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Hyperspectral Imagery: Clutter Adaptation in
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Abstract—Hyperspectral sensors are passive sensors that
simultaneously record images for hundreds of contiguous and
narrowly spaced regions of the electromagnetic spectrum. Each
image corresponds to the same ground scene, thus creating a
cube of images that contain both spatial and spectral information
about the objects and backgrounds in the scene. In this paper, we
present an adaptive anomaly detector designed assuming that the
background clutter in the hyperspectral imagery is a three-di-
mensional Gauss–Markov random field. This model leads to an
efficient and effective algorithm for discriminating man-made
objects (the anomalies) in real hyperspectral imagery. The major
focus of the paper is on the adaptive stage of the detector, i.e., the
estimation of the Gauss–Markov random field parameters. We
develop three methods: maximum-likelihood; least squares; and
approximate maximum-likelihood. We study these approaches
along three directions: estimation error performance, computa-
tional cost, and detection performance. In terms of estimation
error, we derive the Cramér–Rao bounds and carry out Monte
Carlo simulation studies that show that the three estimation
procedures have similar performance when the fields are highly
correlated, as is often the case with real hyperspectral imagery.
The approximate maximum-likelihood method has a clear ad-
vantage from the computational point of view. Finally, we test
extensively with real hyperspectral imagery the adaptive anomaly
detector incorporating either the least squares or the approximate
maximum-likelihood estimators. Its performance compares very
favorably with that of the RX algorithm, an alternative detector
commonly used with multispectral data, while reducing by up to
an order of magnitude the associated computational cost.

Index Terms—Anomaly detection, Cramér–Rao bounds, Gauss–
Markov random field, hyperspectral imagery, least squares, max-
imum likelihood, multispectral imagery, ultraspectral imagery.

I. INTRODUCTION

SPECTRAL imaging, also referred to as spectroscopy im-
aging, exploits multiple regions of the electromagnetic

spectrum to probe the composition of a material, or to deter-
mine features of interest in a remote scene. In a sense, spectral
imaging extends to multiple bands color photographic sensors.
Remote sensing uses a variety of sensors flown onboard satel-
lites or aircraft. These sensors employ several bands and have
been used in various fields including geology, hydrology, urban
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planning, geography, cadastral mapping, cartography, and the
military. Applications have included the following: remote
sensing the earth resources from space, mapping the earth,
helping manage water or agricultural resources, monitoring
the environment, forestry, detecting and classifying hidden
targets in operational theaters. For example, in the U.S., starting
in the mid-1960’s, with the Earth Resources Survey (ERS)
program, and from the early 1970’s on with the launching
of the first ERS satellite, later renamed Landsat 1 (launched
in July 1972), NASA has conceived, designed, and utilized
systematically multispectral scanner instruments to sense the
earth remotely. Onboard the Landsat satellites were successive
generations of multispectral scanner instruments, including
the multispectral sensor (MSS) with four bands, the thematic
mapper (TM) with seven bands (six in the visible range and
one in the thermal range), the enhanced thematic mapper
(ETM) with seven spectral bands and one “panchromatic”
band (black and white), the enhanced thematic mapper plus
(ETM+), and the high-resolution multispectral stereo imager
with four high-resolution bands, one panchromatic band, and
with stereo capability. Other countries have had their own
remote sensing programs including, for example, the “Système
Pour L’Observation de la Terre” (SPOT) program, initially
proposed by France, now a major international satellite-based
remote sensing program—SPOT 1 was launched in February
1986, while SPOT 4 was launched in March 1998. Good book
introductions to some of these topics in the context of remote
sensing include [1]–[3].

In the above sensors, as well as in several others that were de-
veloped in the 80’s for both commercial and military purposes,
the number of bands is usually relatively small, say below or
on the order of ten, and each band is broad. The late 1980’s
saw the first spectral sensor in remote sensing collecting data
in several hundreds of contiguous narrow spectral bands—the
airborne visible/infrared imaging spectrometer (AVIRIS)—de-
veloped by NASA, tested in 1987, launched in 1989, and cur-
rently flown on the NASA ER-2 airplane (a modification of
the U2 plane) at an altitude of 20 km, and speed of 730 km/h.
Since 1989, several generations of AVIRIS have seen its tech-
nology progressively improved. AVIRIS belongs to a new class
of sensors, usually referred to ashyperspectral sensors to dis-
tinguish them frommultispectral sensors that employ at most
a few tens of spectral bands. Currently, there are a number of
hyperspectral sensors, including the hyperspectral digital im-
agery collection experiment (HYDICE) owned and operated by
the U.S. Navy Research Laboratory, and the spatially enhanced
broadband array spectrograph system (SEBASS). The latter two
are for surveillance missions. There are in addition a number of
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commercial hyperspectral sensors, and also portable hyperspec-
tral cameras.

Anomaly Detector:Hyperspectral sensors collect the spec-
tral signature of a number of contiguous spatial locations
(pixels) to form an image—the hyperspectral sensor imagery.
The use of this imagery for automatic target detection and
recognition is a relatively new area of research. The focus of
this paper is on using hyperspectral data for the detection of
anomalousman-made objects in natural clutter backgrounds.
In other words, our goal is to design a detector that flags
small regions in the hyperspectral imagery, extending over
a few pixels, that correspond to anomalies in a relatively
homogeneous background. Hyperspectral imagery shows great
potential for this task because it provides both spatial and spec-
tral features about the targets and backgrounds in the imagery.
There is reason to believe from published studies, [4]–[6],
that the spectral characteristics of natural clutter differ in
significant ways from the spectral characteristics of man-made
objects, thus hyperspectral sensors can be a tremendous aid in
discriminating between the two classes.

One of the challenges of working with hyperspectral imagery
is computational: processing efficiently the massive amounts
of data collected by the sensor. For example, when sensors are
flown on manned or unmanned aircraft it is important to process
the data on board to identify regions of interest and reduce the
need for transmitting to a ground station a large volume of data.
The idea is that only high spatial resolution image chips of these
regions of interest are transmitted to the base station.

Many existing algorithms for processing hyperspectral data
are the direct outgrowth of algorithms that were developed for
single band or for multispectral sensors where the number of
bands is small. These approaches resort to a variety of approxi-
mations with the goal of simplifying the computational burden.
For example, they often ignore the spatial structure of the clutter,
working simply with the spectral signature at each pixel of the
image. Other methods bin the data, reducing it to a subset of
spectral bands. Still others achieve data reduction by some sta-
tistical procedure that abstracts from the data a relatively small
number of features. Important questions in these approaches in-
clude the following: which bands to discard, or, equivalently, the
optimal choice of relevant features; which data-reduction statis-
tical procedure to use, e.g., principal component analysis; defi-
nition of a good performance metric that can assist in the selec-
tion of bands or definition of features.

