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Abstract—This work designs sequence detectors for channels with inter-
symbol interference (ISI) and correlated (and/or signal-dependent) noise.
We describe three major contributions. i) First, by modeling the noise as
a finite-order Markov process, we derive the optimal maximum-likelihood
sequence detector (MLSD) and the optimal maximuma posteriori(MAP)
sequence detector, extending to the correlated noise case the Viterbi al-
gorithm. We show that, when the signal-dependent noise is conditionally
Gauss–Markov, the branch metrics in the MLSD are computed from the
conditional second-order noise statistics. We evaluate the branch metrics
using a bank of finite impulse response (FIR) filters. ii) Second, we charac-
terize the error performance of the MLSD and MAP sequence detector. The
error analysis of these detectors is complicated by the correlation asym-
metry of the channel noise. We derive upper and lower bounds and com-
putationally efficient approximations to these bounds based on the banded
structure of the inverses of Gauss–Markov covariance matrices. An experi-
mental study shows the tightness of these bounds. iii) Finally, we derive sev-
eral classes of suboptimal sequence detectors, and demonstrate how these
and others available in the literature relate to the MLSD. We compare their
error rate performance and their relative computational complexity, and
show how the structure of the MLSD and the performance evaluation guide
us in choosing a best compromise between several types of suboptimal se-
quence detectors.

Index Terms—Correlated noise, Gauss–Markov processes, intersymbol
interference, Markov channel noise, Markov memory, maximum-likeli-
hood sequence detection, Viterbi algorithm.

I. INTRODUCTION

In digital communications, the Viterbi algorithm [1] is the max-
imum-likelihood sequence detector (MLSD), [2], [3], for channels
with intersymbol interference (ISI) and memorylessn noise. Under
these conditions, iffxkg is the state-channel input sequence, andfzkg
is the observable sequence, we have that

f (zkjzk�1; � � � ; z�1; x�1; � � � ; x1) = f (zkjxk�1; xk) (1)

where f denotes the conditional probability densify function (pdf)
of the observable channel output, conditioned on the infinite past
observable sequence and on the whole channel input sequence.
Equation (1) states that under an appropriate definition of the channel
state-sequence, the ISI white Gauss noise channel is memoryless [4].

In many applications, (1) is not an appropriate model, because, be-
sides ISI, the channel noise is correlated, with correlation statistics that
are possibly signal-dependent. Our research is motivated by detection
in high-density magnetic recording [5] where, for example, the sta-
tistics of percolation effects between transitions depend strongly on
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the particular data sequence recorded: percolation is more likely in
closely separated transitions (i.e., successive1’s in the nonreturn to
zero inverted (NRZI) recorded data sequence) than in widely separated
recorded transitions (i.e., successive data symbols are0’s). Reference
[6] illustrates with experimental evidence this type of signal-dependent
noise in high-density magnetic recording. Due to percolation (but also
due to nonlinear transition shifts), the noise is correlated across transi-
tions, with the correlation statistics depending on the signal recorded.
This signal-dependent correlated noise may overwhelm the white-noise
component, becoming the dominant noise feature, and may severely
degrade the performance of the sequence detector designed for a white
Gauss noise ISI channel. Generalizing the Viterbi algorithm to these
more complex channels raises the difficulty that, due to the noise cor-
relation, it is no longer valid to truncate the conditioning in (1) to a finite
sequence. In other words, with general correlated noise there is no ap-
propriate definition for the state sequence under which the channel be-
comes memoryless, and so the model(1) becomes invalid. Early work
on this problem includes [7]–[9]. More recently, the noise prediction
method [10]–[12], and the so-calledK-step Viterbi detector [13] are
attempts to combat the noise correlation in magnetic recording.

In this work, we extend the Viterbi algorithm to channels with ISI
andsignal-dependent correlatednoise: we develop the optimal max-
imum-likelihood sequence detector (MLSD) and study its error per-
formance. The key to our approach is our modeling of the noise: we
consider ISI channels with correlated noise, which goes well beyond
white noise ISI channels, but we impose structure on the statistical
properties of the correlated noise. We describe the noise, not as a gen-
eral Gaussian correlated noise, but as a Gauss–Markov correlated noise
whose second-order statistics are signal-dependent. We use the Markov
assumption to reduce the memory of the noise to finite length. We show
in Section II that under the noise Markovianity property and with an ap-
propriate definition for the input state sequence, the following holds:

f (zkjzk�1; � � � ; z�1; x�1; � � � ; x1)

