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Abstract— We present in this paper an optimal
Bayesian algorithm for integrated, multiframe detection
and tracking of dim targets that move randomly in spa-
tially correlated, cluttered image sequences. The algo-
rithm consists of a multiframe minimum probability of
error Bayes detector integrated with a multiframe max-
imum a posteriori (MAP) position estimator. The de-
sign of the detector/tracker incorporates the models for
target signature, target motion, and clutter; it uses re-
cursive spatio-temporal processing across all available
frames to make detection decisions and to generate po-
sition estimates. A simulation with an artificial target
template added to real clutter background shows that
the proposed algorithm outperforms the association of a
standard single frame image correlator and a linearized
Kalman-Bucy filter in a scenario of heavy clutter.

I. INTRODUCTION

We discuss in this paper a new algorithm for in-
tegrated ‘detection and tracking of dim targets in se-
quences of finite resolution two-dimensional (2D) clut-
tered images. Common approaches to the problem, see
[1], are based on a suboptimal decoupling of detection
and tracking, i.e., the measurements of interest to the
tracker are not the raw sensor images, but the output
of a preliminary detection subsystem. The detection
stage involves the thresholding of the raw data, usually
one single sensor frame. After further preprocessing,
validated detections provide measurements that, for
targets declared present, are treated as noise-corrupted
observations of the unknown true target state (for ex-
ample, spatial position). A linearized dynamic model
is associated to the state of each target, and a tracking
filter, usually a variation on the Kalman-Bucy filter,
combines the validated measurements from the detec-
tion stage with the dynamic model to estimate the tar-
get’s state. Although the suboptimal combination of
single frame detection and Kalman-Bucy filter tracking
may perform well in scenarios of high target-to-clutter
ratio, its performance tends to deteriorate in a situation
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where it is necessary to detect and track dim targets in
heavily cluttered environments.

Rather than decoupling detection and tracking as in
(1], or considering spatio-temporal detection-only (no
tracking) as in 2], (3], [4], we present the optimal, mul-
tiframe, Bayes detector/tracker that processes directly
the sensor images and integrates detection and track-
ing into a unified framework. The optimal Bayesian
algorithm that we describe takes advantage of all prior
information on the clutter, target signature, and tar-
get motion models, and allows multiframe- detection
and tracking with recursive spatio-temporal processing
across all observed sensor frames.

This paper is divided into six sections. 3ection [ is
this introduction. Section II briefly reviews che iaud-
els for target and clutter that underly our integrated
approach to detection and tracking. In’section III, we
describe the optimal Bayes detector/tracker. Section
IV examines the problem of estimating the parameters
of the clutter model from the data using an approx-
imate maximum likelihood algorithm. -We present in
section V an application of the proposed Bayes detec-
tor/tracker to infrared airbone laser radar (IRAR) [3)
data. The Bayes tracker is shown to outperform the
suboptimal association of a standard 2D image cor-
relator with a linearized Kalman-Bucy filter. Finally,
section VI summarizes the contributions of the paper.

II. THE MODEL

Clutter After removing the spatially-varying local
mean, we describe the background clutter in each frame
using a 2D, zero-mean, noncausal, spatially homoge-
neous, correlated Gauss-Markov random field (GMrf)
model [6]. For a first order model, the random compo-
nent of the clutter intensity at pixel (i, 7) in the nth
frame is modeled by the minimum mean squared error
(MMSE) representation



Va(i,3) = Br [V (i, 5 — 1) + Va(isj + 1)
+ By [Vali = 15) + Va(i + 1,7)] + Un(i.5)

where 1 < i< L,1<j <M, and U, is the prediction
error such that

EVa(i, HUn(k, D] = 026G -k, 5—0). (1)

