Neural Networks for Classification of ARMA Models:
An Experimental Study

Paul G. McKee* José M.F. Moura

Fifth Generation Systems, Inc. LASIP, ECE

10049 N. Reiger Road Carnegie Mellon University
Baton Rouge, LA 70809-4559 Pittsburgh, PA 15213-3890

Abstract. This paper presents a set of extensive experiments with alternative neural
network learning algorithms. These neural network configurations were tested on the
problem of discriminating signals generated by autoregressive moving-average (ARMA)
linear systems driven by white noise. These ARMA signals model a wide variety of
signals arising in the ocean environment. We tested the various network models for
their classification accuracy and speed of learning. The models investigated were back
propagation, quickprop, Gaussian node networks, radial basis functions, the modified
Kanerva method, and networks without hidden units. For comparison, nearest-neighbor
classifiers were also tested. Classification performance and learning time results are
presented.

Introduction

In many problems in underwater acoustics, we are confronted with the task of detecting and
classifying the signals present at the front end of the signal processor. These signals may arise from
geophysical sources, marine life, or ambient background noise including wavebreaking and rain, or
they may be man-made. Signals are often characterized by their frequency contents, e.g., the 20Hz
signal bouts of finback whales, which are one-second-long frequency modulated signals centered
around 20Hz, or the moans of bowhead whales, which are mostly tonal in the range of 25-900Hz.

We will model the wide variety of underwater acoustic signals as being the output of linear
systems driven by a wideband noise signal-—white noise. This is a common paradigm in many
signal processing and communications problems. Signals from various origins will be modeled by
systems with different parameters. Our parameters of choice are the poles and zeros of the system,
which shape the spectrum of its output. Linear systems with both poles and zeros are usually
termed ARMA (autoregressive moving-average) models.

This paper reports on an extensive study that compared eight different neural network learning
techniques on the task of discriminating among ARMA models with very similar pole/zero configu-
rations. Qur major goals are (7) to evaluate the usefulness of neural networks for classifying ARMA
models, (#7) to determine whether reflection coefficients are a useful set of features for classification
purposes, and (#7) to compare the performance and training time of the neural networks tested.

Signal Generation and Preprocessing

We tested two different configurations of linear systems [4]. Here we will report our findings for
one of these configurations, illustrated by the pole-zero diagram in Figure 1.

*Formerly with LASIP, ECE, Carnegie Mellon University. This material is based upon work supported under a
National Science Foundation Graduate Fellowship.

371

Figure 1: Pole-zero diagram for the systems.

Each of the ten systems in this configuration has eight poles and four zeros. Six of the poles,
and all of the zeros, are the same for all ten systems; all of these poles and zeros are located in
conjugate pairs on a circle of radius 0.8. The remaining conjugate pairs of poles lie at a radius of
0.9 at intervals of five degrees from the real axis. System 1 has a pair of poles at 0.9/0°, system 10
has poles at 0.9/ + 45°, and the remaining systems are spread out in between. These poles, being
closer to the unit circle, tend to dominate the response of the systems. In the figure, the variable
poles are labeled with the number of the system to which they belong.

Since the input to each linear system is noise, the output is a random process whose power
spectral density has been shaped by the response of the system. Figure 2 shows 200 samples of
the signals produced by systems 8 and 9 with the same input noise supplied to each. The classifier
must be able to distinguish similar signals such as these.

Preliminary experiments were conducted using the raw signal samples directly as inputs to the
neural network classifiers. Extremely poor performance in classifying signals not in the training set
was found. Therefore, all subsequent experiments used a preprocessing step to extract an invariant
property of the signal.

This preprocessing consisted of two steps: feature extraction and scaling. The features em-
ployed in this study are the first twelve reflection coefficients, which were computed by the Burg
algorithm [1] for sequences of 256 and 1024 signal samples. The quality of the estimates pro-
vided by the Burg technique increases monotonically with the number of samples used, and for
the 256-sample sequences the estimated reflection coefficients are quite noisy. However, such short
sequences often must be used in processing time-varying signals.

The reflection coefficients are intrinsically limited to the range [—1, 1] and thus might seem
suitable for input directly into the network, but in some cases the coefficients take on values in
a very narrow range, e.g., (—0.159, —0.018). We found that learning to respond to such inputs

372

16.0 -

AN AT /\/\/\/\/\V AA/\/\f\/\/
V\/\/\/\/\/V Vay,
vvﬂvw\/ VVV/\/\/\/\/\/\/\\//\ A\

b) Output of system 9.