= f (zkjzk�1; � � � ; zk�L; xk�1; xk) (2)

whereL is the so-called Markov memory length of the noise. In
Section II, we describe the basic Markovian-memory channel model,
and then develop examples of channels with such characteristics.
For these Markov channels, the derivation of the Viterbi algorithm
becomes a simple exercise in application of Bayes’ law. We present
the Viterbi algorithm in Section III as the solution to maximuma
posteriori (MAP) and maximum-likelihood (ML) sequence detection
in Markovian-memory channels. In this section, we consider the
general case of Markov noise, not necessarily Gauss. The recent
paper [14] also notices that the Viterbi algorithm solves the MLSD in
channels with additive Markov noise. In Section IV, we derive explicit
expressions for the branch metric when the noise in the channel is
signal-dependent additive Gauss–Markov. To compute efficiently the
branch metrics, we use the properties of Gauss–Markov processes,
namely, the structure of the inverses of the covariance matrices of
such processes [15]; we compute the branch metrics by using finite
impulse response (FIR) filters. We also discuss in Section IV adaptive
implementations of these FIR filters that track the signal-dependence
characteristics of the noise statistics.

A second contribution of this research is the error analysis we de-
velop for the MLSD and MAP sequence detector for ISI channels with
finite memory correlated noise. The error performance of the MLSD
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Fig. 1. Block diagram of a channel with intersymbol interference (ISI) of
length and signal-dependent Gauss–Markov noise with Markov memory
length . The random access memory (RAM’s) blocks indicate that both the
autoregressive filter and the intersymbol interference are signal-dependent.

is considered in Section V. We derive upper and lower bounds for the
error probability and by exploiting the structure of the inverse of the
covariance matrix of a Gauss–Markov process we develop computa-
tionally efficient approximations to the bounds. We demonstrate the
tightness of these bounds with a simulation study in realistic scenarios.

The third major issue we address is the derivation of suboptimal
sequence detectors. Guided by the structure of the optimal MLSD and
its error performance, we introduce in Section VI new suboptimal
sequence detectors and show how these and other suboptimal detec-
tors, including the noise prediction andK-step detectors, relate to the
MLSD. We illustrate their error performance and determine within a
certain class of suboptimal sequence detectors the best compromise
from an error performance and computational complexity perspective.
Finally, Section VII concludes the work.

Notation: Before leaving this section, we introduce the basic nota-
tion used below. Throughout, we assume that the reader is familiar with
the Viterbi algorithm as presented in [3]. We attempt to use the notation
in [3] to the extent possible. Column vectors are denoted by underlined
characters, matrices are denoted by boldface characters, and the super-
scriptT is used to denote matrix and vector transposition. Ifzk is a dis-
crete-time indexed sequence wherek denotes the time, then the column
vector of sequence samples at timek1 throughk2 � k1 is denoted by
z
k

k
= [zk ; zk +1; � � � ; zk ]T . The notation(ajB) � N (m; C) de-

notes that the random vectora, conditioned on an eventB, has a normal
(joint Gaussian) distribution with meanm and covariance matrixC.
The probability of an eventA is denoted byP(A). Further notation is
introduced in Section V.

II. PROCESSMODEL

In this section, we establish the appropriate model for ISI channels
with signal-dependent correlated noise. We structure the noise so that
the resulting channel has finite memory. In Section II-A, we discuss
the general Markov chain model with finite memory, and in Section
II-B we illustrate this model with examples that are relevant to the ISI
channel with correlated noise.

A. The Model

Let xk represent the state of a finite-state machine at time instant
k. The number of possible statesM is finite. We shall assume that the
sequence of statesxk is a Markov chain in the sense that the probability
of the machine being in statexk conditioned on all states up to the state
at timek � 1, depends only on the statexk�1, i.e.,

P xkjx
�1

k�1 = P(xkjxk�1): (3)

The transition probabilitiesP(xkjxk�1) may be time-dependent, as
originally presented by Forney [3]. This is assumed throughout, al-
though not explicitly indicated.

Let the transition between statesxk�1 andxk produce an observable
output random variablezk, where the statistics ofzk may depend on
the transition(xk�1; xk), and timek. We assume that the sequence of
output variableszk is a Markov sequence with a finite memory length
L, whose memory is dependent only on the state transition(xk�1; xk),
i.e., the conditional probability density function (pdf) obeys

f zkjz
�1

k�1; x
�1

1
= f zkjz

k�L

k�1 ; xk�1; xk : (4)

Again, these pdf’s may also depend on time, which we will not show
explicitly.

