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Abstract— In synthetic aperture radar (SAR) and
inverse synthetic aperture radar (ISAR), targets with
uncompensated motion are blurred in the range-
Doppler radar image. Our goal with this paper is
twofold: 1) to analyze the image formation process
in SAR/ISAR and develop a model for the distor-
tion introduced by inadequate motion compensation;
2) to design a detection scheme that is robust to the
smearing effects caused by inadequate motion com-
pensation. We show that the blurring is equivalently
modeled by describing the uncompensated target im-
age as the superposition of space shifted echoes of
a fully compensated target image. We then extend
to the two-dimensional (2D) model, a geometrically
based robust detection scheme we developed for the
one-dimensional (1D) case. In this paper, we will de-
scribe the structure and the design of the 2D robust
detector in detail.

1. INTRODUCTION

In synthetic aperture radar {(SAR) and inverse syn-
thetic aperture radar (ISAR), the relative motion be-
tween the radar platform and the target generates the
spatial diversity needed to achieve the azimuth resolu-
tion. However, with high resolution SAR/ISAR systems,
it is increasingly difficult to fully compensate for the rela-
tive motions. With 1m, or even higher, resolution radars
becoming available, it is hard to assign a scatterer to a
location when the scatterer changes its relative position
within the synthetic aperture interval. This problem is
known as the motion through resolution cell (MTRC)
problem [1]. The net result of MTRC is that the range-
Doppler image is blurred with loss of resolution. Com-
putationally intensive image formation algorithms are
needed to compensate for the MTRC effect. In general,
these image formation algorithms require costly Fourier
transform domain non-uniform interpolation which pro-
hibits the real time processing of SAR/ISAR images.
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In this paper, we first demonstrate that the blurring
and smearing of the SAR/ISAR images due to MTRC is
equivalently modeled by describing the uncompensated
image of a target as the superposition of multiple space
shifted echoes of the fully compensated target image.
Then, we design a detector that is robust to multiple
echoes with arbitrary space shifts. The idea is to include
these distortions explicitly in the model, rather than ig-
noring them.

We use a geometrically based approach. The one-
dimensional (1D) version of the algorithm is detailed
in [2], [3]. In this paper, we extend the approach to the
two-dimensional (2D) case. We define the signal sub-
space S as the set where the typical distorted target sig-
natures lie in the SAR/ISAR image plane. The ideal
robust target detector is matched to this signal subspace
S. In practice, this is too costly to implement. Our strat-
egy is to design a representation subspace G close to the
signal subspace S but such that the detector matched to
G is easy to implement. The closeness between & and G
is measured by the gap metric. The new robust detector
is easy to implement and since it is an approximation of
the ideal detector, it provides better performance than
other simple detectors.

I11. DiSTORTION MODEL

In this section, we describe briefly the SAR/ISAR im-
age formation process. The intent is to show that, for
example, for a single point scatterer, the MTRC blur-
ring that occurs can be modeled by describing the image
of the scatterer as the superposition of space shifts of a
fully focused image of the scatterer. Here, we concentrate
our discussion on spotlight SAR. Specifically, we consider
the distortion introduced by using the rectangular format
algorithm (RFA) with a large synthetic aperture in spot-
light mode.
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A. SAR image formation using RFA in spotlight mode

We will follow the notation in [1] assuming a point
scatterer. The transmitted signal radar is

sg(n,t) = A rect(%—) exp {j2mfot +myE2]} (1)
p

where n is the pulse index, £ = t — nT is the fast time
of pulse n, T is the pulse repetition time, T is the dura-
tion of the pulse, ¢ is the speed of light, f. is the carrier
frequency, and -y is the chirp rate. The signal component
of the return is

—t4
T, ) %

exp {j[27 fe(t — ta) + mv(t — ta)*]} (2)

where t; = 2R;/c and R; is the range from the SAR
sensor to the scatterer.

After dechirping, omitting the higher order terms and
approximating R; — Ry =2 K (Rt — Rg)n, K is a constant,
we get

t
sp(n,t) = ap rect(

~

sif(n,t) = a't rect(t———%}?ﬁ) X
exp {—jfBn}exp {—jat} 3)

where 8 = ﬂfcﬁ(}'ﬁ - R,), a= 4—’:‘(Rt — R,), and R,
is the range from the radar platform to the scene center.