A widely used anomaly detector formultispectral data, i.e.,
developed for sensors with a reduced number of spectral bands
(ten or less) is the algorithm presented in [7]–[10], commonly
referred to as the RX algorithm, after the initials of its propo-
nents, Reed and Xiaoli Yu. The RX algorithm is a likelihood
ratio detector based on a number of simplifying assumptions.
Extending the RX algorithm to hyperspectral imagery suffers
from two major limitations. First, the model assumed by the
RX algorithm is limited to clutter that isspatiallyuncorrelated,
or spatially white. This model neglects the potentially valu-
ablespatialcorrelation information that is present in the clutter.
Second, the RX algorithm does not scale well: it is computation-
ally expensive, since the RX detector requires evaluating the in-
verse of the sample covariance matrix of the hyperspectral data.

This inversion grows with the third power of the dimension of
this covariance, i.e., it increases with the cube of the number
of spectral bands. Direct application of the RX algorithm to the
full assortment of spectral bands in hyperspectral imagery be-
comes rapidly infeasible. There is a clear need for computation-
ally efficient detectors for hyperspectral sensors that can jointly
process all the available spectral bands, and that can exploit si-
multaneously the spatial and spectral correlation properties of
the clutter.

In [11], we present a promising new detector for hyperspec-
tral data—the Gauss–Markov random field (GMRF) algorithm.
The GMRF algorithm addresses the concerns described in the
above paragraph. First, the GMRF approach models the clutter
as a spatially and spectrally colored random field, and so ex-
ploits the information on the spatialandspectral correlation of
the clutter. Secondly, it models directly the inverse of the co-
variance matrix, rather than the covariance matrix. Finally, re-
call that the probability density of multivariate Gaussian data,
and hence the likelihood function, is expressed in terms of the
inverse of the covariance matrix of the data. Since the GMRF de-
tector has an explicit representation of this inverse, it then avoids
the inversion of large covariance matrices, which hinders the RX
algorithm and other likelihood ratio detectors.

Fully Adaptive Detector—Clutter Statistics:In practice, the
clutter is unknown to the anomaly detector. Our emphasis in
this paper is in designing a fullyadaptiveGMRF anomaly de-
tector, i.e., an algorithm that adapts to the unknown character-
istics of the background (clutter). We considergeneralizedde-
tectors where the unknown data statistics are estimated from the
data and used in the detector. To make the detector fully adap-
tive, we fit the inverse of the covariance matrix of the hyper-
spectral data to the clutter. This is highly appropriate since, as
observed in the previous paragraph, the likelihood functions are
expressed directly in terms of this matrix.

With the GMRF assumption, the inverse covariance is highly
structured, is sparse, and is described by very few parameters.
The main task of the fully adaptive GMRF algorithm is then
reduced to estimating this small number of unknown quantities
that parameterize the inverse covariance matrix.

The paper studies this estimation problem and its impact on
the detector. We present the log-likelihood function, and then
note that optimization of this function with respect to the un-
known parameters, i.e., maximum-likelihood estimation, is a
convex optimization problem—the log-likelihood function is
convex on the constrained parameter space, and this parameter
space is convex. We establish the Cramér–Rao bounds on the
mean-square error of any estimate of the parameters. To com-
pute this bound, we write explicitly the log-likelihood function
in terms of the unknown parameters. This leads to an explicit
expression for the Fisher information matrix.

The paper then focuses on analyzing the advantages and lim-
itations of methods for approximating the maximum-likelihood
(ML) estimates of the GMRF parameters: a direct optimization
of the maximum-likelihood function, which will be referred to
as ML estimates; a least squares (LS) approach—the LS esti-
mates; and optimization of an approximate log-likelihood func-
tion—the approximate ML estimates, or AML estimates. The
latter are constructed assuming that the Markov parameters are
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close to the boundary of the parameter space. We present the
three methods and study their performance in two contexts: as
accurate and reliable estimators; and, more importantly, as part
of the fully adaptive GMRF anomaly detector. The appropriate-
ness of the estimation techniques for use in the GMRF detector
is analyzed in terms of both their computational cost and their
detection performance on real hyperspectral data.

Regarding their performance as estimators, we present re-
sults with synthetic data, and compare the mean-square error ob-
tained by Monte Carlo simulations with the Cramér–Rao bound.
There is good agreement, with some degradation, as expected,
of estimation performance for the approximate maximum-like-
lihood estimates when the parameter values are away from the
boundary.

Because the approximate maximum-likelihood estimates and
the least squares estimates have similar performance on highly
correlated data, and maximum-likelihood estimation is compu-
tationally significantly more costly than the other two, when
making the GMRF detector fully adaptive, we consider only
the least squares and the approximate maximum-likelihood es-
timation procedures. Our overall conclusion, based on detec-
tion results of the fully adaptive GMRF anomaly detector with
real hyperspectral imagery, is that the least squares and approx-
imate maximum-likelihood approaches display nearly identical
detection performance. Most significantly, the level of perfor-
mance achieved by the GMRF algorithms even with a reduced
number of spectral bands is as good as (if not better than) the
performance provided by the RX algorithm, while being appre-
ciably less challenging computationally. In terms of overall de-
tection and computational performance, the results highlight the
approximate maximum-likelihood algorithm as a good estima-
tion technique to incorporate in the GMRF anomaly detector
for hyperspectral imagery. Because of the good computational
characteristics of the GMRF adaptive detector and its good de-
tection performance with real hyperspectral imagery, the GMRF
anomaly detector is one of the candidate anomaly detection al-
gorithms to be flown with a new sensor under development by
the Adaptive Spectral Reconnaissance Program (ASRP) of the
U.S. Defense Advanced Research Projects Agency (DARPA).

The organization of the paper is as follows. In Section II,
we present a brief overview of our GMRF modeling framework
for hyperspectral clutter. Section III describes the optimal max-
imum-likelihood approach to estimation. It presents the log-
likelihood function, and then uses the GMRF model to derive
explicit expressions for this function and to determine the con-
strained space of the Markov parameters. In Section IV, we de-
rive the least squares method which is a nonparametric estima-
tion procedure, and, in Section V, we detail the approximate
maximum-likelihood technique. In Section VI, we analyze the
performance of the three estimation methods. We compute the
Cramér–Rao bounds for the unknown, deterministic Markov pa-
rameters, and then compute by Monte Carlo simulations the bias
and the mean-square error associated with the estimates pro-
vided by the three methods. In this section, we also study the
computational cost of the anomaly detector when it incorpo-
rates each of the three estimation procedures. The detector that
we will use is derived in detail in [11], and briefly described in
Section VII. The target data are assumed to be stochastic, and

are essentially modeled by a three–dimensional (3-D) GMRF
for which the Markov parameters are distinguishable from those
of the clutter background. We present detection performance re-
sults for the adaptive anomaly detector using the alternative es-
timation methods when processing real hyperspectral imagery
from the HYDICE and SEBASS sensors. These experimental
results compare very favorably with the detection results of the
RX algorithm on the same data, while the GMRF algorithm is
significantly faster than the RX algorithm. Finally, Section VIII
summarizes the paper.