Figure 2: Typical output signals from two representative systems

was extremely slow. Therefore, we found the minimum and maximum values of each reflection
coefficient for our data and used these limits to scale each coefficient independently into the range
[0, 1].

The preprocessed inputs are illustrated in Figure 3. In these diagrams, each row of twelve
squares represents the average input vector derived from signals produced by the system indicated
to the left; the area of each white square is proportional to the average value of the corresponding
element of the vector.

System
1

©W ™ NN D WN

-
(=1

Figure 3: Average preprocessed input vectors.

Neural Network Models

We considered eight feedforward networks having fixed architectures that are trained using
supervised learning procedures; these are summarized in Table 1. In all networks tested, the

373

374

Table 1: Summary of network types tested.

§ﬁﬂ)_()T_ﬁ1dElén Units | Learning Algorithm Optimizations 1
SL-M | None Gradient descent Momentum
SL-A None Gradient descent Learning rate adaptation
BP-M | Sigmoidal Back propagation Momentum
BP-A Sigmoidal Back propagation Learning rate adaptation
QP Sigmoidal Quickprop (Inherent in quickprop)
MKM Gaussian Gradient descent Learning rate adaptation
RBF Gaussian Gradient descent Learning rate adaptation
Gauss | Gaussian Generalized error propagation | Learning rate adaptation
k-NN Not applicable

Note: MKM is the modified Kanerva method, RBF is the method of radial basis
functions, and k-NN is the k-nearest-neighbor classifier.

output units had the familiar sigmoidal activation function. Several types also had sigmoidal
hidden units, while three had Gaussian ellipsoidal hidden units, that is, hidden units exhibiting
a Gaussian response centered around a point in the input space. Of these, the modified Kanerva
method [5] and the method of radial basis functions [5] have fixed Gaussian parameters; they do
not change during training, so simple gradient descent can be used for training the output layer
weights. On the other hand, the third type uses generalized error propagation (5], a generalization
of back propagation, to adjust the parameters of the Gaussian hidden units.

We explored two optimizations to the basic learning algorithms. Momentum is the addition of
a smoothing term to the weight updating equation in order to reinforce weight changes that occur
in a consistent direction through weight space. The other is learning rate adaptation of the style
utilized in [5]. If the total squared error for all patterns in the training set decreased from one
epoch to the next, then the learning rate is increased by a fixed factor (here 0.1%). Otherwise, the
Jearning rate is reduced by a different factor (here 20%).

In addition, we tested Fahlman’s quickprop [3], a heuristic second-order optimization technique
somewhat similar to Newton’s method. It is based on two assumptions about weight space: (1)
that the weights can be adjusted independently, and (2) that if the error of the outputs is plotted as
a function of any given weight, it will form an upward-opening parabola. At each epoch, quickprop
attempts to adjust every weight to the value that would put it at the minimum of the error curve.
Of course, the assumptions do not hold in typical networks, so quickprop remains an iterative
technique.

As a benchmark for neural network performance, we also tested k-nearest-neighbor classifiers [2].
These are not neural networks, but rather a statistical classification technique that can be applied
here. The classifier explicitly stores example patterns (i.e., the training set) and groups each
new pattern into the category of the pattern in the set of examples that is closest to the new
pattern according to some distance metric. A k-nearest-neighbor classifier chooses the category
most commonly represented among the k closest example patterns. Our nearest-neighbor classifiers
used the Euclidean distance metric and stored as examples the same training set used in training
the neural networks.

Table 2: Parameters used with each network type.

‘Hidden | o
Type Units | Parameters
BP-A 24 [p=10.01
BP-M 24 | First 40 epochs: ¢ = 0.02, a = 0; thereafter: € = 0.1, a = 0.9
Gauss 48 | 1= 0.05
QP | 24| r=1.0, c=0.001
| MKM | 48 |5=01 -
| RBF 48 [p =01
SL-A None | 7 = 0.02
SL-M None | First 40 epochs: ¢ = 0.02, a = 0; thereafter: ¢ = 0.5, a = 0.9

Results

Each network we tested had ten output units, one for each possible classification of the input
vector. The networks were trained using target vectors in which one element (corresponding to the
correct classification) was 0.9, while the rest were 0.1. Likewise, we interpret the network’s output
vector according to a “best guess” criterion: the input falls into the category corresponding to the
largest output value. This paper reports the percentage of input cases correctly classified according
to the best guess criterion. We will refer to this figure as classification performance.

