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Abstract: This paper examines optimal joint de-
tection and tracking of multiple targets that move
randomly in spatially uncorrelated and correlated
Gaussian and non-Gaussian (heavy tail) clutter. We
develop an integrated detector/tracker and illustrate
its performance with synthetic data.

1 Introduction

The problem we consider in this paper is detection
and tracking of multiple targets moving in cluttered
environments. Given the sensor finite resolution, at
each instant n, possible targets are either absent or
centered in a given site on a finite discrete grid that
represents the different resolution cells of the sen-
sor. The sensor measurements are contaminated by
clutter that accounts for false returns representing
spurious reflectors and for measurement noise. Real
targets move randomly on the finite sensor grid ac-
cording to a known stochastic model.

The traditional approach to this problem decou-
ples the detection and tracking tasks [1}: a prede-
tection stage is followed by a data association algo-
rithm that associates each possible validated mea-
surement to-a linearized tracking filter. By con-
trast, we integrate detection and tracking into the
same framework. We apply nonlinear stochastic fil-
tering to design the optimal multitarget joint de-
tector/tracker. The resulting detector/tracker is a
recursive Bayesian algorithm that incorporates the
target, clutter, and motion models. Both spatially
correlated Gaussian clutter and non-Gaussian clut-
ter with heavy-tail statistics are considered. Further
details on the implementation of the algorithm are
found in [2].

2 The Model

We assume that, at each sensor scan, there may be
at most M targets present in the surveillance space.
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Each target that is present is a rigid body with
translational motion belonging to one of M possible
classes characterized by their known, deterministic
and time-invariant signature parameters and by the
known dimensions of their noise-free image. We re-
strict our discussion to the situation where, at each
sensor scan, there is only one possible target from
each class. We do not exclude however the possibil-
ity of two or more classes being represented by the
same signature parameters. For simplicity, we con-
sider in this paper 1D surveillance spaces.

Sensor

The sensor scans a bounded 1D region. Given the
sensor’'s finite resolution, this interval is discretized
by a uniform finite discrete lattice

£={:1<1<L} (1)

where L is the number of resolution cells and [ is an
integer.
We introduce the vector
Z,=[zh ... 2M)" 2)
which collects the positions of the centroids of the
M possible targets in the sensor image at instant n.
In order to account for the situations when targets
move in and out of the sensor range and in order
to account for the possibility of absence of target,
we define each random variable 22 on an ectended
lattice, [2],

Lp={l: =P +1<I<L+1P+1} (3)

where ({? + 1P + 1) is the maximum length of the 1D
noise free image of a class p target and 22 = L+17+1
means that the class p target is absent at instant n.
Targets
Assuming real observations,the noise free image of
a class p extended target, 1 < p < M, is modeled as
a mapping
tP: £, — RE
2 = f) @)
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where
g
£,(28) = Z abe.r Pel, (3)
k=—1?
f(z7) = 0L 2 =L+I1P+1.(6)

In the previous model, ¢, 1 < ! < L is a vector
whose entries are all zero, except for the [th entry
which is one. If I < 1lorl > L, e is defined as
the identically zero vector. The coefficients {a}} are
the signature parameters of the class p target and
Lp={-1?+1<1<L+1"}is the set of all possible
positions of the centroid of a class p target such that
at least one pixel of the target still lies on the sensor
image.

A particular case of the generic extended target
model is the pointwise target model, for which the
target dimensions [; and [ are set to zero, meaning
that the target is represented by only one single pixel
in the sensor image.

Motion Model

The motion dynamics of a class p target in the
corresponding extended lattice £, is specified by a
transition probability matrix T, whose general ele-
ment Ty(k,7) is

Tp(k,j) =Prob(zE =k —-1P| 25_ =5-18) (7)

where 1 < k,j S L%+ 1P +12 + 1.
Obsecvations
The observations at the nth sensor scan are

Yo =00+ B2+ Bz + v (8)

where v, is the background clutter and fp,(25) is the
appropriate model for a class p target (pointwise or
extended). The observations model in (8) accounts
for the possibility of superposition of target signa-
tures or merging target tmages.