In (1), E[] stands for expected value (or ensemble av-

erage) and 4 is the 2D Dirac delta function.
Target Signature We assume a single target scenario
where the target of interest is a rigid body whose
clutter-free image is contained inside a 2D rectangular
region of size (r; +rs+1) x (I; +15+1). In this notation,
r; and r; denote the maximum vertical pixel distances
in the target image when we move away, respectively
up and down, from the target centroid. Analogously, I;
and [; are the maximum horizontal pixel distances in
the target image when we move away, respectively left
and right, from the target centroid.
The target signature is described by a set of signature
coefficients
a™(k, 1) = c"(k, 1) ¢"(k,.1) )
for —r; < k < rsand ~l; <1 < l;. In (2),
c¢™(k,l) € B = {0, 1} is a binary coefficient that de-
fines the target’s shape, whereas ¢"(k, {) € R is a real
coefficient “hat specifies the target’s pixel intensities.
In this paper, we consider the case when the signature
coefficients a™(k, [) are deterministic and known to the
detector/tracker at each frame. For a treatment of tar-
gets with unknown, random pixel intensities, see {7].
Target Motion Due to the sensor’s finite resolution, the
surveillance space is discretized by a uniform-2D finite
lattice. To model situations when targets move in and
out of the sensor grid, we define the centroid lattice
‘C:{(Z7]) —Ts+1 SiSL'*'T'i, ~lS+IS]SM+l1,
}, where L and M are the number of resolution cells
in each dimension. Let £ be an equivalent 1D rep-
resentation of the centroid lattice £ obtained by row
lexicographic ordering. To build an integrated frame-
work for detection and tracking, we augment £ with
an additional dummy state that represents the absence
of the target. For convenience, we assign to the absent
" state the index (L +7; +7,) (M +1; +15) + 1. The final
1D extended lattice is

L={l1<I<(L+ri+r)(M+L+1)+1} . (3)
The unknown state at frame n is a 1D random vari-

able, z,, defined on £. The target motion on the ex-
tended lattice £ is described by a first-order hidden
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Markov model (HMM) specified by the matrix of tran-
sition probabilities

Pr(i, j) = P(zn = i| 201 =) (4)

forall i, j) € Lx L .

III. OpPTIMAL BAYES DETECTOR/TRACKER

We make the following assumptions in the derivation
of the algorithm:
1. The sequence of clutter frames {V}, & > 0, is in-
dependent, identically distributed (i.i.d.).
2. The sequence of target states {zx}, k > 0, is statis-
tically independent of the sequence of clutter frames,
{Vi}, k>0. .
Let Y3 = {yo, Y1,---, Yn}, where y, 0 < k < n,isa
1D long vector representation of the observed 2D sensor
frame Y at instant k. With the assumptions made in
the previous paragraph, the posterior probability mass
function P(z, | YJ), z, € L, is computed recursively
by the following two-step algorithm (see [8] for further
details):
Prediction Step Combining the theorem of total prob-
ability and Bayes law, we write

P(zn | Y37") = Y Plen|zn-1, Y3™h)
Zn—-1
X  Plzp-1 | Y371 (5)

Using the assumption that the current target state,
Zn, is statistically independent of the previous clutter
frameés, {V}, 0 < k < n — 1, and recalling that the
sequence of target states {z;}, k > 0, is described by
a first-order Markov chain model, it results that, con-
ditioned on z,_;, 2, is statistically independent of the
previous observations, Y51, i.e.,

P(zn | 2n1, Y§7') = P(za | za1) . (6)
Equation (5) is then rewritten as
P(2n | Y3~ = S P(zn | 2n-1) P(zns | Y3°1).

Zn—-1

@)
Filtering Step Using Bayes Law,
P(zn | Yg) = Cup(yn | Zng_l)
X Plza| Y5 (8)

where C), is a normalization constant. From the as- -
sumption that the sequence of clutter frames {Vj},
k > 0, is i.i.d, we conclude that, conditioned on z,,
the current observation vector yy is statistically inde-
pendent of the past observations, Y3~ !. Equation (9)
reduces then to :

P(zn | Y§) = Cup(yn | 2n) Plzn | Y1) (9)



We now consider detection and tracking.

Detection Let Ly = (L+7r;+75) (M +1;415). Denote by
Hj the hypothesis that the target is absent and, by Hy,
the hypothesis that the target is present. Assuming
equal cost for misses and false alarms and zero cost
for correct decisions, the minimum probability of error
detector is the test

Hy
P(Ho | Y3) 2 P(Hy | Y)
H
_ n HO
N P(zo =L +1| Y}) 1 o)

1= Pln=Li+1| Y5 5§
1

Tracking Introduce, for all [ € Z, the conditional prob-
ability

Qf [n]

P(z, = 1| target is present, Y§)
Pz, =1 YE) -
1-Plzpn=Ly +1| Y§)

(11)

where £ is the 1D equivalent centroid lattice, see sec-
tion II. The maximum a posteriori (MAP) estimate
of the the target’s centroid position assuming that the
target is present is

Zmap [n] = arg TlneaZXQ{["] . (12)