II. GMRF CLUTTER MODEL

Hyperspectral sensor imagery is often described as a data
cube where the images of a scene at different wavelengths are
stacked together in the wavelength dimension. We can consider
the hyperspectral cube as a 3–D finite lattice, where each pixel
location in the image cube is referenced by the variables, , and

, which indicate the spatial location and the particular spectral
band in which the pixel lies. Clutter in hyperspectral imagery
is usually highly correlated. After a preprocessing step that re-
moves the spatially varying mean of the hyperspectral data, we
model this highly correlated spatial and spectral clutter with a
noncausal Gauss–Markov random field (GMRF). In addition to
capturing the noncausal property of the data, this clutter model
accounts for the important Markov nature of the spatially–spec-
trally correlated background. We refer the reader to the work in
[12]–[14]. These references discuss in depth the Markov prop-
erty and the specification of two-dimensional Markov random
fields (MRF). Modeling the statistics of the clutter with mean
removed as a Gaussian field is clearly an approximation. This is
often assumed, see for example the work in [7] with multispec-
tral data, to simplify the computational cost of the detector. How
good is a detector designed on the basis of such an assumption,
as with any other model assumed, it remains, of course, to be
judged in the final analysis by testing the detector with real hy-
perspectral imagery, as done in Section VII. Distributions with
heavier tails may be more appropriate and will be considered in
future research.

As first suggested by Hunt and Cannon in [15], we assume
that the Gaussian process describing the dominant image back-
ground has a slowly varying covariance structure. Consequently,
processing is done on subblocks of data for which the clutter is
assumed to be statistically stationary. The processing region is
further divided into sublattices of size where

is equal to the total number of available spectral bands,
see Fig. 1. We refer to these sublattices as Markov windows.
This is similar to the sectioning done in Besag’s coding method,
which he discusses in [12]. Basically, we adjust Besag’s coding
method so that our Markov windows do not overlap. The as-
sumed Markov nature of the data implies that pixels within the
same Markov window are all that is necessary to completely de-
scribe the intensity of the center pixel of that window, i.e., the
Markov windows are mutually independent. The pixels in each
Markov window are lexicographically ordered to form a set of
pseudoindependent data vectors.

Within each Markov window, we let , ,
, represent a three-dimensional finite
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Fig. 1. The hyperspectral image cube is processed onI �J �K subcubes in
which the clutter is homogeneous. The image is further partitioned into mutually
independent Markov windows, denoted byM , 1 � p � n (n = 9).

lattice field. The intensity of each clutter pixel is described
by the minimum mean-square prediction error (MMSE) repre-
sentation, [16], [17]. This autoregressive formulation is equiva-
lent to the Gibbs distribution formulation, [12]–[14]. For sim-
plicity of presentation, we adopt a first-order, homogeneous,
noncausal GMRF described by

(1)

The parameters , , and are the minimum mean-square
error predictor coefficients for the spatial and spectral di-
mensions, respectively, and is the prediction error. At
the boundaries of the Markov window, the model in (1) is
completed by appropriate boundary conditions. We assume
zero Dirichlet boundary conditions. Other boundary conditions
could be adopted, e.g., Neumann or cyclic boundary condi-
tions, see [12], [18]. The noise field, , is correlated, with
correlation structure discussed below. Equation (1) corresponds
to a first-order three-dimensional Markov model. It is assumed,
without loss of generality, that the clutter is zero mean. In
practice, the spatially varying mean is locally estimated and
removed from the data. The window size to remove the spatially
varying mean is optimized to minimize the third moment of the
data, which tends to make the data histogram look closer to a
Gaussian density.

Using (1), the data within a Markov window can be compactly
represented by the matrix–vector equation

X (2)

where

...
...

...
. . .

. . .
. . .

(3)

We use the Kronecker product [19], [20] to represent this matrix
in a concise manner

(4)

where

(5)

(6)

The matrices , , and are themselves structured and defined
as

(7)

(8)

(9)

The symbols , , and are identity matrices, while
, , and are Toeplitz matrices that have zeros ev-

erywhere except for the first upper and first lower diagonals,
which are composed of all’s. The subscript denotes the size of
the matrices.

The matrix , referred to as the potential matrix, is a sparse
block tridiagonal matrix and contains all the relevant informa-
tion regarding the GMRF structure [17]. The error vector,, in
(2), is a sample from a colored noise process with covariance

. This leads to the direct parameterization of the in-
verse of the clutter covariance matrix . Beginning with (2),
it can be shown [17] that, by application of the orthogonality
principle

(10)

Using (4)–(9) in (10), the inverse covariance matrix of the field
is expressed in Kronecker notation as

(11)

We identify the four main components of the equation by the
variables , , , and .

The parameterization of and is a function of and of
the three Markov parameters,, , and . With higher order
Markov models, the parameterization of would involve a
few additional parameters. To make the detector adaptive to the
unknown clutter as when using real data, these parameters are
estimated from the data. We now turn our focus to the issue of
estimation.

III. M AXIMUM LIKELIHOOD

A. Parameter Space and Eigenstructure

We first discuss the maximum-likelihood method for esti-
mating nonrandom parameters [21]. Under the GMRF model
discussed in Section II, the joint probability density function
(pdf) for a set of independent real-valued data vectors is a
multivariate Gaussian density. Using (10), the joint pdf of the
independent field samples factors as

X X (12)



SCHWEIZER AND MOURA: HYPERSPECTRAL IMAGERY: CLUTTER ADAPTATION IN ANOMALY DETECTION 1859

TABLE I
PROPERTIES OFLINEAR ALGEBRA AND THE KRONECKERPRODUCT

where X is an observation vector formed from the
th Markov window, is a vector containing the Markov

parameters, andindicates a matrix transpose.
Parameter Space:We start by determining the valid param-

eter space of the Markov coefficients by analyzing the eigen-
structure of the covariance matrix, which is basically the same
as analyzing the eigenstructure of its inverse, or of the potential
matrix .