B. Examples

Example 1. Channel with ISI and Data-Dependent Gauss–Markov
Noise: Let ak be a sequence of transmitted symbols (bits). We model
a channel with intersymbol interference (ISI) of lengthI � 0 as

zk = y a
k�I

k
+ nk: (5)

In (5), y(ak�I
k

) is the noiseless channel output dependent only on the
I+1 latest transmitted bits. For linear channels,y(ak�I

k
)may be repre-

sented as the convolution of the channel response with the transmitted
sequence. We consider the channel to be nonlinear. The additive noise
termnk is considered to be a signal-dependent Gauss–Markov noise
process with Markov memory lengthL, i.e.,

nk = b a
k�I

k

T

n
k�L

k
+ � a

k�I

k
wk: (6)

The vector

b(ak�I
k

) = [bL(a
k�I

k
); � � � ; b1(a

k�I

k
)]T

collects theL coefficients of an autoregressive filter whose values are
dependent on the transmitted symbolsak�I

k
, wk is a zero-mean unit-

variance white Gaussian noise process, and�(ak�I
k

) is a signal-depen-
dent standard deviation. Fig. 1 depicts the channel described by (5) and
(6). As we will derive in Section IV, (4) holds for this channel if the
state is chosen as a collection ofI+L consecutive transmitted symbols
xk = ak�I�L+1

k
. If we further haveP(akja�1k�1) = P(akja

k�I�L

k�1
),

then (3) holds too and the channel may be represented by a finite-state
machine. Ifak are binary symbols, then there are2I+L states and
2I+L+1 transition branches in this finite-state machine.

Example 2. Noncausal ISI and Noncausal Data-Dependent Gauss–
Markov Noise: The following is a generalization of Example 1 to non-
causal ISI and noncausal data-dependent Gauss–Markov noise.

zk = y a
k+I

k+I
+ nk (7)

nk = � a
k+A

k+A

T

n
k�L

k+L
+ � a

k+B

k+B
wk: (8)

HereI2 � I1, A2 � A1, B2 � B1, L1 � 0, andL2 � 0. For this
channel the state is chosen asxk = a

k+C +1

k+C
, where

C1 = min(I1 � L2 � L1; A1 � L2; B1 � L2)

and

C2 = max(I2; A2 � L2; B2 � L2):

Example 1 is a special case of this example whenI2 = A2 = B2 =
L2 = 0, I1 = A1 = B1 = �I , andL1 = L. Note that in this
example the noise model isnoncausalMarkov, i.e., the noise at the
current time may be dependent on past and future noise values. This is
the appropriate model, for example, in magnetic recording, where time
stands for the spatial variable, and the “past” and “future” times stand
for the immediately adjacent bit-slots on a physical medium.
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Example 3. Non-Markov Observables:Often the observed process
is a deterministic part corrupted by additive noise. The additive noise
may not be Markov, but often it may be approximated by a Markov
process if the memory lengthL is taken long enough [16]. In this case,
the Viterbi algorithm which we present in the next section is the asymp-
totically optimal detector of the finite-state machine state sequence.

III. V ITERBI SEQUENCEDETECTION

A. MAP Sequence Detection

We study the estimation of the state sequencex1; � � � ; xK (K > 0)
given a sequence of observablesz1; � � � ; zK when (3) and (4) hold. We
assume that the initial statex0 is known and that the initialL realiza-
tionsz

�L+1; � � � ; z0 of the observable random variable are also given,
whereL is the Markovian memory length of the observable sequence
zk.

The maximuma posteriori(MAP) sequence estimate of the state se-
quencex1K = [x1; � � � ; xK ]T is the sequencêx1K = [x̂1; � � � ; x̂K ]T

that maximizes the joint conditional pdf, i.e.,

x̂
1
K = arg max

all x

f x
1
K ; z

1
K jx0; z

�L+1
0 : (9)

As shorthand notation, denote byf(x; zji.c.) the conditional pdf on the
right-hand side of (9), where i.c. stands forinitial conditions. Using (3)
and (4), we can factorf(x; zji.c.) as

f(x; zj i.c.) =
K

k=1

P xkjx
0
k�1; z

�L+1
0

K

k=1

f zkjz
�L+1

k�1 ; x
0
K

=

K

k=1

P(xkjxk�1)
K

k=1

f zkjz
k�L

k�1 ; xk�1; xk : (10)