Ideally, if Ry — R, and R: — R, are constant over
the synthetic aperture interval, then (3) is indeed a 2D
Fourier transform of the image of a point scatterer. Thus,
by taking the inverse Fourier transform of (3), we obtain
a 2D delta function which is the image of a point scat-
terer.

Due to uncompensated motions, R; — R, and R; — R,
will change over a large synthetic aperture interval. If
this change is greater than the size of a resolution cell,
the final reconstructed image is blurred.

To investigate this distortion in detail, let us assume
that R; — R, is a constant and take the inverse 1D Fourier
transform of (3) with respect to £ (this is called range
compression). We have an array of 1D delta functions
centered at positions proportional to R; — R,. If R — R,
is a constant, then these delta functions are aligned in
the range direction, so taking a second inverse 1D Fourier
transform with respect to n (this is called azimuth com-
pression) will give a 2D delta function. However, since
R; —~ R, is not a constant, these delta functions are not
aligned in the range direction. Taking the inverse 1D
Fourier transform with respect to n spreads the 2D delta
function in both the range and the azimuth direction.
Hence, considering the RFA processing as a linear sys-
tem, the 2D spread delta function is indeed the impulse
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response of this system. In general, this system is shift-
variant, which means, for scatterers at different locations
in the scene, these impulse responses are different. How-
ever, if the size of a target is small, then different scat-
terers of the target will have a similar spreading pat-
tern, while targets at different locations will have differ-
ent spreading patterns.

B. Distortion model

Based on the discussion in the previous subsection, we
model the smeared target image as the superposition of
different shifts (in space) of the focused target image. If
the focused target signature function is s(z,y), then the
distorted target image is modeled by

K
sa(@,y) = D aks( — Tk, y — Yk) 4)
k=1

We illustrate that indeed this is the appropriate model
by forming the image for the spotlight SAR geometry
shown in Fig. 1. In the simulation, the pulse length T, is
4us, the center frequency f. is 242.4MHz, the chirp rate
~ is 33.375MHz/us and the synthetic aperture length L
is 760.8m. The plot in Fig. 2 depicts the image of a
rectangular target with 18 scatterers at the scene center.
The image is formed using RFA. Since relative motions
of scatterers at the scene center are fully compensated
by dechirping, the plot shows an undistorted rectangu-
lar target. The plot in Fig. 3 shows the image of the
same target located at (200m,0). As seen from the plot,
the distorted target consists of five translated replicas of
the focused target image. This is because the relative
motions of scatterers far from the scene center are not
appropriately compensated by dechirping.
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Fig. 1. Geometry

II1. GEOMETRIC APPROACH

In this section, we discuss the target detection problem
by utilizing the distortion model that we described in the
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Fig. 2. Immage of a rectangular target at the scene center (0,0).
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Fig. 3. Image of a rectangular target at (200m,0).

previous section.

A. Detection formulation

The target detection problem is cast in the following
hypothesis testing problem

K
Hy:r(z,y) = Z ors(T — Tk, y — Yr) +

k=1

n(z,y) (5)
Ho:r(z,y) = n(z,y) (6)

where s(z,y) is the focused target signature, n(z,y) is
the background noise, K is the number of shifted (in
space) replicas, oy is the attenuation of the kth replica
and (z,yr) is the space shift of the kth replica. In this
paper, we assume that the focused target signature is
known and the noise is white and Gaussian. We also

assume that the distortion parameters: {(zg,yr)}, {ar},
and K are deterministic unknown.

We describe our approach in the context of generalized
likelihood ratio test (GLRT) detection|2]. 1t is based
on a geometric interpretation of the detection problem.
Let & be the signal subspace containing all the possible
distorted target signatures for a given signal model, i.e.,

K
S={Zak3(iﬂ—$k,y-yk)} (7)
k=1

The GLRT test statistic is the energy of the orthogonal
projection of r(x,y) on the subspace S, i.e.,

L= | Ps(r(z,y)) Il; ®)
where Pgs(r(z,y)) is the orthogonal projection of r(z,y)
on S and || - ||, is the Ly norm.

Calculating the orthogonal projection Pg(r(z,y)) re-
quires a costly multi-dimensional nonlinear optimization.
Our approach is to approximate this orthogonal projec-
tion by designing a representation subspace G which sat-
isfies three requirements:

» The orthogonal projection on G is easily computed;
o G is easily designed;

e The orthogonal projection on the representation
subspace G is close to the orthogonal projection on
S in the gap metric sense.