Since is the inverse of a covariance matrix, it must be a
positive-semidefinite matrix. This constraint is equivalent to re-
quiring that the minimum eigenvalue of be nonnegative. We
will look for nondegenerate models and work withbeing pos-
itive-definite. We determine, analytically, the eigenvalues of the
potential matrix.

Beginning with (11), we use properties of linear algebra and
the Kronecker product to derive expressions for the eigenvectors
and eigenvalues of the potential matrix [19], [22]. Table I lists
the properties which we take advantage of in the derivation that
follows. We first determine the eigenvectors of the four terms
highlighted in (11). We represent the eigenvectors of the ma-
trices , , and by , , and , respectively.
Recalling that any nonzero vector is an eigenvector of the iden-
tity matrix [22], we let , , and .
Then, by Table I, Property 1, we can choose a common set of
eigenvectors for each of the terms, , , and in (11),
which are . Now, we use Properties 2, 3, 4,
and 5 in Table I along with the fact that all eigenvalues of the
identity matrix are equal to one to obtain the expression for the
eigenvalues

(13)
where , are the eigenvalues of , and
similarly for and .

The matrix can be associated with the Even Sine Trans-
form, and has the following set of eigenvalues [23]–[26]:

for (14)

Combining (14) with (13), the distinct eigenvalues for
the potential matrix are completely defined by the Markov pa-
rameters , , , and , and by the dimensions of the cube
of data being processed. They are given by

(15)

where , , and .
Depending on the signs of the Markov parameters, the min-

imum eigenvalue occurs when the cosine terms are at either their
minimum or maximum values. Requiring the minimum eigen-

value of to be positive translates into the following parameter
space constraint:

(16)
Equation (16) defines a diamond shape in three-dimensional
space.

B. Nonlinear Optimization

With the parameter space defined by (16), we now proceed in
deriving the maximum-likelihood estimates.

Structure of the Negative Log-Likelihood Function:Due to
the properties of the logarithm function, maximizing (12) with
respect to the unknown parameters is the same as minimizing the
negative of the log-likelihood function. From (12), the negative
log-likelihood function, ignoring constant terms, is

(17)
where is the sample covariance matrix

X X

The second term in (17), which is dependent only on the po-
tential matrix , is referred to as themodel term, , and
the third term, which is dependent on bothand the data, is
referred to as thedata term, .

Using the Kronecker representation for, which appears in
(11), we can express the data term as

(18)
where , , and are defined in (11). Equation (18) is equiv-
alent to

(19)
where

(20)

(21)

(22)

(23)
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The quantity represents the intensity of the pixel at spa-
tial location , , spectral band , and within the th Markov
window.

For the model term, we use the product of the eigenvalues,
defined in (15), to obtain a parameterization for the determinant
of the potential matrix in terms of , , and

(24)

Using (24), the model term is expressed as

(25)

Optimization of the Log-Likelihood Function:The max-
imum-likelihood estimation of the covariance subject to the
constraint is trivially given by

However, our problem belongs to the category of estimating
structuredcovariances where the structure of is determined
by (11). The estimation of structured covariances has been con-
sidered in the statistical and signal processing literature, e.g.,
[27]–[30]. In our case, the constraints are easily expressed in
terms of the inverse of the covariance, which is given as a linear
combination of known matrices, see (11) and (19).

From (20)–(23), we can see that the data term in the nega-
tive log-likelihood function is linear on the parameters.1 Our
estimation of the unknown parameters is a convex optimization
problem: the log-likelihood function is convex on the param-
eter space determined by (see condition (16)), and the
constraint set defined by (16) is convex. The positive-definite
constraint on is commonly referred to as a linear matrix in-
equality constraint in the parameters. This optimization problem
is an instance of a general optimization problem known in the
literature as a max-det problem, [31]. This guarantees the ex-
istence of a global extremum and no other local minima in the
parameter space.

As a result of the logarithmic component present in the
model term, the gradient of cannot be
explicitly solved for the Markov parameters. However, the
maximum-likelihood estimate for the scaling parametercan
be solved for and is a linear combination of the maximum-like-
lihood estimates for the three Markov coefficients,, , and

X X

(26)

where , , , and are defined by (20)–(23), respectively.

1Strictly speaking, the data term is linear on1=� and a suitable normaliza-
tion of the Markov parameters by this quantity.

To perform the optimization for the Markov parameters,
we use the Polak–Ribiere conjugate gradient method as im-
plemented in [32]. This implementation performs a series of
one–dimensional (1-D) line minimizations rather than a more
complex multidimensional optimization. To incorporate the
parameter space constraints into the optimization, we use a
modification to the bracketing scheme that was suggested by
Balram and Moura [23]. The bracketing scheme uses (16)
to ensure that the ML estimates remain within the parameter
space.

The nonlinear optimization that is required to obtain the ML
estimates is computationally expensive, which is not desirable
when trying to develop an overall detection algorithm that is
implementable in real time. Therefore, we look to alternative
estimation procedures in order to reduce the computational load
of our GMRF detector.

IV. L EAST SQUARES

A. Least Squares Formulation

One alternative approach to the maximum-likelihood tech-
nique is the least squares method. This method is based on min-
imizing the mean-square modeling error

X X (27)

where is the total number of independent data vectors within
the processing window, and the subscriptdenotes from which
particular Markov window the data vector was derived. The least
squares method provides computational advantages over the op-
timal approach in two respects: first, it avoids a nonlinear opti-
mization, and, second, since computing the likelihood function
is not a part of the estimation procedure, the least squares ap-
proach does not necessitate constraining the parameter space.

By taking advantage of the Kronecker representation for
given in (4)–(9), and rearranging terms, we determine that

X X (28)

where

X X X (29)

(30)

and , , and are the Kronecker expressions defined in
(11). Using the above notation, the least squares estimates of
the Markov coefficients are [33], [34]

X (31)

The estimate for the scaling parameteris obtained by using
(26), and replacing with .

Since there are three unknown scalar parameters, we see from
(31) that least squares estimation requires taking the inverse of
a matrix. For hyperspectral data, this is significantly less
challenging computationally than computing the inverse of a
full data covariance matrix, as for example in [7], [35], and is
also computationally better than the maximum-likelihood non-
linear optimization presented in Section III. However, to obtain
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Fig. 2. Unique components ofG G : Only six of the nine components are
unique.

the matrices in (31) through direct vector multiplication
still requires significant processing, as well as a large amount
of storage. In the next section, we show a means of reducing
both the storage and processing required by the least squares
approach.

B. Reduced Least Squares

To minimize the processing involved in the least squares es-
timation method, we take advantage of the fact that the matrix

is symmetric and so only six of the nine com-
ponents are unique, see Fig. 2. The matrices, , and are
defined in (11).

