

. = Xo (43)

N—l Ni—1
Xsv2 = Dome1 Die ZJ 21 2ohm1 0T er1) no? Ny N;(Ny — 1)
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wherexyy, x., andy, are referred to as the one-step-ahead cdf-I'. is the error covariance matrix associated with any unbiased
relations, and are defined in (21)—(23), respectively. The aboestimate of the unknown parameter vegtothe Cramér—Rao
expressions fop;,, 3., andg, are only valid wher; is much bound, see [21], is given by

smaller than one, or, in other words, when the datansrakly
correlated and the Markov parameters are far from the param-
eter space boundaries. However, real hyperspectral imagerwisere.J is the Fisher information matrix

known to behighly correlated, especially in the spectral dimen- PLX,,....X.|A) N
E — 7 I[’?] = h7v78 (48)

r.>Jt (47)

sion. Thus we must adjust expressions (41)—(43) to accommaQgj —
date forn not being small. A3 3;

First, from (41)~(43) we obtain expressions for the ragl?s where L(X,, ..., X, |3) is the negative log-likelihood func-
and ‘;—’ This eliminates the dependency e, but only pro- n | ~

HY-s, . . “y tion given by (17). From (17), we see that the data term in
vides us with two equations for determining the three unknowry x . ¥ |3} is linear in the Markov parameters and the

parameterss, 3, and3,. Since with highly correlated data, first term does not depend on them. Since (48) involves second-
the parameters should be near to the boundaries of the pargfger derivatives with respect to the parameters, we are only
eter space, we use the parameter space constraint defined in gd8kerned with the middle term in (17), i.e., the model term
as our third equation, thus forcing the parameter estimates fp/2) In | A|. To compute the derivatives of this term, we need to
be closer to the boundaries. We now have three equations @Rflress the determinant dfin terms of the Markov parameters
three unknown parameters. By solving the set of linear equa-This is provided by (25). Using this expression, and taking the
tions, we obtain the approximate-ML estimates (see (44)—(4Qcond-order derivatives in (48), the Fisher information matrix
at the bottom of this page), where i

is
(N; — 1
a:Nk(NJ 1) J:%Z —
Nj(Ni —1) P
& =0.5— 6§, andé is a small number included to ensure that the jw jm im i ki
. o . cos® 4 cos 2= cos + Cos 2= cos +
estimates are inside the parameter space. The estimate for the N+l 1“:'+21 N Nyt = Ne
scaling parametes? is obtained by using (26), and replacing - = COS™ N 11 COS N1 “OS N, +1
SLAlily Paldl _ _ 2 _k
A With A = = cos” g
(49)
VI. ESTIMATION PERFORMANCE where

In this section, we first compute in Section VI-A the CramérD = |1 — 273}, cos <N‘77r ) — 203, cos <Nm )
Rao bounds for the Markov parameters, when the paraméter it i+l

is assumed known. These bounds [21] represent a lower bound _
) | g 23, cos
on the accuracy of any unbiased estimate of the desired %’:\- ) _ ) ) o N +1

methods presented in Section 11l by computing by Monte CarR§acing this inverse in (47), we get a lower bound on the error
simulations the bias and the mean-square error of the three @ariancd’.. For example, the variances of the error estimates
timates: maximum-likelihood, least squares, and approximae bounded below by

maximum-likelihood. Finally, in Section VI-C, we compare the 03, > (I D,  i=h,us. (50)
three estimation schemes with respect to their computatiofdlese bounds are computed numerically in the next subsection.