In (10), we assumed thatP(xkjx0k�1; z
�L+1
0 ) = P(xkjx

0
k�1), i.e.,

that the state transition probabilities are independent of the observables.
Using the definition of conditional pdf’s, we may further substitute

f zkjz
k�L

k�1 ; xk�1; xk =
f zk�L

k
jxk�1; xk

f z
k�L

k�1 jxk�1; xk

=
f z

k�L

k
jxk�1; xk

1

z =�1

f zk�L
k

jxk�1; xk dzk

(11)

for the last term in (10). Maximizing (10) is the same as minimizing its
negative logarithm. Taking the negative logarithm off(x; zj i.c.), we
get

� ln f(x; zji.c.) =
K�1

k=0

�MAP z
��L

k
; xk�1; xk (12)

where the MAP branch metrics are

�MAP z
��L

k
; xk�1; xk

= � ln P(xkjxk�1)� ln
f z

k�L

k
jxk�1; xk

1

z =�1

f zk�L
k

jxk�1; xk dzk

:

(13)

The MAP sequence estimate is thus that sequencex̂1K for which the
sum of the branch metrics in (12) is minimized.

B. ML Sequence Detection

The maximum-likelihood (ML) sequence estimate is that sequence
x̂1K , for which the conditional pdf

f(zjx; i.c.) = f z
1
K jx

0
K ; z

�L+1
0 (14)

is maximized. With arguments similar to those for MAP sequence de-
tection, it follows that the ML estimate is that sequencex̂1K for which
the following sum of branch metrics is minimized :

� ln f(zjx; i.c.) =
K�1

k=0

�ML z
k�L

k
; xk�1; xk : (15)

The ML branch metric is

�ML z
k�L

k
; xk�1; xk = � ln

f zk�L
k

jxk�1; xk
1

z =�1

f zk�L
k

jxk�1; xk dzk

:

(16)

C. Viterbi Trellis Implementation

The implementation of the minimization in (12) and (15) is very sim-
ilar to the standard implementation described in [2] and [3]. The major
difference is that the computation of the branch metrics relies now on a
window of observed samplesz��L

k
= [zK�L; � � � ; zk]

T , instead of on
just one samplezk. Depending on whether we are interested in MAP or
ML sequence detection, the branch metrics are given by (13) and (16),
respectively.

IV. GAUSSIAN STATISTICS AND BRANCH METRICS

We now consider the important case in applications, [16], of
channels with intersymbol interference (ISI) and signal-dependent
Gauss–Markov noise as described in Example 1 in Section II and
depicted in Fig. 1. The extension to the more general context of
Example 2 is relatively easy. In the model of Example 1,I � 0 is the
ISI length, andL � 0 is the Markov memory length. We also assume
thatak is abinary symbol sequence.

A. Branch Metrics

We fist define the statexk. We consider the ML sequence detec-
tion and work with(16). To find the metric�ML(zk�Lk

; xk�1; xk),
we must find the logarithm of the pdff(zk�L

k
jxk�1; xk). The vector

z
k�L

k
in (16) involves observableszk�L throughzk, whose conditional

means (ideal channel outputs) arey(ak�L�I
k�L

) throughy(ak�I
k

), see
(5). Therefore, the trellis brancht(xk�1; xk) should be chosen so that
it collects all inputsak�L�I throughak involved in determining the
channel outputsy(ak�L�I

k�L
) throughy(ak�I

k
) corresponding to the ob-

servableszk�L throughzk. A simple choice is to label the state by
grouping the incoming bits as

xk = a
k�I�L+1

k
: (17)

We define the vector ofL+ 1 ideal channel outputs

Y (xk�1; xk) = [y(ak�L�I
k�L

); � � � ; y(ak�L
k

)]T

and rewrite (5) as

z
k�L

k
= Y (xk�1; xk) + n

k�L

k
: (18)

Sincenk is a conditionally Gaussian process, we have

(zk�L
k

jxk�1; xk) � N (Y (xk�1; xk)C(xk�1; xk))
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whereC(xk�1; xk) is the(L + 1) � (L + 1) covariance matrix of
nk�L
k

conditioned on the pair of states(xk�1; xk). Substituting this
pdf into the expression for the ML branch metric (16), and cancelling
constant terms common to all branches, we obtain the Gaussian ML
branch metric

MML(z
k�L

k
; xk�1; xk)

= ln
detC(xk�1; xk)

det c(xk�1; xk)
+ z

k�L

k
� Y (xk�1; xk)