We use properties of the Kronecker product [19], [20] to sim-
plify each of the six components into linear combinations of
one-step-ahead and two-step-ahead correlations

(32)

(33)

(34)

(35)

(36)

(37)

where

and is defined in (20). Storing the 12 values defined above,
rather than the matrices, saves a significant amount of
storage, and therefore decreases the overall processing time.

In the next section, in an effort to reduce the computational
complexity even further, we look to another estimation pro-
cedure, approximate maximum-likelihood (approximate-ML).
In addition, the approximate-ML procedure differs from least
squares in that it is a parametric approach that takes advantage
of the Gaussian pdf for the clutter background.

V. APPROXIMATE MAXIMUM LIKELIHOOD

For highly correlated three-dimensional fields, we have ob-
served that the maximum-likelihood estimates, as for two-di-
mensional fields [23], [18], tend to reside on the boundary of
the parameter space. In this section, we present an alternative
means of estimating the maximum-likelihood parameters that
approximates the optimal maximum-likelihood estimates. The
approach assumes that real HSI is highly correlated, and takes
advantage of the fact that the parameter estimates should be
close to the boundary of the parameter space, see also [23]. We
refer to this method as the approximate-ML approach.

Approximate-ML makes use of a simple mathematical ap-
proximation for the that is present in the model term
defined in (25) in Section III. We use the second-order Taylor
approximation for the logarithm

o (38)

where

(39)

Use of the Taylor series approximation in conjunction with the
following two trigonometric properties:

leads to a simplified form for the model term

(40)

Using (40) in the likelihood function in (17), taking deriva-
tives with respect to the Markov parameters, and equating to
zero leads to explicit expressions for, , and

(41)

(42)

(43)
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where , , and are referred to as the one-step-ahead cor-
relations, and are defined in (21)–(23), respectively. The above
expressions for , , and are only valid when is much
smaller than one, or, in other words, when the data areweakly
correlated and the Markov parameters are far from the param-
eter space boundaries. However, real hyperspectral imagery is
known to behighlycorrelated, especially in the spectral dimen-
sion. Thus we must adjust expressions (41)–(43) to accommo-
date for not being small.

First, from (41)–(43) we obtain expressions for the ratios

and . This eliminates the dependency on, but only pro-
vides us with two equations for determining the three unknown
parameters , , and . Since with highly correlated data,
the parameters should be near to the boundaries of the param-
eter space, we use the parameter space constraint defined in (16)
as our third equation, thus forcing the parameter estimates to
be closer to the boundaries. We now have three equations and
three unknown parameters. By solving the set of linear equa-
tions, we obtain the approximate-ML estimates (see (44)–(46)
at the bottom of this page), where

, and is a small number included to ensure that the
estimates are inside the parameter space. The estimate for the
scaling parameter is obtained by using (26), and replacing

with .

VI. ESTIMATION PERFORMANCE

In this section, we first compute in Section VI-A the Cramér–
Rao bounds for the Markov parameters, when the parameter
is assumed known. These bounds [21] represent a lower bound
on the accuracy of any unbiased estimate of the desired pa-
rameters. In Section VI-B, we study the quality of the three
methods presented in Section III by computing by Monte Carlo
simulations the bias and the mean-square error of the three es-
timates: maximum-likelihood, least squares, and approximate
maximum-likelihood. Finally, in Section VI-C, we compare the
three estimation schemes with respect to their computational
cost.

A. Cramér–Rao Bounds

We model the three Markov parameters as deterministic, un-
known, and collect them in the vector

If is the error covariance matrix associated with any unbiased
estimate of the unknown parameter vector, the Cramér–Rao
bound, see [21], is given by

(47)

where is the Fisher information matrix

(48)

where is the negative log-likelihood func-
tion given by (17). From (17), we see that the data term in

is linear in the Markov parameters and the
first term does not depend on them. Since (48) involves second-
order derivatives with respect to the parameters, we are only
concerned with the middle term in (17), i.e., the model term

. To compute the derivatives of this term, we need to
express the determinant ofin terms of the Markov parameters

. This is provided by (25). Using this expression, and taking the
second-order derivatives in (48), the Fisher information matrix
is

(49)
where

Inverting the Fisher information matrix given by (49) and re-
placing this inverse in (47), we get a lower bound on the error
covariance . For example, the variances of the error estimates
are bounded below by

(50)
These bounds are computed numerically in the next subsection.

B. Estimation Accuracy

We now consider the negative log-likelihood function and
then analyze the error accuracy and reliability of the maximum-
likelihood, approximate maximum-likelihood, and least squares
estimates. To carry out these studies, we generate samples of a
three-dimensional noncausal GMRF field for fixed values of,

, and . Each sample is of spatial dimensions , and is

(44)

(45)

(46)
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comprised of 15 spectral bands. The chosen spatial dimensions
match those of the processing window used on real hyperspec-
tral sensor imagery with pixels of 1-m spatial resolution. In all
three examples, the scaling parameteris set equal to . We
generate the samples of the noncausal Gauss–Markov random
field through a simple extension of a method developed in [17],
[18]. In general, the synthesis method uses the Cholesky decom-
position of the potential matrix to derive an equivalent one-sided
regressor for the noncausal field. We drive this one-sided re-
gressor with Gaussian white noise input, generating recursively
a sample of the noncausal three-dimensional field with given
parameter values.

Plots of the Negative Log-Likelihood Function:We illustrate
this function in two cases: when the field is highly correlated
with Markov parameters , , and ; and
when the field has a mixed correlation , ,
and . With the high correlated field, the values of the
Markov parameters are such that the constraint in (16) is met
with equality. In Fig. 3(a), we show contour plots of the negative
log-likelihood function, see (17) on the valid parameter space.
Since there are three parameters of interest, the contour plots
are generated by fixing both and one of the parameters at
their true values, while varying the other two parameters. The
minimum point is marked with an asterisk. In the high-correla-
tion example, since the parameter space constraint is met with
equality, the true parameter values sit on the boundary of the pa-
rameter space.

In Fig. 3(b), we display the contour plots of the negative log-
likelihood function for the mixed correlated field. In the spectral
dimension, the true parameter value sits close to the boundary
of the parameter space, while the true values for the spatial pa-
rameters are centrally located in the parameter space. It can be
observed in the lower left contour plot in Fig. 3(b), that, for a
fixed value of , the log-likelihood function is rather flat, indi-
cating that it is basically insensitive to changes inand .

The flat structure of the log-likelihood function in these ex-
amples has implications in the mean-square behavior of the es-
timates.