The gap metric [4] is a distance measure between two
closed subspaces. Given two closed subspaces S and G in
a Hilbert space H, we denote by Sg the unit sphere of S
(the set of all u € S with || u ||, = 1) and let

8(S,G) = sup dist(u,G) (9)
u€Ss

where dist(u,G) = infyeg || v — v ||,. Likewise, we define
0(G,S). The quantity

6(S,6) = max(8(S,6),8(G,S))

is called the gap between S and G.

An equivalent perhaps more intuitive definition of the
gap metric is also given in [4]. It is defined in terms of
the orthogonal projection operators of § and G. Denote
by Ps and Py the orthogonal projection operators of S
and G respectively, then the gap metric is

6(5,9) =1 Ps — Pg ||

(10)

(11)

where || - || is the Le induced operator norm.

Once we have G, the new test statistic is the energy
of the orthogonal projection of the observation r(x,y) on
the representation subspace

L= Ps(r(z,y) I3 (12)
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B. Subspace design

In this subsection, we discuss the subspace design
problem. Our goal is to find a representation subspace
G that satisfies the three requirements described in the
previous subsection. First of all, we choose G in the fol-
lowing form

+o00
G= { Z ﬂm,ng(a’ -m,y— n)} (13)

In general, subspace design is difficult. However, by
choosing the subspace structure given in (13), we reduce
the subspace design problem to a functional design prob-
lem. Now, we need only to design the function g{z,y).
Also, with this representation subspace structure, the or-
thogonal projection on G is easily computed by taking
inner products.
We design the subspace G in two steps:

1. Design the representation subspace G to minimize
the gap between G and an integer shifted subspace
Sint of S;

2. Reshape the optimal ¢*(z,y) from step 1 to make it
nearly shiftable using the reshaping algorithm in [5].

We show that the gap between S, and G is

) = —  inf
6(Sint: G) \/T it Coglfisf2)

(14)

where Csq(f1, f2) is

lzk,zfsul +k, fo+ DFg(fr + &, fa + DI

Zm’n lfs(fl + maf? + n)|2 Em,n |*7:g(f1 +m, f2 +Tz)’2

15)
where Fs(f1, f2) and F4(f1, f2) are the Fourier transform
of s(z,y) and g(z,y) respectively and Fy(f1, f2) is the
complex conjugate of Fy(f1, fa)-

We further restrict g(z,y) to be a 2D separable com-
pactly supported orthonormal scaling function [6] so that
we use the parameterization given in [7]. With the
parameterization of g(z,y), the functional design prob-
lem is reduced to a finite parameter optimization prob-
lem. Now, Csy(f1, f2) is a function of the parameter
¢ that parameterizes g(r,y). We write it explicitly as
Csg(f1, f2,Q)-

Minimizing 6(S;nt,G) is equivalent to maximizing

nf ng(fl,anC)

i
f1.f2€[0,1)

(16)

We carry out the maximization of (16) by doing a brute-
force search of the parameter space. That is, we com-
pute (16) at discrete sample points of { and pick the value
¢* that maximizes (16). Then, we use an algorithm given

in [8] to reconstruct the optimal scaling function g*(z,y)
from ¢*.

In step 2, Benno and Moura’s algorithm [5] is used
to reshape the optimal g*(z,y) obtained from step 1 to
make it nearly shiftable.

IV. SIMULATION RESULTS

In this section, we present simulation results to demon-
strate the performance of the robust detector for the 1D
case.

We compare the performance of our robust detector
with two other detectors: the correlator detector and the
“Matched Filter with Integer Shifts” (MFIS) detector.
The correlator detector is a simple detector. It corre-
lates the observed target image with the focused target
image and uses the information in the peaks of the cor-
relator output to form the test statistic and detect the
target. The MFIS detector is also a simple detector. It
has the same structure as our robust detector. The dif-
ference is that, in the MFIS detector case, the observed
target image is matched to the integer shifted replicas of
the focused target image, while, in our robust detector
case, the observed target image is matched to the integer
shifts of the reshaped optimal scaling function g*(z,y)
we design.