cost. o
B. Estimation Accuracy

A. Cramer-Rao Bounds We now consider the negative log-likelihood function and
We model the three Markov parameters as deterministic, tthen analyze the error accuracy and reliability of the maximum-
known, and collect them in the vector likelihood, approximate maximum-likelihood, and least squares
B, estimates. To carry out these studies, we generate samples of a
B=1581. three-dimensional noncausal GMRF field for fixed valueg.of
B 3., anda?. Each sample is of spatial dimensidrisx 15, and is
[/3; _ . £Xh - - (44)
Ixn|cos ((Nj-i—l)) + |xo| cos (m) + x| cos ((Nk-i-l))
7= Exv (45)
[x7.| cos ((N;T-l—l)) + |xv| cos ((1\77—+1)) + alxs|cos ((N;:T-i-l))
o abxs (46)

bl os (s ) + bl cos (oay ) + ol eos (o)
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comprised of 15 spectral bands. The chosen spatial dimensions  **

match those of the processing window used on real hyperspec- .
tral sensor imagery with pixels of 1-m spatial resolution. In all
three examples, the scaling parametgiis set equal td. We
generate the samples of the noncausal Gauss—Markov random -02
field through a simple extension of a method developed in [17],
[18]. In general, the synthesis method uses the Cholesky decom-
position of the potential matrix to derive an equivalent one-sided
regressor for the noncausal field. We drive this one-sided re-
gressor with Gaussian white noise input, generating recursively
a sample of the noncausal three-dimensional field with given
parameter values. o

Plots of the Negative Log-Likelihood FunctioWVe illustrate 02
this function in two cases: when the field is highly correlated
with Markov parameters;, = 0.2, 3, = 0.1, ands3, = 0.2; and ' B,
when the field has a mixed correlatigh) = 0.02, 5, = 0.01, (@)
andj, = 0.4. With the high correlated field, the values of the
Markov parameters are such that the constraint in (16) is met
with equality. In Fig. 3(a), we show contour plots of the negative 04
log-likelihood function, see (17) on the valid parameter space. 02
Since there are three parameters of interest, the contour plots _, | .
are generated by fixing bo#? and one of thed parameters at N
their true values, while varying the other two parameters. The
minimum point is marked with an asterisk. In the high-correla-
tion example, since the parameter space constraint is met with e S o
equality, the true parameter values sit on the boundary of the pa-
rameter space.

In Fig. 3(b), we display the contour plots of the negative log- 005
likelihood function for the mixed correlated field. In the spectral .
dimension, the true parameter value sits close to the boundary
of the parameter space, while the true values for the spatial pa-
rameters are centrally located in the parameter space. It can be -0

« 0

-04

02

Fo

o 0

01 -0.05 0 005 Ot

observed in the lower left contour plot in Fig. 3(b), that, for a B
fixed value of3;, the log-likelihood function is rather flat, indi- (b)
cating that it is basically insensitive to changegiinands, . Fig. 3. (a) Highly correlated field. The true parameter values sit on the

The flat structure of the log-likelihood function in these exboundary of the parameter space. (b) Mixed correlation field. Truealue
amples has implications in the mean-square behavior of the g§- hear the boundary of the parameter space. For a fikedalue, the
timates. log-likelihood function is relatively insensitive to changesiinand 3, .

Mean-Square Error and Cramér—Rao Bound Studi®ée
now compute by Monte Carlo simulation the experimental bidige) and the least squares (dash—dotted line) estimates are either
and mean-square error for each of the three estimates of tinbiased or exhibit a very small bias, except when the configu-
Markov parameters: maximum-likelihood (ML) estimate; leagation of thes parameters is close to the boundéfy, = 0.3)
squares (LS) estimate; and approximate maximum-likelihogextreme right of the plot) where the maximum-likelihood esti-
(AML) estimate. In the simulation studies below, we fix thenate shows a slight bias. This is expected because we have no-
values of two of the Markov parametefs = 5, = 0.1, and ticed that the ML function is significantly flat when the Markov
the value of the scaling parametet = 1. The scaling param- parameters are close to the boundary of the parameter space,
eter is assumed to be known. We fattake six different values i.e., the field is highly correlated and the gradient descent algo-
in the range= [0.050.3] at increments 06.05. Note that the rithm has difficulties in determining the minimum while satis-
sum of the3’s will go from 0.25, which represents a low corre-fying the parameter space constraint. On the other hand, the ap-
lated field, t00.5, a highly correlated field. Because of the symproximate maximume-likelihood estimate (dashed linmarks)
metry of the Cramér—Rao bound expression ondlsewe ex- as computed from (44)—(46) improves significantly its perfor-
pect to obtain similar results when we repeat these experimentance as we move closer to the boundary, see the bottom plot
by varying in a similar fashion one of the other parameters rathierthe figure that is monotonically improving from left to right.
thang;,. This was essentially confirmed in our studies, and is ndtis is intuitively pleasant since, from our discussion in Section
illustrated for lack of space. V, (44)—(46) were derived assuming a highly correlated field.