Our experiments used three data sets computed from independent sequences of signal samples.
The network was trained on a training set which contained 50 examples for each system (500 in
all). Periodically during training, the network’s classification performance on a testing set of 50
examples per system was measured. When reporting the performance of the network, we give its
classification performance on a third set, the reporting set (200 examples per system), for the epoch
at which the testing set performance first reached its peak value. Training was continued after this
peak only to ascertain that it was unlikely that any higher figure would be achieved.

This three-set method has the advantage that it reports a good estimate of the performance
that could be expected on any set of inputs, because the decision to halt training is independent
of the data set actually used in measuring the performance. A disadvantage of this method is that
more labeled training data is required, which may pose a problem in situations where such data is
difficult to obtain.

Table 2 details the parameters used for the eight types of networks studied. The hidden units,
if any, were organized in a single layer of the indicated size. The network weights were initialized to
random values in the range (—7,7), where r = 0.3, except in the case of quickprop, where a value of
r = 1.0 was used. In the cases where learning rate adaptation was used, the 7 value (learning rate)
listed is the initial value; will change as training proceeds. All networks that employed learning
rate adaptation multiplied the learning rate by 1.001 if total error went down or by 0.8 if total error
went up.

The other quickprop parameters not listed in the table were sigmoid prime offset = 0.1, mo-
mentum = 0, mode threshold = 0, p = 1.75, and weight decay factor = —0.0001. The hyperbolic
error function was always used, as was “split epsilon” scaling of the learning rate (i.e., for each
weight, € was divided by the fan-in of the unit receiving an input via that weight).

The parameters used were found after extensive experimentation to be those that placed the

375

Table 3: Classification Performance results.

Classification Performance (%) Classification Performance (%)
Net for Nyamp = 256 for Neamp = 1024
Type | Runs Avera}gg SD | Min. | Max. | Average S.D. | Min. | Max.
QP 5 87.260 | 0.6804 | 86.450 | 88.050 98.980 | 0.1718 | 98.750 | 99.150
Gauss 1 85.900 — — — 96.850 — — —
BP-M 5 85.560 | 0.5237 | 85.150 | 86.250 97.080 | 0.2361 | 96.850 | 97.400
BP-A 1 81.750 —_ — — 89.650 — — —
41-NN* 73.000 — — —
40-NN* 72.950 — — —
67-NN* —_ 51.200 — — —
68-NN* — 51.100 — —
SL-M 5 50.730 | 0.0274 | 50.700 | 50.750 55.430 | 0.5686 | 54.950 | 56.050
SL-A 5 44.680 | 0.1396 | 44.550 | 44.850 53.290 | 0.2535 | 53.050 | 53.650
1-NN* — 44.350 — — — 66.800 — — —
MKM 2 27.375 | 1.1667 | 26.550 | 28.200 37.975 | 1.0960 | 37.200 | 38.750
RBF 3 26.100 | 0.1803 | 25.950 | 26.300 47.917 | 2.0207 | 45.750 | 49.750

* The results for the k-nearest-neighbor classifier are reported for £ = 1 and for the two
values of k for which the performance was highest.

networks on a relatively equal footing.

Signal Classification Results Table 3 presents the performance results we obtained. Results
are reported for two values of Ngamp, the number of signal samples in each input case. The amount
of noise in the inputs to the network increases with decreasing Ngamp- This is reflected in the results,
which show that all the classifiers achieve better results for Nggmp = 1024 than for Neamp = 256.
The noisier cases are better tests of generalization because the testing data bears less resemblance
to the training data.

These results show that the networks containing hidden units (except MKM and RBF') yield
the best classification performance overall. Neither networks with weighted-sum hidden units nor
networks with Gaussian ellipsoidal units seem to have a decisive advantage over the other, given
that the right learning algorithm is applied. The poor performance of MKM and RBF networks
could be due to a poor choice of the number of hidden units, since an exhaustive search to find the
optimum number could not be undertaken.

One surprise here is that in the noisier cases the values of k found to yield the best results
from k-nearest-neighbor classifiers were quite high, and the performance for k¥ = 1 was always
significantly lower. In case of Niamp = 256, the best values of k exceeded the number of training
cases present for each linear system. The fact that a large k may be needed for best performance
further increases the high computational expense of nearest-neighbor classifiers.

Learning Time Comparisons Table 4 presents learning time results. We find that the learning
rate adaptation scheme we used gave disappointing results. Among networks that achieved good
performance, the longest training times were for networks using learning rate adaptation. Back

376

Table 4: Learning time results.