Mean-Square Error and Cramér–Rao Bound Studies:We
now compute by Monte Carlo simulation the experimental bias
and mean-square error for each of the three estimates of the
Markov parameters: maximum-likelihood (ML) estimate; least
squares (LS) estimate; and approximate maximum-likelihood
(AML) estimate. In the simulation studies below, we fix the
values of two of the Markov parameters , and
the value of the scaling parameter . The scaling param-
eter is assumed to be known. We lettake six different values
in the range at increments of . Note that the
sum of the ’s will go from , which represents a low corre-
lated field, to , a highly correlated field. Because of the sym-
metry of the Cramér–Rao bound expression on the’s, we ex-
pect to obtain similar results when we repeat these experiments
by varying in a similar fashion one of the other parameters rather
than . This was essentially confirmed in our studies, and is not
illustrated for lack of space.

Fig. 4 shows the (normalized) bias of the three estimates for
the parameter computed with MC = 500 Monte Carlo runs.
From the figure, we see that the maximum-likelihood (solid

(a)

(b)

Fig. 3. (a) Highly correlated field. The true parameter values sit on the
boundary of the parameter space. (b) Mixed correlation field. True� value
sits near the boundary of the parameter space. For a fixed� value, the
log-likelihood function is relatively insensitive to changes in� and� .

line) and the least squares (dash–dotted line) estimates are either
unbiased or exhibit a very small bias, except when the configu-
ration of the parameters is close to the boundary
(extreme right of the plot) where the maximum-likelihood esti-
mate shows a slight bias. This is expected because we have no-
ticed that the ML function is significantly flat when the Markov
parameters are close to the boundary of the parameter space,
i.e., the field is highly correlated and the gradient descent algo-
rithm has difficulties in determining the minimum while satis-
fying the parameter space constraint. On the other hand, the ap-
proximate maximum-likelihood estimate (dashed line,marks)
as computed from (44)–(46) improves significantly its perfor-
mance as we move closer to the boundary, see the bottom plot
in the figure that is monotonically improving from left to right.
This is intuitively pleasant since, from our discussion in Section
V, (44)–(46) were derived assuming a highly correlated field.
Given that real images tend to be highly correlated, this obser-
vation helps explain why in Section VII the detection results
with real hyperspectral imagery using the adaptive GMRF de-
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Fig. 4. Relative bias of� computed with MC = 500:� 2 [0:05 0:3], with
� = 1, � = � = 0:1.

Fig. 5. Mean-square error of� computed with MC = 500 and Cramér–Rao
bound of� : � 2 [0:050:3], with � = 1, � = � = 0:1.

tector with the approximate maximum likelihood are close to
the detection performance using the least squares estimates.

Fig. 5 shows the (sample) mean-square error (MSE) of the
estimate as computed by the three estimation procedures,

averaged again over MC = 500 Monte Carlo runs, and the
Cramér–Rao bound versus the actual value of the Markov pa-
rameter . These quantities are plotted in decibels computed
as

Going from top to bottom we have: the approximate maximum-
likelihood (dashed line andas marks), the least squares (dotted

(a)

(b)

Fig. 6. Computational comparison. (a) Maximum-likelihood (ML),
approximate-ML (AML), and least squares (LS), each combined with the
GMRF detection framework, versus RX: the GMRF algorithms grow linearly,
rather than exponentially with the number of spectral bands. (b) Zoomed-in
view of the crossover region.

line and ticked by .), and the maximum-likelihood (solid line)
mean-square errors, and the Cramér–Rao bound (dotted line).
The ML and LS plots are very close to the Cramér–Rao bound
plot, while the AML plot steadily approaches the Cramér–Rao
line as we move to the right, i.e., as the field becomes more
correlated the approximation underlying the AML estimates be-
comes better and better.

We have carried out additional studies of the bias, the mean-
square error, and the Cramér–Rao bound for other choices of
the values of the Markov parameters and for different values of
the number of Monte Carlo runs. These studies confirm these
general trends. We do not include them in this paper.
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C. Computational Performance

To evaluate the computational effectiveness of the maximum-
likelihood, approximate-ML, and least squares algorithms, we
derive from the C-code implementation of each algorithm, an
expression relating the number of floating-point operations
(FLOP’s) required to compute the detection statistic for one
pixel in the image set to the number of spectral bands used for
processing. This number of FLOP’s is also dependent on the
sizes of the processing, target, and Markov windows that are
used. We use the detection formulation presented in Section
VII. The total number of FLOP’s per pixel for a specified
processing and Markov window combination is then plotted as
a function of the number of spectral bands used for processing.

Fig. 6(a) shows the results of this analysis for the three
estimation algorithms under consideration: approximate-ML
(solid line), least squares (dotted line), and maximum-likeli-
hood (dash-dot/asterisk), as well as the RX algorithm (dashed
line). The maximum number of FLOP’s shown on the-axis is

. The results are based on a processing window,
and target and Markov windows. The RX algorithm [7]
is a maximum-likelihood anomaly detection procedure that
assumes spatially white clutter. The algorithm uses a binary hy-
pothesis approach to detection, and implements a Generalized
Likelihood Ratio Test (GLRT). The algorithm requires a full
spectral covariance matrix to be estimated and then inverted,
and was developed for multispectral sensor data. Its application
to hyperspectral data has two limitations: computational diffi-
culties arising from the matrix inversion requirement, and the
suboptimal spatially white clutter assumption.

The curves in Fig. 6(a) reveal that approximate-ML is com-
putationally superior to both maximum-likelihood and least
squares. For the maximum-likelihood algorithm, the total
number of FLOP’s is dependent on the number of iterations
it takes for the nonlinear optimization to converge. We show
both the minimum possible number of FLOP’s, and the total
number of FLOP’s when the number of convergence iterations
is chosen more realistically. For all three estimation methods,
the number of FLOP’s increases linearly with the number of
spectral bands . As shown in Fig. 6(a), this is a significant
improvement over other maximum-likelihood detection imple-
mentations in which the computational complexity increases
with . This exponential growth in the number of FLOP’s
as the number of spectral bands grows precludes the use of
algorithms, such as RX, on true hyperspectral data. In contrast,
the linearly increasing complexity of the approximate-ML
and least squares algorithms when incorporated in our GMRF
detection framework makes them viable and practical, from a
computational point of view, even when using a large number
of spectral bands.

Fig. 6(b) is a zoomed-in view of the region in Fig. 6(a) in
which the curves of the approximate-ML, least squares, and RX
algorithms cross one another. The plots indicate that the RX al-
gorithm provides only a slight computational advantage when a
small number of spectral bands is used for processing, i.e., when
using multispectral imagery. However, when using more than
approximately 14 spectral bands, the approximate-ML approach
is computationally superior. The adequate number of spectral

(a)

(b)

Fig. 7. Performance on real hyperspectral data. (a) HYDICE SWIR subset. (b)
HYDICE VNIR subset.

bands to use for processing is an issue that is currently still being
analyzed.