Clutter Models

We consider in this paper three models for the
background clutter v,: spatially white Gaussian,
spatially correlated Gaussian, and spatially white
non-Gaussian clutter.

e Gaussian clutter: under the assumption of
Gaussianity, the clutter vector v,, at each sen-
sor scan has probability density function (pdf),
p(vn) = N(0,R), where R is the clutter spatial
covariance. We distinguish two cases:

1. White Gaussian clutter: R = o1
2. Correlated Gauss-Markov clutter:

2R =1- S oI +K2) . (9)

=1
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In (9), I is the identity matrix, and K; and K,
are respectively the backward and forward shift
matrix operators [2]. The clutter model corre-
sponding to the inverse covariance in (9) can be
interpreted as the output of the noncausal spa-
tial finite difference equation {2]

un(i) = Y ap[vali = p) +vali +p)] + un(i)
p=1

(10)
where 1 < 7 < L and u,(i) is a white Gaus-
sian driving noise with covariance ¥, = ¢2I.
The model in (9) assumes that zero boundary
conditions are specified for the finite difference
equation in (10).

e Non-Gaussian clutter: When dealing with
non-Gaussian clutter, we assume in this paper
that the sensor measures, for each resolution
cell, the in-phase and quadrature returns of clut-
ter and targets. The recorded clutter measure-
ments at instant n correspond then to a sam-
pling of the returned clutter complex envelope
and are given by the even-sized vector

Vp = [vén v ... UcL,, Ufﬂ]

(11)
where L is the number of resolution cells. We
assume that the double-sized vector v, has a
joint pdf with non-Gaussian statistics such that

the sequence of random variables
(vE,)? + (vf,)? (12)

is identically distributed with a probability den-
sity function different from a Rayleigh distribu-
tion. In this paper, we consider the K-envelope
model for ex. The K-pdf, which has been pro-
posed as a model for sea clutter [4], is given by

er = 1<k<L

bu+l eV

2v-1T(v)
where v is a shape parameter, T'(.) is the Eu-
lerian function, K,_1(.) is a modified Bessel

function of the second kind and b is related to
average power o2 by b* = 2§,

pe(e) = K, 1(be) e>0 (13)

We simulate samples of K-envelope clutter using
segments of statistically independent spherically
random vectors (SIRVS) with apropriate statis-
tics. Details of the simulation are provided in

(3J-

3 Multitarget
Detector/Tracker

Statement of the Problem




We assume that at each time instant an unknown
number of targets ranging from zero to M may be
present. The targets that are present belong to dis-
tinct classes (i.e., in the context of this model, have
different signatures). Given the observations y§ from
instant 0 up to instant n, we want, at each instant
n, to perform three tasks: (1) determine how many
targets are present/absent (detection); (2) assign the
detected targets to a given class (data association);
(3) estimate the positions of the detected targets in
the lattice(tracking).

Optimal Bayesian Detector/Tracker

To accomplish these 3 tasks in an optimal Bayesian
sense, it suffices to compute the joint posterior prob-
ability P(Z, | y§) at each instant n. The formal
solution is divided in 3 steps.

Filtering Step

From Bayes’ law,

P(Zn|y5) =Cnplyn | Zo0)P(Zn |yy™")  (14)
where C), is a normalization constant.
Prediction Step
From the total probability theorem
PZnlyg™ )= Y P(zh]zh)
51 ~M
“n— “n—1
CPEM M VP(Za YT . (15)

Equation (15) assumes that the statistical models
describing the motion of each target are independent.
Detection/Tracking
We now detail the minimum probability of error
detector and the optimal MAP tracker for M targets.