Fig. 4 shows the (normalized) bias of the three estimates féiven that real images tend to be highly correlated, this obser-
the parametes;, computed with MC = 500 Monte Carlo runs.vation helps explain why in Section VII the detection results
From the figure, we see that the maximum-likelihood (solidith real hyperspectral imagery using the adaptive GMRF de-
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Fig. 4. Relative bias o, computed with MC = 5003, € [0.05 0.3], with @)

0?=1,8,=83,=0.1.
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(b)
Fig. 6. Computational comparison. (a) Maximum-likelihood (ML),
Fig. 5. Mean-square error @ computed with MC = 500 and Cramér_Raoapproximate-ML (AML), and least squares (LS), each 'combined v_vith the
bound of;,.: 3. € [0.050.3], witho® =1,3, = 3. =0.1. GMRF detection framework, versus RX: the GMRF algorithms grow linearly,
rather than exponentially with the number of spectral bands. (b) Zoomed-in
view of the crossover region.

tector with the approximate maximum likelihood are close to

the detection performance using the least squares estimates, _ . L -
Fig. 5 sh th | _ MSE) of mge and ticked by .), and the maximum-likelihood (solid Img)
_Fig. 5 shows the (sample) mean-square error ( )0 mean-square errors, and the Cramér—Rao bound (dotted line).

(35, estimate as computed by the three estimation procedur_? & ML and LS plots are very close to the Cramér—Rao bound

averaged again over MC = 500 Monte Carlo runs, and th . . .
Cramér—Rao bound versus the actual value of the Markov q?g%’gh&eet&eocg/t Fi:?; Sritgﬁtd'liyeapggoticehzzltdhi;r;r::sr_ggfe
rameterfh,. These quantities are plotted in decibels CornpUtecorrelated the approximation underlying the AML estimates be-

0.2 0.25

0.15
Markov Parameter Bh

0.1 03

as
comes better and better.
o2 . We have carried out additional studies of the bias, the mean-
10logy, /3—3, t=h,v,s. square error, and the Cramér—Rao bound for other choices of
T

the values of the Markov parameters and for different values of
Going from top to bottom we have: the approximate maximunthe number of Monte Carlo runs. These studies confirm these
likelihood (dashed line andas marks), the least squares (dottedeneral trends. We do not include them in this paper.
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C. Computational Performance DsetA:SWIR

To evaluate the computational effectiveness of the maximum-
likelihood, approximate-ML, and least squares algorithms, we
derive from the C-code implementation of each algorithm, an
expression relating the number of floating-point operations
(FLOP’s) required to compute the detection statistic for one
pixel in the image set to the number of spectral bands used for
processing. This number of FLOP’s is also dependent on the
sizes of the processing, target, and Markov windows that are
used. We use the detection formulation presented in Section
VIl. The total number of FLOP’s per pixel for a specified
processing and Markov window combination is then plotted as
a function of the number of spectral bands used for processing.

Fig. 6(a) shows the results of this analysis for the three s
estimation algorithms under consideration: approximate-ML ot '

(solid line), least squares (dotted line), and maximume-likeli- .“"" )
hood (dash-dot/asterisk), as well as the RX algorithm (dashed 10 w
line). The maximum number of FLOP’s shown on thaxis is False Alarms per km
5 x 108. The results are based on&x 15 processing window, (CY

and3 x 3 target and Markov windows. The RX algorithm [7]

is a maximum-likelihood anomaly detection procedure that ;
assumes spatially white clutter. The algorithm uses a binary hy- g
pothesis approach to detection, and implements a Generalized °¢f — GMRF—AM : 1
Likelihood Ratio Test (GLRT). The algorithm requires a full b oo BHRRAS
spectral covariance matrix to be estimated and then inverted,
and was developed for multispectral sensor data. Its application 2%
to hyperspectral data has two limitations: computational diffi-
culties arising from the matrix inversion requirement, and the
suboptimal spatially white clutter assumption.