T

�C(xk�1; xk)
�1

z
k�L

k
� Y (xk�1; xk)

� z
k�L

k�1 � y(xk�1; xk)
T

c(xk�1; xk)
�1

� z
k�L

k�1 � y(xk�1; xk) : (19)

Herec(xk�1; xk) is the upperL�L principal minor ofC(xk�1; xk),
i.e.,

C(xk�1; xk) =
c(xk�1; xk) c(xk�1; xk)

c(xk�1; xk)
T c(xk�1; xk)

(20)

andy(xk�1; xk) collects the firstL elements ofY (xk�1; xk).
In a similar fashion, the Gaussian MAP branch metric can be shown

to equal

MMAP z
k�L

k
; xk�1; xk

=MML z
��L

k
; xk�1; xk � 2 ln P(xkjxk�1): (21)

B. FIR Filter Branch Metric Implementation

The metric given in (19) involves two vector-matrix multiplications,
making the complexity of the metric computation orderO((L+ 1)2).
We next exploit the structure of the covariance matrices to bring the
computational complexity down toO(L + 1) by implementing the
branch metric computation using an FIR (finite impulse response) filter.

Let the covariance matrix be partitioned as in (20). Using the matrix
inversion lemma [17], the inverse can be written as

C(xk�1; xk)
�1 =

c(xk�1; xk)
�1 0

0T 0

+
wc(xk�1; xk)wc(xk�1; xk)

T


(xk�1; xk)
: (22)

In (22),
(xk�1; xk) andwc(xk�1; xk) are given by the solutions of
the “signal-dependent” Yule–Walker equations [18] and can be shown
to equal [19]


(xk�1; xk) =
detC(xk�1; xk)

det c(xk�1; xk)
= �

2
a
k�I

k
(23)

wc(xk�1; xk) =
�c(xk�1; xk)

�1c(xk�1; xk)

1
=

�b ak�I
k

1

(24)

where�(ak�I
k

) andb(ak�I
k

) are the autoregressive coefficients from
the model equation (6).

Substituting (22) into (19), we rewrite the Gaussian ML branch
metric as

MML z
k�L

k
; xk�1; xk

= ln �
2

a
k�I

k

+
�b ak�I

k

T

1 zk�L
k

� Y (xk�1; xk)
2

�2 ak�I
k

: (25)

The metric in (25) is obtained by filtering the observed vectorzk�L
k

through an FIR filter with coefficientswc(xk�1; xk) given in (24).
This filter is the inverse of the autoregressive filter in Fig. 1 and it un-
correlates the autoregressive (AR) processnk. Thus we may interpret
the metric (25) as first uncorrelating the noise with an FIR filter, and
then applying the Euclidean (square) metric to the output of the filter.
This is illustrated in Fig. 2 where the branch metric is shown to be the
processed output of a branch-dependent FIR filter. Since the FIR filter
coefficients�b(ak�I

k
) depend on onlyI + 1 symbols, and since there

is a total of2I+L+1 branches in each stage of the trellis, it turns out that
there are2I+1 distinct FIR filters in the detector, where2L branches
may share a single filter.

A special case of the above FIR filter occurs when the covariance
matrix is not signal-dependent, i.e.,C(xk�1; xk) = C. In this case,
the filter wc(xk�1; xk) = wc is a state-invariant tap-delay line that
whitens the stationary Gauss–Markov noise process. This is an intu-
itively pleasing result, since it is well known that a stationary (causal)
Gauss–Markov AR sequence can be whitened by a time-invariant FIR
filter. Notice also that, ifwc is state-invariant,all branches share the
same filter. We can then move the whitening filter to the front end of the
Viterbi detector. This provides another explanation of why the Viterbi
detector is optimal only when the channel noise is Markov. Suppose
that the noise is not Markov, i.e., it is not the output of an autoregressive
filter as in (6). Then to whiten this noise requires passing the observed
channel outputs through an infinite impulse response (IIR) filter, thus
introducing infinite-length ISI. However, with infinite-length ISI, the
Viterbi detector requires an infinite number of states in order to be the
optimal detector, which is clearly unrealizable.