7). APPROXIM/TE ML PARAMETER ESTIMATION

Let 'V be a first order, noncausal L x M Gauss-
Markov random field. We derive next an approximate
maximum likelihood algorithm to estimate from V the
corresponding parameters 3, By, and o2. For the
Gauss-Markov model, the negative log-likelihood func-
tion is given by [9]

LM

L(V) — In(2r) - LMIna,

1 1

—In|A| -=—=(VTAV 13
+ogllAl-g5(VTAV)  (13)
where A is a block-tridiagonal, block-Toeplitz, L M x
" L M matrix with structure

A=IQIy -6l @Hy -6,H @1y . (14)
In (14), I, is the 7 x r identity matrix, and H, is an
7 x T matrix whose entries H,(¢, j) are equal to 1 if
| i —j |=1 and equal to zero otherwise. The symbol
® denotes the Kronecker or tensor product [10]. From
the structure of A, it results that

vTav

Sv - /BhXh - ﬁva (15)

L M
i=1 j=1
L M-1
DY ViiVin
=1 j=1
L-1 M

DD Vi Vi, -

i=1 j=1

V2,

i 16

(16)

Xh (17)

Xv (18)

On the other hand, as shown in [11], the eigenvalues of
the matrix A are

]

i
M + )

™
L+1

for1 <i< L,1<j< M. The natural logarithm of the
determinant of A on the righthand side of equation (13)
can be then computed as

L M
In|Al=>"Y"I(y;) .

i=1 j=1

Aij =1 =208 cos( ) — 28, cos( (19)

1

(20)

The minimization of the exact negative log-likelihood
function in (13) with respect to the parameters 84, 3y,
and ¢2 is a computationally intensive nonlinear op-

. timization problem [9]. A suboptimal solution is ob-
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tained using the Taylor series approximation

2

In(l—7) = —n— 1

7 + o(n?) .

(21)

Combining the approximation in (21) with the trigono-
metric properties

N .
17 -
;cos(N+l) =0 (22)

N .
9, IT _ N-1 .
Ecos (N+1) = 5 (23)

we can write

In|Al~L(M-1)8;+(L-1)Mp:. (24)

Substituting equations (15) and (24) into (13), taking
the derivatives with respect to 8, and 8, and making
them equal to zero, we get

~ Yh .
Pn o2 L(M —1) (25)
— _ X'U 5

By o2(L-1)M "~ (26)

The Taylor series approximatioﬁ in (21) is only valid for
n << 1, i.e., for weakly correlated fields. In practice,
however, real clutter data tends to be highly correlated,



particularly in optical imagery. It is necessary therefore
to adjust equations (25) and (26) to accomodate for n
not being small. Balram and Moura observed [9] that,
for highly correlated GMrfs, the parameters 8, and 8,
tend to be located near the boundaries of the parameter

space P that makes A a positive definite matrix. These -

boundaries are defined by the equation [9]

m
M+1

T
L+1

+| By | cos 27)

1

| Br | cos 5
An heuristic approach [9] to obtain approximate ex-
pressions for By and 3, in the highly correlated field
case is to divide equation (26) by equation (25), thus
obtaining a ratio that is independent of ¢, and then to
impose the constraint in (27) for B, = Bz and B, = B:
This procedure leads to the following estimates:

B; €Xh
| X ] COS<L11) +a l Xh { COS(M7;1)
B\ €Xv
v

| xv | cos(g37) + o | xa | cos(z757)

where ¢ = 0.5 and
_(L-1)M
CTIM -

In order to ensure that the estimated parameters ,fi:
and ,@: are valid points in the parameter space P, we
empirically replace € = 0.5 with € = 0.5 — §, where ¢ is
a small number (for example, 6 = 10~%).

AThe approximate ML estimate of the clutter power,

02 can in turn be obtained by taking the derivative of
the approximate negative log-likelihood function

E(V) = LI’ ~ 2 [L(M ~ )5} +
.