The curves in Fig. 6(a) reveal that approximate-ML is com-
putationally superior to both maximum-likelihood and least
squares. For the maximum-likelihood algorithm, the total
number of FLOP’s is dependent on the number of iterations
it takes for the nonlinear optimization to converge. We show
both the minimum possible number of FLOP’s, and the total o}
number of FLOP’s when the number of convergence iterations

e
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is chosen more realistically. For all three estimation methods, 10° w ‘ 10 0 10
the number of FLOP’s increases linearly with the number of False Alarms per km?
spectral bandsV,. As shown in Fig. 6(a), this is a significant (b)

improvement over other maximume-likelihood detection imple-
mentations in which the computational complexity increasé&w. 7. Performance on real hyperspectral data. (a) HYDICE SWIR subset. (b)
with N2. This exponential growth in the number of FLOP'¢'"DICE VNIR subset.
as the number of spectral bands grows precludes the use of
algorithms, such as RX, on true hyperspectral data. In contrasnds to use for processing is an issue thatis currently still being
the linearly increasing complexity of the approximate-Mlanalyzed.
and least squares algorithms when incorporated in our GMRFConsidering the estimation results from Section VI-B and
detection framework makes them viable and practical, fromtlae computational results from this section together, sug-
computational point of view, even when using a large numbgests that the approximate-ML estimation algorithm is the
of spectral bands. overall best choice among the three techniques considered:
Fig. 6(b) is a zoomed-in view of the region in Fig. 6(a) impproximate-ML, least squares, maximum-likelihood. Al-
which the curves of the approximate-ML, least squares, and R¥ough least squares does perform slightly more reliably than
algorithms cross one another. The plots indicate that the RX approximate-ML on the simulated data, the computational
gorithm provides only a slight computational advantage wheriraprovement provided by the approximate-ML algorithm is a
small number of spectral bands is used for processing, i.e., whieach more significant benefit. We focus our analysis on the
using multispectral imagery. However, when using more thapproximate-ML and least squares algorithms in the context of
approximately 14 spectral bands, the approximate-ML approamtr GMRF anomaly detector and, in the next section, present
is computationally superior. The adequate number of spectparformance of these algorithms on real hyperspectral data.
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VII. DETECTION PERFORMANCE ONREAL DATA . DsetB1
: : —
Our analysis of which is the most effective and efficient v )
estimation technique to be used in the GMRF anomaly detector ~ { p————— ER
would not be complete without testing the methods on real  osf Ty GMRR-LS I
hyperspectral imagery. In this section, we show performance -f

e
3

results for the approximate-ML and least squares estimation
methods in conjunction with the detection approach presented
in [11], [36]. The generalized decision test is

1 n — no target

t== Y (X, -m)¥%'(X,-m,) = A (51)

n target

o

o
T
-

Detection Probability
g &

q=1
The vectors X, ¢ = 1,...,n are then independent field sam- P,

ples, m, andX;* are the estimates of the mean and of the in- % r.
verse covariance of the clutter, andis a threshold. The test oil ; !
statistict measures the dissimilarity between the field samples ===
X, ¢ =1,...,nandthe clutter; we refer the reader to [11], [36] o
for details and comparisons with other decision tests. In the lit-
erature the testin (51) is sometimes referred to by the misnomer
“single hypothesis test,” [37].