We make a distinction here with what is usually done in
Kalman–Bucy filtering (KBF) [20] with Markov observation noise,
see [21, Ch. 11]. In this case, the (vector) observationszk are modeled
as

zk+1 = Hkxk + vk (26)

wherexk is the state vector andvk is a first-order Markov vector fol-
lowing the model

vk+1 = Ak vk + wk (27)

wherewk is a white Gauss vector sequence. Preprocessing the obser-
vationszk into the new observation

z
0

k = zk+1 �Ak zk (28)

one can then apply standard KBF theory. Although similar, there is a
fine distinction with Viterbi decoding. Due to the requirement of finite
ISI, the Markov noise model (27) needs to be restricted to autoregres-
sive processes (see (6)), while in KBF no such restriction is required.

Finally, we comment on the practical implementation of the branch
metric computation. As seen from (19) or(25), implementing the



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 1, JANUARY 2000 295

Fig. 2. Block diagram of an FIR filter computing the ML branch metric for a
channel with ISI of length and Gauss–Markov noise with memory length.
Since there are2 branches in each stage of the trellis, the branches may
be labeled by + +1 bits. Of these bits, only +1 are used to address the
FIR filters. A bank of2 different FIR filters is needed for optimal detection,
while 2 branches share the same filter.

ML branch metric requires knowledge of the second-order statistics
C(xk�1; xk). In practice, the second-order statistics are typically not
known and need to be estimated from the data. Tracking the statistics
adaptively is preferable in many applications because the covariance
statistics may time-drift or be nonstationary for some other reason.
Adaptive covariance tracking has been widely covered in the literature,
see, e.g., [18] and [22]. For a method applied in magnetic recording
signal detection see [5]. Notice also that, if the involved covariance
matrices are signal-dependent, and so nonstationary and non-Toeplitz,
many efficient AR estimation algorithms [18], [23] based on the
Levinson–Durbin recursion will then not work.

V. ERRORANALYSIS

We develop in this section the error analysis for the Viterbi sequence
decoder when the noise in the ISI channel is signal-dependent and
correlated. Our results extend the error analysis in [2] and [24] to
correlated finite memory ISI channels. However, due to the channel
nonlinearity and the signal-dependent noise correlation, the analysis
must carefully treat the lack of symmetry. For example, in contrast
with the linear channel with stationary white noise, ifa01; � � � ; a

0

m

and a001 ; � � � ; a
00

m are two valid binary sequences in the trellis, the
probability of detectinga0 whena00 is sent isnot the same as detecting
a00 when a0 is sent. Also, unlike the linear channel with stationary
white noise, we cannot formulate the upper bound using the flowgraph
transfer function [2] because relative distances between trellis paths
are not symmetric due to the asymmetric signal-dependent noise
correlation.

To formulate the bounds, we introduce first the necessary notation.
Then, in Section V-A, we derive thebinary hypothesiserror proba-
bility for asymmetric Gauss–Markov noise channels, followed in Sec-
tion V-B by a computationally efficient approximation to this error
probability. In Sections V-C and V-D, we formulate upper and lower
bounds using the binary hypothesis error probability expressions. Fi-
nally, in Section V-E, we illustrate the error performance results by

analyzing the detector performance of a simple ISI channel with finite
memory Markov noise.

Notation: Let

"M = (	0

M ; 	00

M )

denote a length-M error event. By	0

M , we denote the correct path
through the trellis spanningM +1 consecutive statesx0k; � � � ; x

0

k+M .
The erroneous path is denoted by	00

M and spans statesx00k ; � � � ; x
00

k+M .
It is assumed thatx0k = x00k , x0k+M = x00k+M , andx0k+m 6= x00k+m for
1 � m � M � 1. Since a state is defined asxk = a

k�I�L+1

k
, an

equivalent notation is

	0

M = a
0k�I�L+1

k+M

and

	00

M = a
00k�I�L+1

k+M

where

a
0k�I�L+m+1

k+m 6= a
00k�I�L+m+1

k+m ; for 1 � m �M � 1

and

a
0k�I�L+m+1

k+m = a
00k�I�L+m+1

k+m

for all otherm.

A. Binary Hypothesis Error Probability

The binary hypothesis error probabilityP2("M) is the probability of
detecting	00

M when	0

M is the true path. This error occurs when the
accumulated metric (25) along the path	0

M is greater than the accu-
mulated metric along	00

M , i.e.,1

P2("M) =P

M

m=1

MML z
k+m�L

k+m ; a
0k+m�I�L

k+m

>

M

m=1

MML z
k+m�L

k+m ; a
00k+m�I�L

k+m : (29)

Notice that we can use an arbitraryk in (29). For convenience, we shall
usek = L throughout this subsection.