Considering the estimation results from Section VI-B and
the computational results from this section together, sug-
gests that the approximate-ML estimation algorithm is the
overall best choice among the three techniques considered:
approximate-ML, least squares, maximum-likelihood. Al-
though least squares does perform slightly more reliably than
approximate-ML on the simulated data, the computational
improvement provided by the approximate-ML algorithm is a
much more significant benefit. We focus our analysis on the
approximate-ML and least squares algorithms in the context of
our GMRF anomaly detector and, in the next section, present
performance of these algorithms on real hyperspectral data.



1866 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 5, AUGUST 2000

VII. D ETECTIONPERFORMANCE ONREAL DATA

Our analysis of which is the most effective and efficient
estimation technique to be used in the GMRF anomaly detector
would not be complete without testing the methods on real
hyperspectral imagery. In this section, we show performance
results for the approximate-ML and least squares estimation
methods in conjunction with the detection approach presented
in [11], [36]. The generalized decision test is

X m X m (51)

The vectors X, are the independent field sam-

ples, m and are the estimates of the mean and of the in-
verse covariance of the clutter, andis a threshold. The test
statistic measures the dissimilarity between the field samples
X , and the clutter; we refer the reader to [11], [36]
for details and comparisons with other decision tests. In the lit-
erature the test in (51) is sometimes referred to by the misnomer
“single hypothesis test,” [37].

In our detection performance analysis, we use real data
from the Hyperspectral Digital Imagery Collection Experiment
(HYDICE) sensor2 and the Spatially Enhanced Broadband
Array Spectrograph System (SEBASS) sensor [38]. The HY-
DICE sensor records 210 spectral bands of data in the visible
to near infrared (VNIR, 0.4 m–1.1 m) and the short-wave
infrared (SWIR, 1.1 m–3 m) portions of the electromagnetic
spectrum, while the SEBASS sensor records 128 bands of data
in the long-wave infrared (LWIR, 5 m–14 m). The data
from both sensors have pixels of approximately 1-m spatial
resolution. In our studies below where we compare the GMRF
algorithm to the RX algorithm, we restrict the number of
spectral bands to a maximum of 30 for which it is still practical
to apply the RX algorithm.

The first two examples for which we show results, are from
the HYDICE sensor. The scene consists of 18 man-made targets,
all of which sit in the open, and is pixels in size.We
run the algorithms on two subsets of bands: 22 bands from the
short-wave infrared, referred to as DsetA:SWIR, and 17 bands
from the visible to near infrared, referred to as DsetA:VNIR.
Fig. 7 shows the receiver operating characteristic (ROC) curves
[21] for the approximate-ML and least squares GMRF algo-
rithms on the two subsets of bands. ROC curves plot the number
of false alarms versus the probability of correctly detecting the
targets that are present in the scene. An ideal ROC curve would
be a step function which goes to 100% detection at zero false
alarms. The short-wave infrared results are shown in Fig. 7(a),
and the visible to near-infrared results are shown in Fig. 7(b).
The third curve (dashed line) shown on the plots is for the RX
algorithm [7], [9], a well-tested anomaly detection algorithm,
see the discussion in Section VI-C.

As observed with the synthesized data, the approximate-ML
and least squares methods perform nearly identically. In both
cases, it is important to note that the two GMRF algorithms
outperform the benchmark algorithm. For the number of spec-
tral bands used in these examples, only the approximate-ML

2Naval Research Lab (NRL) Hydice Web Site, http://rsd-www.nrl.navy.
mil/hydice/

(a)

(b)

Fig. 8. HYDICE data. (a) DsetB1. (b) DsetB2.

approach provides a computational advantage over RX, see
Fig. 6(b).

The next two examples are again from the HYDICE sensor,
but from different scenes than the last examples. In these cases,
the visible to near-infrared and short-wave infrared bands are
not broken into two subsets. In each example, the 210 available
spectral bands are aggregated into 30 bands which span the vis-
ible to short-wave infrared. The images cover similar scenes,
although the first example, referred to as DsetB1, contains 19
targets, while DsetB2 has 16 total targets. The images are again

pixels in size. The ROC results for the two hyper-
spectral images are shown in Fig. 8.

On DsetB1, all three algorithms show similar detection per-
formance, while on DsetB2 the least squares method performs
the best, followed by approximate-ML. Both provide slightly
better performance than the RX algorithm. Using 30 bands,
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TABLE II
AVERAGE PROCESSINGTIME ON 30 BAND HYDICE DATA

both the approximate-ML and the least squares GMRF algo-
rithms provide a significant computational improvement over
RX. The average processing times of the approximate-ML, least
squares, and RX algorithms on DsetB1 and DsetB2 for pro-
cessing, target, and Markov windows of dimension ,

, and , respectively, are shown in Table II. The times
shown in the table, and throughout the paper, are for C code
running on a 250-MHz UltraSparc server. When using 30 spec-
tral bands for these data sets, the RX algorithm takes twice as
long as the approximate-ML GMRF approach, and 1.5 times as
long as the least squares GMRF method to process one image
cube of data. When the number of spectral bands is increased to
105, the differences in processing times become more drastic,
e.g., the approximate-ML GMRF approach takes 4 h, while RX
takes 44 h.

The last set of examples are from the SEBASS sensor. Since
this is a thermal sensor, we include results on data collected
at various times throughout the day. Figs. 9 and 10 show
ROC results for four sets of hyperspectral imagery, referred
to as DsetD1 (Night), DsetD2 (Noon), DsetD3 (Evening),
and DsetD4 (Afternoon). In contrast to the other examples
presented in this paper, these data sets consist of several hy-
perspectral image cubes. The first three sets contain five image
cubes, while the fourth contains four image cubes. For clarity in
the presentation of the results, we show the performance of the
algorithms on a subset of the total number of available image
cubes. The images contain between 30 and 40 targets, some
of which are partially obscured, and the size of the images is

pixels. We use 19 bands spanning wavelengths 8.5
to 12.5 m. There are 78 bands available in this wavelength
range, and we aggregate these bands to obtain the 19 bands
used for processing.

Figs. 9 and 10 show the performance of the approximate-ML
GMRF approach, the least squares GMRF method, and the RX
algorithm on the SEBASS data. The “best,” “worst,” and “me-
dian” labels refer to the performance of the approximate-ML
GMRF algorithm on the available image cubes within a partic-
ular data set. Recall that within a given SEBASS data set there
are five image cubes available for analysis. We compared the
ROC performance of the approximate-ML GMRF algorithm on
all five image cubes by plotting the curves on one axis. Using
the image cubes on which the approximate-ML GMRF algo-
rithm showed the best, worst, and median performance, we show
in Figs. 9 and 10 how the performance of the approximate-ML
GMRF method compares to the performance of the least squares
GMRF approach, and the performance of the RX algorithm.