In our detection performance analysis, we use real data
from the Hyperspectral Digital Imagery Collection Experiment
(HYDICE) sensotr and the Spatially Enhanced Broadband
Array Spectrograph System (SEBASS) sensor [38]. The HY- 4]
DICE sensor records 210 spectral bands of data in the visible
to near infrared (VNIR, 0.4:m-1.1m) and the short-wave
infrared (SWIR, 1.1um-3,m) portions of the electromagnetic
spectrum, while the SEBASS sensor records 128 bands of data
in the long-wave infrared (LWIR, 5:m-14 um). The data
from both sensors have pixels of approximately 1-m spatial
resolution. In our studies below where we compare the GMRF
algorithm to the RX algorithm, we restrict the number of o3
spectral bands to a maximum of 30 for which it is still practical
to apply the RX algorithm.

The first two examples for which we show results, are from o1k
the HYDICE sensor. The scene consists of 18 man-made targets,

e
w
T
-

09

e
~
T

o
o
T

Detection Probability
[ o
o o

0.2

all of which sit in the open, and 840 x 320 pixels in size.We it 10 W , 10
run the algorithms on two subsets of bands: 22 bands from the False Alarms per km
short-wave infrared, referred to as DsetA:SWIR, and 17 bands (b)

from the visible to near infrared, referred to as DsetA:VNIRgg 8. HYDICE data. (a) DsetB1. (b) DsetB2.

Fig. 7 shows the receiver operating characteristic (ROC) curves

[21] for the approximate-ML and least squares GMRF algo- ) .

rithms on the two subsets of bands. ROC curves plot the num@@Proach provides a computational advantage over RX, see

of false alarms versus the probability of correctly detecting tifeg- 6(b).

targets that are present in the scene. An ideal ROC curve would’he next two examples are again from the HYDICE sensor,

be a step function which goes to 100% detection at zero falseat from different scenes than the last examples. In these cases,

alarms. The short-wave infrared results are shown in Fig. 7(#)e visible to near-infrared and short-wave infrared bands are

and the visible to near-infrared results are shown in Fig. 7(bjot broken into two subsets. In each example, the 210 available

The third curve (dashed line) shown on the plots is for the R3pectral bands are aggregated into 30 bands which span the vis-

algorithm [7], [9], a well-tested anomaly detection algorithmiple to short-wave infrared. The images cover similar scenes,

see the discussion in Section VI-C. although the first example, referred to as DsetB1, contains 19
As observed with the synthesized data, the approximate-Mtrgets, while DsetB2 has 16 total targets. The images are again

and least squares methods perform nearly identically. In bdt#0 x 320 pixels in size. The ROC results for the two hyper-

cases, it is important to note that the two GMRF algorithnapectral images are shown in Fig. 8.

outperform the benchmark algorithm. For the number of Spec-on psetB1, all three algorithms show similar detection per-
tral bands used in these examples, only the approximate-N4mance, while on DsetB2 the least squares method performs

2Naval Research Lab (NRL) Hydice Web Site, http:/rsd-www.nrl.navyN€® best, followed by approximate-ML. Both provide slightly
mil/hydice/ better performance than the RX algorithm. Using 30 bands,
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TABLE 1l TABLE 1l
AVERAGE PROCESSINGTIME ON 30 BAND HYDICE DATA AVERAGE PROCESSINGTIME ON 19 BAND SEBASS DATA
| Algorithm Processing Time | | Algorithm [ Processing Time |
Approximate-ML (GMRF) 35 minufes Approximate-ML (GMRF) 61 minutes
Least Squares (GMRF) 50 minutes Least Squares (GMRF) 92.5 minuftes
RX 76 minufes RX 99 minutes

b.Oth the ap_promm_ate_—l_\/IL and the Iea_\st squares GMRF algt?én, but a slightly degraded performance at higher detection
rithms provide a significant computational improvement over
RX. The average proces:sing times of the approximate-ML, le%{at the trend in the ROC curves observed in Figs. 9 and 10
Squses,and X o an DSEIBL AW DSeB2 G PR-L 1yt o thrs beng a sucant rangs -t 3 of

9, target, . . 2’ the targets in the scenes. Fig. 11 shows ROC curves for the
3% 3, and3 x 3, respectively, are shown in Table II. The t'mes%]%proximate-ML GMRF approach, the least squares GMRF
fl?l’?l’\:\ll: Igéhzfztg(k))-laHazn&:ggug?gzgsgr pve\ﬁgj] 3;?nfor3(§: Scom_ethod, and the RX algorithm on target types A and B for the

g P o 9 35U SPeK e image cubes of DsetD2. Target type A consists of small
tral bands for these data sets, the RX algorithm takes tWICer%gn—made obiects which. in aeneral. extend over onlv 1 or 2
long as the approximate-ML GMRF approach, and 1.5 times as ) N9 ' y

long as the least squares GMRF method to process one im ixels, while target type B consists of larger man-made objects.