To evaluate the expression on the right-hand side of(29), we use
the special structural properties of Gauss–Markov covariance matrices
[19] and rewrite (29) as

P2("M)=P ln det C	 + N
01
M+L

T

C
�1

	
N

01
M+L

> ln det C	 + N
001
M+L

T

C
�1

	
N

001
M+L : (30)

The matricesC	 andC	 are the covariance matrices ofz1L+M
whena01�I

L+M anda001�I
L+M are the transmitted (or written on a memory

medium) binary sequences, respectively. The innovation vector
N 01

L+M is defined as

N
01
L+M = z

1
L+M � y

0

= z
1
L+M � y a

01�I
1 ; � � � ; y a

0L+M�I

L+M

T

(31)

where the valuesy(a0k�I
k

) are the same as those used in the model
equation (5). The vectorsN 001

M+L andy00 are defined similarly as in
(31), where the superscript0 is replaced by00.

Next, we briefly describe how to obtain the inversesC�1

	
andC�1

	

of the covariance matrices from the model parameters in (6). Since
the processnk is conditionally Gauss–Markov with Markov memory

1If the detector is an MAP detector rather than the ML detector, we substitute
the MAP metric into (29) to get the MAP binary hypothesis error probability.
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lengthL, it follows from [15] thatC�1
	

is anL-banded matrix. Its
upper Cholesky decomposition is given by

C
�1
	 = U	 D	 U

T
	 : (32)

In (32), according to [19] and [25], the upper triangularL-banded ma-
trix U	 is

U	 =

U1 �b a0L+1�IL+1 0

1
. . .

. . .
�b a0L+M�I

L+M

0 1

(33)

and the diagonal matrixD	 is

D	 = diag [D1 1=�2 a0L+1�IL+1 � � � 1=�2 a0L+M�I
L+M ] :

(34)
The valuesb(a0i�Ii ) and �(a0i�Ii ) in (33) and (34) are the same
as those in the model equation (6). The upper triangular matrix
U1 and the diagonal matrixD1 are the upper Cholesky factors of
C
�1
1 = U1 D1 U

T
1 , whereC1 is the conditional covariance matrix

of z1L when the sequence of transmitted (written) symbols isa01�IL .
The elements ofC1 can be obtained by rearranging a signal-de-
pendent set of Yule–Walker equations and solving a linear system
of equations. Since computingC1 is tedious but straightforward,
we refer the reader to an example provided in [26]. The Cholesky
decomposition ofC�1

	
is obtained similarly.

Once we have computed the Cholesky decompositions (32) of both
C�1
	

andC�1
	

, we can rewrite the binary hypothesis error probability

for the error event"M = (	0M ; 	00M ) as

P2("M)=P wTw> ln det�" +(w�m" )T ��1" (w�m" )

(35)

wherew is an(L+M) � 1 Gaussian random vector withE[w] = 0
andE[w wT ] = I. The vectorm" is given by

m" = QD
1=2

	
U

T
	 (y00 � y0) = [ d 0 � � � 0 ]T (36)

whered = jjD1=2

	
UT
	 (y00 � y0)jj, y0 andy00 are defined in (31),

jj � jj is theL2 vector norm,Q is a unitary matrix (for example, the
Householder reflectorQ = 2v vT =kvk2 � I, wherev = q=kqk+ e1,

q = D
1=2

	
UT
	 (y00 � y0), ande1 = [1; 0; � � � ; 0]T , see [27]), and

�" satisfies

�
�1
" =QD

�1=2

	
U
�1
	 C

�1
	 U

�T
	 D

�1=2

	
Q
T

and

det �" =
detD	

detD	

: (37)

In the general case, the expression on the right-hand side of (35)
cannot be simplified by integrating a�2-like distribution. These sim-
plifications are possible only in special cases, for example, when�"

is diagonal (for a list of all special cases where a simplification is pos-
sible, see [28]). In the general case, however, evaluation of (35) in-
volves integrating a zero-meanI-covariance multivariate Gaussian pdf
in the region where the condition on the right-hand side of (35) holds.
Since this is a region outlined by a quadratic form, its shape must be

Fig. 3. Binary hypothesis signal and noise constellation encountered when
computing the binary hypothesis error probability. Note the asymmetric noise
clouds.

determined on a case-by-case basis, which ultimately may be compu-
tationally impractical. A brute-force alternative is to evaluate (35) nu-
merically by Monte Carlo, but this is also computationally intensive
for low error rate (high sisgnal-to-noise ratio (SNR)) scenarios. In the
next subsection, we develop a computationally efficientQ-function ap-
proximation that leads to an accurate evaluation of (35) for high SNR
scenarios where Monte Carlo numeric evaluations are not viable.