] Tféining Time (epochs) Training Time ‘(e:i])io;ciisﬁ)‘ o

Net for Neamp = 256 for Nygmp = 1024

Type | Runs | Average | S.D. Min. | Max. | Average | S.D. Min. | Max.
SL-A | 5| 1450.0 | 157.32 | 1360 | 1730 | 964.0 | 100.87 | 720 | 1250
QP 5 2332.0 | 632.31 | 1390 | 3090 4994.0 | 1334.46 | 3780 | 6880
BP-M 5 5800.0 | 1903.54 | 3700 | 7880 5310.0 | 1484.17 | 3810 | 7770
RBF 3 9876.7 | 1778.32 | 7860 | 11220 | 10306.7 | 6161.30 | 4500 | 16770
SL-M 5| 13242.0 16.43 | 13220 | 13260 92.4 15.71 76 114
BP-A 1| 22970.0 — — — 9290.0 — — —
MKM 2| 24220.0 | 1909.19 | 22870 | 25570 | 15570.0 | 5260.87 | 11850 | 19290
Gauss 1| 45760.0 ~— — — | 52530.0 — — —

propagation with momentum beat back propagation with learning rate adaptation. Apparently,
the adaptation scheme’s reduction of the learning rate the whenever the total squared error of the
outputs increases often causes a very small average learning rate, leading to long learning times.
However, we were unable to achieve better results using a fixed learning rate unless momentum
was used.

We must caution that we found learning time to be highly dependent on the specific classification
problem at hand. Results of an investigation of a different configuration of linear systems [4] show
Gaussian node networks, here the slowest model, to be the fastest. Furthermore, here quickprop is
faster than any other training method for networks with hidden units; for the other configuration,
it was slower than either form of back propagation. Further study is needed to clarify what aspects
of a classification problem make it difficult or easy for a network model to learn.

Performance during Training This section presents two examples of the performance of the
networks during the course of training. Figure 4 shows performance during training for back
propagation with momentum and the method of radial basis functions with Ngamp = 256. Note
that the scales of the graphs are different in order to show as much detail as possible.

Each curve is the average of several trials. It is reasonable to average the curves because the
trends in performance are similar from one trial to the next, and the average curves are easier
to understand than multiple curves or multiple graphs. In each graph, the black curve represents
training set classification performance, while the gray curve shows testing set classification perfor-
mance. Each dot along the horizontal axis indicates the epoch at which one trial reached peak
performance on the testing set.

Conclusions

This project has demonstrated that neural networks can be used successfully for signal classifi-
cation. By modeling the signals to be classified as the output of ARMA linear systems driven hy
white noise, a wide range of underwater acoustic signals is included.

Reflection coefficients were found to be a useful set of features for the signals studied. The best
overall performance was exhibited by networks with weighted-sum hidden units, trained by back
propagation with momentum or by quickprop, and by networks with Gaussian ellipsoidal units,

377

378

8
L

©
S
o

80.0

Classification Performance (%)

(a) BP-M (Average of 5 trials)

v g

B e e e -

™

2000 4000 6000 8000 10000 * 12000 14000
Epoch

Classification Performance (%)
8
o

(b) RBF (Average of 3 trials)

Figure 4: Performance during training for two typical network models.

trained by generalized error propagation. Their performance was generally better than that of
networks with no hidden units and of k-nearest-neighbor classifiers.

References

[1] J. P. Burg. Mazimum Entropy Spectral Analysis. PhD thesis, Stanford University, May 1975.

[2] T. M. Cover and P. E. Hart, Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, IT-13(1):21-27, January 1967.

(3] Scott E. Fahlman. Faster-learning variations on back-propagation: an empirical study. In
Proceedings, 1988 Connectionist Models Summer School, pages 38-51. Morgan Kaufmann,
1988.

[4] P. G. McKee, Neural Networks for Linear Signal Classification. LASIP Technical Report,
Electrical and Computer Engineering, Carnegie Mellon University, December 1989.

[5] A. J. Robinson, M. Niranjan, and F. Fallside. Generalising the Nodes of the Error Propaga-
tion Network. Technical Report CUED/F-INFENG/TR.25, Cambridge University Engineering
Departient, Cambridge, England, November 1988.

[6] Robert G. Simpson. A decision-theoretic performance benchmark for neural networks trained
to discriminate two autoregressive processes. In Proceedings, 1988 IEEE International Con-
ference of Acoustics, Speech, and Signal Processing, pages 2148-2151, 1988.