€ o :
cube of data. When the number of spectral bands is increase o results indicate that the RX algorithm does better than

105, the differences in processing times become more dras € GMRF methods on the smaller objects (type A), but the

e.g., the approximate-ML GMRF approach takes 4 h, while R quRFdaIgonthms olutperflorr_n RXfonr:he Iarg:ier_obj;ec;§ (typed
takes 44 h. . To draw general conclusions, further analysis of this tren

.IS necessatry.
The last set of examples are from the SEBASS sensor. Sinc computational analysis of the SEBASS results re-empha-

this is a thermal sensor, we include results on data collecte . . .
at various times throughout the day. Figs. 9 and 10 sh Sizes the superiority of the approximate-ML GMRF algorithm.

. ble 11l shows the average processing times over all 19 image
ROC results for four sets of hyperspectral imagery, referr%&:bes from the 4 SEBASS data sets for the approximate-ML

to as DsetD1 (Night), DsetD2 (Noon), DsetD3 (Evenmg)GMRF algorithm, the least squares GMRF approach, and the
and DsetDA (Afternoon). In contrast to the qther examplﬁcx method. Even for only 19 bands, the table shows that the
presented in this paper, these data sets consist of several Ii‘%algorithm takes 1.5 times Ionger, to process the SEBASS

perspectral image cubes. The first three sets contain five imewgl than the approximate-ML GMRF algorithm. The approx-
cubes, while the fourth contains four image cubes. For clarity in ate-ML approach is also significantly faster .than the least

the presentation of the results, we show the performance of {hE
algorithms on a subset of the total number of available imaaguares GMRF method.
cubes. The images contain between 30 and 40 targets, some
of which are partially obscured, and the size of the images is
6100 x 128 pixels. We use 19 bands spanning wavelengths 8.5
to 12.5um. There are 78 bands available in this wavelength In this paper we have presented a clutidaptiveanomaly
range, and we aggregate these bands to obtain the 19 batetector for hyperspectral imagery: the Gauss—Markov random
used for processing. field (GMRF) algorithm. Efficient processing of hyperspectral
Figs. 9 and 10 show the performance of the approximate-Minagery requires the development of new detection methods due
GMRF approach, the least squares GMRF method, and the RXhe massive amount of spatial and spectral data that are cap-
algorithm on the SEBASS data. The “best,” “worst,” and “metured by the sensor. The GMRF detector improves upon the
dian” labels refer to the performance of the approximate-Mhenchmark multispectral anomaly detector (RX) in two crit-
GMRF algorithm on the available image cubes within a partidsal respects: It avoids an inversion of the data covariance ma-
ular data set. Recall that within a given SEBASS data set therix by directly parameterizing the inverse of the covariance,
are five image cubes available for analysis. We compared ted it simultaneously exploits the spatial and spectral corre-
ROC performance of the approximate-ML GMRF algorithm ofation of the clutter. The critical task in the adaptive version
all five image cubes by plotting the curves on one axis. Usirgf the GMRF anomaly detection algorithm is the estimation
the image cubes on which the approximate-ML GMRF algof the GMRF parameters defining the parameterization of the
rithm showed the best, worst, and median performance, we shiowerse of the clutter covariance. This paper focused on this
in Figs. 9 and 10 how the performance of the approximate-MEsue. We have presented and analyzed three techniques for es-
GMRF method compares to the performance of the least squaismting the Markov parameters: the optimal maximum-like-
GMRF approach, and the performance of the RX algorithm. lihood approach, a least squares method, and an approximate
As with the HYDICE examples, the approximate-MLmaximume-likelihood procedure.
GMRF approach and the least squares GMRF method showlhe three estimation techniques were evaluated along three
nearly identical performance. In each of the four SEBASS dataain criteria: estimation performance; computational cost;
sets, the GMRF algorithms, in general, show better detectiand detection performance of the adaptive GMRF anomaly
performance than the RX algorithm at low probability of deteaetector as evaluated with real data. The estimation accuracy