In the 1D case, we use the following equivalent distor-
tion model

K
sa(t) = ons(t — 7) (17)
k=1

We call s(t) the transmitted signal which corresponds to
the focused target signature s(z,y) and call 74, the delay
which corresponds to the space shift (g, ¥k )-

In the simulation, we pick the following signal as the
transmitted signal

s(t) = exp(—t) - cos(t) - (u(t) — u(t — 8)) (18)

where u(t) is the unit step function. The signal s(t) is a
truncated modulated decaying exponential with damping
coefficient 1 and modulating frequency 1/2x. The signal
s(t) is sampled at intervals 1/64.

For simplicity, we set all the attenuation factors {ay}
to 1. The number of replicas K is set to 15. We gen-
erate the delays {73} using a random number generator.
For a fixed pattern of delays, we calculate the probabil-
ity of detection Pp as a function of the signal-to-noise
ratio (SNR) with fixed probability of false alarm proba-
bility Pg. Then, we repeat it 100 times to see how the
performance changes with the delay patterns.

Fig. 4 shows the average detection probabilities as a
function of the SNR with the false alarm probability
Pr = 0.01. The solid line in the figure represents an
unrealistic performance bound. It is the performance
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curve obtained by assuming that all the delays are ex-
actly known. Fig. 4 shows that our detector provides

1
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Fig. 4. The average detection probabilities, K = 15, Pr = 0.01.

The solid line is a performance bound, “~—" is the new robust
detector, “~.” is the correlator detector, and “ -.” is the MFIS
detector.

about 3.5dB gain over the correlator detector and about
4dB gain over the MFIS detector. In this simulation,
the MFIS detector is outperformed by other detectors.
The potential maximum gain over the MFIS detector is
given by the distance between the two extreme curves in
Fig. 4, namely the left most curve corresponding to the
optimistic upper bound and the right most curve corre-
sponding to the MFIS detector. This gain is about 5 dB.
We see from Fig. 4 that our robust detector is able to
recover 80% of the potential gain.

The performance of our robust detector does not
change significantly with the delay patterns. This phe-
nomenon is demonstrated in Fig. 5. Fig. 5 depicts the
detection probabilities at SNR. = 18dB as a function of
the delay patterns. We can see that the robust detector
(top curve in the plot of Fig. 5) not only performs better
than the correlator detector and the MFIS detector but
also oscillates much less than these two detectors.

V. SUMMARY

In this paper, we describe a robust detection scheme
for unfocused SAR/ISAR images. We show that the
blurred and smeared target signature in SAR/ISAR im-
ages, which are due to the lack of relative motion compen-
sation, can be equivalently modeled as the superposition
of multiple space shifted replicas of the fully compen-
sated target signature. Based on this distortion model,
we extend our previous work to the 2D case to solve this
problem. Our approach is to consider the distortion ex-
plicitly, rather than ignoring it. The detector matched
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Fig. 5. Detection probabilities at 18dB for different delay patterns.
“——7 is our robust detector, ¥—.” is the correlator detector, and
“...” ig the MFIS detector.

to this model is then robust to the distortion.

REFERENCES

{1] W. G. Carrara, R. S. Goodman, and R. Majewski, Spot-
light Sysnthetic Aperture Radar. Signal Processing Algorithms.
Artech House, 1995.

[2] C. He, J. M. F. Moura, and S. A. Benno, “Gap detector for
multipath,” in JCASSP, May 1996, pp. V-2650-2653.

(3] C. He and J. M. F. Moura, “Robust detection with the gap
metric,” Submitted to IEEE Trans. on Signal Processing, re-
vised November 1996.

[4] T. Kato, Perturbation theory for linear operators.
Verlag, 2nd ed., 1976.

[5] S. A. Benno and J. M. F. Moura, “Nearly shiftable scaling
functions,” in ICASSP, May 1995, pp. 1I-1097-1100.

(6] S.Mallat, “A theory for multiresolution signal decomposition,”
IEEE Trans. Patt. Anal. Mach. Intell., vol. 11, pp. 674~693,
July 1989.

[7] H.Zou and A. H. Tewfik, “Parameterization of compactly sup-
ported orthonormal wavelets,” IEEE Trans. Signal Processing,
vol. 41, pp. 1428-1431, March 1993.

{8] C. K. Chui, An Introduction to Wavelets. Academic Press,
1992.

Springer

299