As with the HYDICE examples, the approximate-ML
GMRF approach and the least squares GMRF method show
nearly identical performance. In each of the four SEBASS data
sets, the GMRF algorithms, in general, show better detection
performance than the RX algorithm at low probability of detec-

TABLE III
AVERAGE PROCESSINGTIME ON 19 BAND SEBASS DATA

tion, but a slightly degraded performance at higher detection
probabilities. Our preliminary analysis of the results indicates
that the trend in the ROC curves observed in Figs. 9 and 10
is a result of there being a significant range in the size of
the targets in the scenes. Fig. 11 shows ROC curves for the
approximate-ML GMRF approach, the least squares GMRF
method, and the RX algorithm on target types A and B for the
three image cubes of DsetD2. Target type A consists of small
man-made objects which, in general, extend over only 1 or 2
pixels, while target type B consists of larger man-made objects.
The results indicate that the RX algorithm does better than
the GMRF methods on the smaller objects (type A), but the
GMRF algorithms outperform RX on the larger objects (type
B). To draw general conclusions, further analysis of this trend
is necessary.

A computational analysis of the SEBASS results re-empha-
sizes the superiority of the approximate-ML GMRF algorithm.
Table III shows the average processing times over all 19 image
cubes from the 4 SEBASS data sets for the approximate-ML
GMRF algorithm, the least squares GMRF approach, and the
RX method. Even for only 19 bands, the table shows that the
RX algorithm takes 1.5 times longer to process the SEBASS
HSI than the approximate-ML GMRF algorithm. The approx-
imate-ML approach is also significantly faster than the least
squares GMRF method.

VIII. SUMMARY

In this paper we have presented a clutteradaptiveanomaly
detector for hyperspectral imagery: the Gauss–Markov random
field (GMRF) algorithm. Efficient processing of hyperspectral
imagery requires the development of new detection methods due
to the massive amount of spatial and spectral data that are cap-
tured by the sensor. The GMRF detector improves upon the
benchmark multispectral anomaly detector (RX) in two crit-
ical respects: It avoids an inversion of the data covariance ma-
trix by directly parameterizing the inverse of the covariance,
and it simultaneously exploits the spatial and spectral corre-
lation of the clutter. The critical task in the adaptive version
of the GMRF anomaly detection algorithm is the estimation
of the GMRF parameters defining the parameterization of the
inverse of the clutter covariance. This paper focused on this
issue. We have presented and analyzed three techniques for es-
timating the Markov parameters: the optimal maximum-like-
lihood approach, a least squares method, and an approximate
maximum-likelihood procedure.

The three estimation techniques were evaluated along three
main criteria: estimation performance; computational cost;
and detection performance of the adaptive GMRF anomaly
detector as evaluated with real data. The estimation accuracy
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(a) (d)

(b) (e)

(c) (f)

Fig. 9. SEBASS data. (a) DsetD1: “best.” (b) DsetD1: “worst.” (c) DsetD1: “median.” (d) DsetD2: “best.” (e) DsetD2: “worst.” (f) DsetsD2: “median.”

was studied by computing analytically and numerically the
Cramér–Rao bounds for the Markov parameters, and by Monte
Carlo simulation studies. The Monte Carlo experiments show
that the three estimates are well-behaved: they have relatively
small biases, and their sample mean-square errors track closely
the Cramér–Rao bound. An interesting observation is that,

with highly correlated fields, the Monte Carlo based study
shows that both in terms of the bias and the mean-square error
the approximate maximum-likelihood estimation error perfor-
mance improves as the Markov parameters become closer to
the boundary of the parameter space, i.e., as the random field
becomes highly correlated.
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(a) (d)

(b) (e)

(c) (f)

Fig. 10. SEBASS data. (a) DsetD3: “best.” (b) DsetD3: “worst.” (c) DsetD3:“median.” (d) DsetD4: “best.” (e) DsetD4: “worst.” (f) DsetD4: “median.”

We computed the computational cost of the three estimation
techniques and concluded that the approximate maximum like-
lihood has a significant computational advantage over the other
two.

The paper reported on the extensive testing results of our
adaptive GMRF anomaly detector with real hyperspectral
imagery. We focus on the combination of the approximate
maximum-likelihood estimation algorithm and of the least
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(a) (d)

(b) (e)

(c) (f)

Fig. 11. Performance by object type. object type A (small) versus object type B (large). (a) DsetD2: “best”: type A. (b) DsetD2: “worst”: type A. (c) DsetD2:
“median”: type A. (d) DsetD2: “best”: type B. (e) DsetD2: “worst”: type B. (f) DsetD2: “median”: type B.

squares estimation procedure with the generalized detection
scheme presented in [11]. We evaluated the effectiveness
of the approximate-ML adaptive GMRF anomaly detector
and the least squares adaptive GMRF algorithm in terms of
detection performance on real hyperspectral imagery, as well

as in terms of computational complexity. The HYDICE and
SEBASS performance results presented in the paper highlight
the approximate-ML GMRF algorithm as a promising detector
for hyperspectral data, particularly with respect to its compu-
tational performance. The approximate-ML GMRF algorithm,



SCHWEIZER AND MOURA: HYPERSPECTRAL IMAGERY: CLUTTER ADAPTATION IN ANOMALY DETECTION 1871

in general, provides comparable performance to the RX algo-
rithm, and, in certain instances, may provide better detection
performance, e.g., on “large” targets in the SEBASS data, while
providing a significant computational advantage, even when the
full set of spectral bands has been reduced through aggregation.
For instance, the 128 bands of the SEBASS data were reduced
to 19 bands, and the RX algorithm still took 1.5 times longer
than the approximate-ML GMRF detector to process one
image cube. The computational advantage of GMRF over RX
is rooted in the fact that the complexity of the GMRF algorithm
increases linearly with the number of spectral bandsrather
than with . It is this property of the approximate-ML GMRF
algorithm that makes it a viable adaptive detector for full-spec-
tral-band hyperspectral sensor imagery; a task that is beyond
the feasibility of the RX algorithm. The encouraging overall
performance of the approximate-ML adaptive GMRF detector
on these preliminary data sets has led to it being considered as a
possible alternative detection algorithm for a new hyperspectral
imagery sensor system being developed under the Adaptive
Spectral Reconnaissance (ASR) program funded by the Sensor
Technology Office of DARPA.
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