gbabilities. Our preliminary analysis of the results indicates

VIIl. SUMMARY
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Fig. 9. SEBASS data. (a) DsetD1: “best.” (b) DsetD1: “worst.” (c) DsetD1: “median.” (d) DsetD2: “best.” (€) DsetD2: “worst.” (f) DsetsD2: “median.”

was studied by computing analytically and numerically theith highly correlated fields, the Monte Carlo based study
Cramér—Rao bounds for the Markov parameters, and by Mosteows that both in terms of the bias and the mean-square error
Carlo simulation studies. The Monte Carlo experiments shaiwe approximate maximum-likelihood estimation error perfor-
that the three estimates are well-behaved: they have relativelgnce improves as the Markov parameters become closer to
small biases, and their sample mean-square errors track clogkeé/boundary of the parameter space, i.e., as the random field
the Cramér—Rao bound. An interesting observation is thagcomes highly correlated.
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Fig. 10. SEBASS data. (a) DsetD3: “best.” (b) DsetD3: “worst.” (c) DsetD3:“median.” (d) DsetD4: “best.” (e) DsetD4: “worst.” (f) DsetD4: “median.”

We computed the computational cost of the three estimationThe paper reported on the extensive testing results of our
techniques and concluded that the approximate maximum lilkedaptive GMRF anomaly detector with real hyperspectral
lihood has a significant computational advantage over the otlieragery. We focus on the combination of the approximate

two.

maximum-likelihood estimation algorithm and of the least
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Fig. 11. Performance by object type. object type A (small) versus object type B (large). (a) DsetD2: “best”; type A. (b) DsetD2: “worst”: type ADE) Dse
“median”: type A. (d) DsetD2: “best”: type B. (e) DsetD2: “worst”: type B. (f) DsetD2: “median”: type B.

squares estimation procedure with the generalized detectamin terms of computational complexity. The HYDICE and
scheme presented in [11]. We evaluated the effectiven&dSBASS performance results presented in the paper highlight
of the approximate-ML adaptive GMRF anomaly detectdhe approximate-ML GMRF algorithm as a promising detector
and the least squares adaptive GMRF algorithm in terms fof hyperspectral data, particularly with respect to its compu-
detection performance on real hyperspectral imagery, as weflional performance. The approximate-ML GMRF algorithm,



SCHWEIZER AND MOURA: HYPERSPECTRAL IMAGERY: CLUTTER ADAPTATION IN ANOMALY DETECTION

in general, provides comparable performance to the RX alggi1]
rithm, and, in certain instances, may provide better detectioQZ]
performance, e.g., on “large” targets in the SEBASS data, whil
providing a significant computational advantage, even when thg3]
full set of spectral bands has been reduced through aggregaticm]
For instance, the 128 bands of the SEBASS data were reduced
to 19 bands, and the RX algorithm still took 1.5 times IongerlS]
than the approximate-ML GMRF detector to process oné
image cube. The computational advantage of GMRF over RX
is rooted in the fact that the complexity of the GMRF algorithm [16
increases linearly with the number of spectral baggather [17]
than with V2. It is this property of the approximate-ML GMRF
algorithm that makes it a viable adaptive detector for full-specyyg;
tral-band hyperspectral sensor imagery; a task that is beyond
the feasibility of the RX algorithm. The encouraging overall[19]
performance of the approximate-ML adaptive GMRF detector
on these preliminary data sets has led to it being considered ai %]
possible alternative detection algorithm for a new hyperspectr f
imagery sensor system being developed under the Adaptive
Spectral Reconnaissance (ASR) program funded by the Sendét
Technology Office of DARPA.

[22]
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