55 [Sz = Brxn — BuXo)

(L-1)MBZ] + 57

with respect to o2, equating it to zero, and making
Br = Br and B, = B,. Following these steps, the final
expression for o2 is

Lo
LM
V. SIMULATION RESULTS

S — Bh Xh av Xv) - (28)

2 —
gy =

Figure 1(a) shows a 120 x 120 gray-level real inten-
sity image [12] of a snow-covered field in Stockbridge,
NY, obtained by an airborne 0.85 pm down-looking
active laser radar [5] mounted to a Gulfstream G-1 air-
craft. Brighter areas indicate stronger laser returns.
We added to the imagery an artificial target template
that simulates a military vehicle (tank). The target
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(b)

Fig. 1. Simulated target in cluttered real background: (a) target
plus clutter, (b) target template.

template is shown isolated in Figure 1(b) as a binary
image. The pixel intensity of the target was set so that
there is little contrast between the vehicle and the back-
ground. To test tracking performance, we simulated a
random trajectory for the target template in the back-
ground. The target departs from an unknown location
in the 120 x 120 grid and moves with a constant mean
velocity of 2 pixels per frame in both the horizontal and
vertical -directions. The actual target displacement is
a 2D first order random walk fluctuation around the
average drift, i.e., if (4, ) is the expected target cen-
troid position according to its deterministic velocity,
the real position may be (i — 1, 7), (¢ + 1, 7), (4,7 +1),
or (,5 — 1), each with a uniform 20 % probability. In
addition to the simulated target, we also add low power
white Gaussian noise to the image sequence.

We initially preprocess each frame by segmenting it
and removing the spatially variant local mean. We then
fit a zero-mean first order Gauss-Markov random field
model to each frame by estimating the corresponding
parameters By, By, and o2 using the approximate max-
imum likelihood estimation algorithm described in sec-
tion IV. The estimated parameters are subsequently
used in the filtering step of the Bayes detector/tracker
at each frame. We compare the tracking results for
a sequence of 27 frames using (a) the proposed Bayes
tracker, and (b) a standard 2D image correlator asso-
ciated to a linearized Kalman-Bucy filter. The results
are shown in Figure 2. The Bayes tracker assumes a
uniform initial target position distribution over the en-
tire sensor grid. The linear filter, on the other hand,
is initially favored by using a Gaussian initial position
prior that is centered in the vicinity of the true ini-
tial position and has a small variance. The real sim-
ulated trajectory is shown in solid line. - The position
estimates generated by the Bayes tracker are indicated
by the symbol ‘+’, whereas the estimates generated by
the linearized Kalman-Bucy filter are interpolated us-
ing dashed lines. At each frame, the Bayes algorithm is



testing for the presence or absence of target using the
detection test (10), before it estimates the target’s po-
sition using the MAP estimator in (12). In the first half

R : : : i
« H Actuaipath | |
H Bayes trackar | :
50 »:Kalman:ﬁhev
< 60 2N : H
g
R
2
S o
3
> %
100)
110) -
“a0 50 0 100 110

70
horizontal position

Fig. 2. Nonlinear Bayes detector/tracker versus linearized
Kalman-Bucy filter: performance comparison

of the trajectory shown in Figure 2, the simulated tank
is going through a heavily cluttered section of the back-
ground, and the single frame standard image correlator
is unable to track the target. The Kalman-Bucy filter
tends to discard the correlator’s position estimates and
through the inertia in its prediction step, tries to fit
a straight line trajectory. In the second half of the
simulation, when the tank is on an open field, the im-
age correlator is capable of correctly locating the target
and the filtering step of the Kalman-Bucy filter slowly
forces the estimated trajectory to approach the true
trajectory. By contrast, the Bayes tracker, which has
no prior knowledge of the initial position, makes a large
initial localization error (the isolated ’+’ on the top left
corner of Figure 2), but, afterwards, as new frames be-
come available, the tracker immediately acquires the
target and tracks it almost perfectly. A comparison
shows that, even in steady state, the localization error
for the Bayes tracker is lower than for the Kalman-Bucy
filter, while the acquisition time is much shorter.

VI. CONCLUSION

We discussed in this paper an optimal Bayesian ap-
proach to integrated detection and tracking of ran-
domly moving targets in spatially correlated cluttered
image sequences. The algorithm consists of a multi-
frame minimum probability of error Bayes detector and
a multiframe maximum a posteriori (MAP) target posi-
tion estimator. The detector/tracker design fully incor-
porates the models for target signature, target motion,
and clutter and uses recursive spatio-temporal process-
ing across all available frames to make detéction deci-
sions and to generate position estimates. A simulation
with an artificial target template added to real clutter
background shows the proposed algorithm outperforms
the association of a standard single frame image corre-
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lator and a linearized Kalman-Bucy filter in a scenario
with a dim target.
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