1. Given P(Z, | y&), compute the posterior prob-
abilities of the detection hypothesis Hj;, 0 <
j < 2M — 1. The minimum probability of er-
ror detector decides that hypothesis H; is true
ifVj#4,0<4,j<2M ~1,
P(H; | yy) > P(Hj | y5 (16)
2. Let hypothesis Hp correspond to the situation
where all M targets are assumed present at in-
stant n. If hypothesis H;, 1 < i <'2M — 1, is
declared true, introduce the conditional proba-
bility tensor H;In defined as

; P(Z,, Hi | yg)

1,,,,(Z,) = P(Z, | Hi,y3) = —————
l (Z,) (Zn | ¥o) P(H; | yD)

(17

The MAP Bayes tracker looks for the maximum
of IT;, |, to estimate the positions of targets that
are assumed present under hypothesis H;.

4 Simulation Examples: Gaus-

sian Clutter

We present in this section illustrative examples of
joint detection and tracking of 2 targets in a 1D grid.
We show initially examples with Gaussian back-
ground clutter. The examples include both pointwise
and extended targets with white and spatially cor-
related Gaussian clutter. In section 5, we consider
non-Gaussian clutter.

Pointwise Targets

Correlated Gaussian Clutter

We consider first an example where we detect
and track 2 pointwise targets in spatially correlated
Gaussian clutter. The targets are assumed to belong
to two classes, respectively class 1 and class 2, which
are characterized by their deterministic signatures.
Class 1 targets have a deterministic signature a; = 1
while class 2 targets have a deterministic signature
as = 0.8. The targets move in the lattice with av-
erage drifts d; = 2 for class 1 targets, and dy = 4
for class 2 targets, and have a fluctuation probabil-
ity of one cell of p = ¢ = 0.4 around their aver-
age displacement. The background clutter is a first
order noncausal Gauss-Markov sequence (GMRseq)
with a; = 0.25. The peak signal-to-noise ratio is
PSNR; =14 dB for class 1 targets and PSNRy =12
dB for class 2 targets.

The lattice is assumed to have L = 64 resolution
cells and the simulation extends over 70 time scans.
At each scan, either two targets (one from each class)
are present, or only one target is present, or none of
the targets is present in the lattice. Once a target
disappears from the sensor range, a new target from
the same class can appear at any cell with a proba-
bility of p, = 0.3.

The detection/tracking results for class 1 targets
are shown in figure 1(a). The results for class 2 tar-
gets are shown in figure 1(b). The correct track is
shown in solid line whereas the estimated track is
marked by the symbol ‘+’. The actual absence of a
target during a given scan is represented by the sym-
bol ‘o’ plotted over the the corresponding time index
on the horizontal axis. Likewise, an estimated ab-
sence-of target is marked by the symbol ‘+’ plotted
on the horizontal axis.

The detection statistics for class 1 and class 2 tar-
gets for the levels of PSNR in figure 1 were obtained
through Monte Carlo simulations using 10,000 sensor
scans. The results are shown in table 1 for two differ-
ent numbers of resolution cells: L = 64 and L = 100.

Extended Targets

Next, we present an example where we
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Figure 1: (a) Tracking of class 1 targets in first or-
der GMRseq clutter, PSNR;=14dB, (b) Tracking of
class 2 targets in first order GMRseq, PSNR2=12 dB

Detection Statistics | L =64 | L = 100
Py, 0.9926 | 0.9946
Py, 0.0393 0.0242
Py, 0.9665 0.9798
Py, 0.0434 0.0499

Table 1: Detection statistics with correlated Gaus-
sian clutter, PSNR; = 14 dB, PSNR, = 12 dB

track/detect two extended targets in a 1D finite grid,
against a white Gaussian background clutter. Both
class 1 and class 2 targets extend over 9 resolution
cells with l; = r; = r; = [y = 4, but have different
(deterministic) amplitude distributions. Specifically,
class 1 targets have a rectangular-shaped signature,
whereas class 2 targets have a triangular-shaped sig-
nature.

In a given sensor scan, either two targets (one class
1, the other class 2) are present, or just one target (ei-
ther class 1 or 2) is present, or no target is present. In
this simulation, we assume that, in a given scan with
two targets present, the corresponding sensor returns
may be either apart from each other, as shown in fig-
ure 2, or superimposed in the scan image, as shown
in figure 3.

The targets have translational motion with the
position of the targets centroids in the 1D grid de-
scribed by known first order discrete Markov chains
with deterministic drifts d; = 2 and d; = 4 for class
1 and class 2 targets, respectively. Like in our simu-
lation with pointwise targets, once a target belonging
to a given class disappears from the sensor range, an-
other target of the same class can appear randomly
at any resolution cell with a probability p, = 0.3.
The simulation was conducted for 100 time steps
(100 simulated sensor scans), assuming 100 resolu-
tion cells per scan.

Figures 4 (a) and (b) show the centroid detec-

(a)

Figure 2: (a)Noise-free sensor scan with two targets.
(b) Observed (noisy) sensor scan, PSNR=3 dB

Figure 3: (a)Noise-free sensor scan with superim-
posed targets. {b) Observed sensor scan, PSNR=3
dB

tion/tracking results assuming PSNR equal to 3 dB.
Despite some small deviations in the estimated po-
sition of the centroids and an increased propensity
to misses for class 2 targets, the simulation indicates
that the overall performance of the detector/tracker
does not deteriorate significantly in face of high noise
power, even during sensor scans where the signatures
of the two targets are merged as in figure 3.

5 Simulation Examples: Non-

Gaussian Clutter

In this section, we present an example where we de-
tect/track two targets against non-Gaussian back-
ground clutter with K-distributed envelope statistics.
As mentioned before, in the case of non-Gaussian
clutter, we treat the observations as complex vectors
or, equivalently, real vectors with double length, that
collect the sensor measurements of the in-phase and
quadrature returns from the targets and the clutter.
For simplicity, the targets are assumed to be point-
wise targets with a deterministic amplitude signature
in the in-phase component.

We denote the ith element, i € £, of the complex
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Figure 4: (a) Centroid tracking for class 1 targets. Figure 5: (a) Tracking of class 1 targets in K-

(b) Centroid tracking for class 2 targets, PSNR = 3
dB

image f(z}) of a class 1 target located at z. during
the nth sensor scan by f(z1);. The target signature
is then specified as follows:

fieb) = [a'0]  2l=i
b = 0 sl#Ei. (19)

Similarly, the ¢th element, i € £, of the complex im-
age f2(22) of a class 2 target located at z2 at instant
n is given by

fz(zi)i = [a2 O] zi =1
) = [00] (19)
If 2} or 2% are equal to L + 1, f(z}) or f(22) are
defined as an identically zero vector.

The sensor grid is assumed to have L = 100 reso-
lution cells and the simulation is carried out over 80
sensor scans, each one corresponding to 200 returns
(2 per cell). The peak signal-to-noise ratio per scan is
PSNR; =10 dB for class 1 targets and PSNR, =8.5
dB for class 2 targets.

Figures 5(a) and 5(b) show the detection/tracking
results for class 1 and class 2 targets respectively.
As before, once a target of a given class disappears,
there is a probability p, = 0.3 of a target of the
same class reentering the sensor grid at -a random
resolution cell.

Notice that, for class 2 targets (for which the
PSNR is comparatively lower), the tracker seems to
get initially confused as a new target appears in the
sensor image. The confusion is eliminated, however,
and a correct track is established as soon as new
data is available and incorporated through the fil-
tering step of the algorithm. For class 2 targets, we
also notice an increased propensity to false alarms
and misses.

envelope clutter, PSNR;=10 dB, (b) Tracking of
class 2 targets in K-envelope clutter, PSNR,=8.5 dB

6 Conclusion

In this paper, we presented an integrated framework
for optimal joint detection/tracking of multiple tar-
gets that move randomly on a finite discrete grid.
Both extended and pointwise targets with determin-
istic signatures were considered. Illustrative simula-
tion examples using both white and correlated Gaus-
sian background clutter, and non-Gaussian clutter
with K envelope indicate good detection/tracking
performance even in adverse noisy environments.
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