B. Approximate Binary Hypothesis Error Probability

Computing(35)requires integrating a zero-meanI-covariance mul-
tivariate Gaussian pdf over a region where

f" (w)=wTw�ln det �" �(w�m" )T��1" (w�m" )>0:

(38)

Since a Gaussian function has a very fast decay, we approximate (35)
by

P2("M) � Q(d2) (39)

whered2 is the point onf" (w) = 0 closest to the origin and

Q(x) =
1p
2�

1

x

e�(t =2) dt:

To determined2, one may use any minimization technique (Lagrange
multipliers, steepest descent, etc.). A particularly fast method is to find
the pointd1 on the boundaryf" (w) = 0 between0 andm" by
solving a quadratic equation, see Fig. 3. For a given matrix�" , the
point d1 will be between0 andm" if d is large enough, i.e., if the
SNR is large enough. Sinced2 is typically close tod1, we can obtain
d2 in a few iterations, or we may simply setd2 � d1 cos �, see Fig. 3.
We prefer the iterative method since it is not too computationally ex-
pensive.

C. Upper Bound

The bit-error probabilityPb can be upper-bounded by the union
bound [2]. Since our channel is asymmetric (nonlinear with signal-de-
pendent noise correlation) we need a union bound expression that gen-
eralizes the one in [2]. One can verify that the two expressions are
equivalent for linear-symmetric channels. LetM denote the length
(in branches) of an error event"M = (	0M ; 	00M). For our binary
channel, the minimum allowable error event length can be verified to
beMmin = I +L+1, whereI is the ISI length, andL is the Markov
memory length of noise. The set of all allowable error events of length
M is denoted byEM . Denote byb#("M) the number of erroneous bits
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corresponding to the error event"M . Let P(x) be thea priori proba-
bility of the trellis statex. Similarly, letP(xk; xk�1) denote the con-
ditional probability of transition from statexk�1 to statexk. The bi-
nary hypothesis error probability associated with the error event"M is
P2("M) and can be computed by either Monte Carlo simulation or ap-
proximated by (39). The upper bound on bit-error probability is given
by

Pb �

1

M=M 	

P(x0k)

M

i=1

P x0k+ijx
0
k+i�1

�

" =(	 ;	 )2E

b#("M)P2("M): (40)

This bound accounts for both the ML and the MAP sequence detector,
where the corresponding binary hypothesis error probabilityP2("M)
needs to be substituted (see footnote to (29)). If all symbol sequences
are equally likely, thenP(x0k)=2�(L+I) andP(x0k+ijx

0
k+i�1)=1=2:

A practical method for evaluating the bound in (40) is to truncate the
first sum to values ofM < Mmax, whereMmax is a predetermined
large enough constant. Notice that in (40), the binary hypothesis
error probabilityP2("M) needs to be determined for every qualifying
error event"M , which makes the bound computationally expensive if
P2("M) is computed by Monte Carlo simulations rather than by the
approximation (39).

D. Lower Bound

Obviously, a lower bound is obtained by picking any single term of
the union bound (40). This, however, may not be a tight bound. To get
a tighter bound, we modify the genie-assisted bound [24].

Modified Genie-Assisted Bound:Denote byP(") the probability of
an error event. Let�c(Pc) be the probability that the input sequence
a0k is such that there is a probabilityP � Pc of confusion with some
allowable sequencea00k . Even with a genie-assisted detector that has to
choose only betweena0k anda00k , the probability of an error eventP(")
will be greater than�c(Pc) � Pc. Clearly, then

P(") � max
0�P �1

[�c(Pc) � Pc] : (41)

The difference between this formulation and the one in [24] is that we
assumeP � Pc instead ofP = Pc. In fact, the bound in (41) will
never be looser (and in many cases tighter) than the one in [24], even
in linear-symmetric channels.

We use the result in (41) to find a lower bound for the bit-error prob-
ability. Consider only error events of lengthMmin = I + L+ 1. The
number of these events for binary signaling is

N = 2I+L+M = 2 � 4I+L:

Label these error events as"M (1); "M (2); � � � ; "M (N),
where their order is such that

P2("M (1)) � P2("M (2)) � � � � � P2("M (N))

andP2("M (i)) is the binary error probability of the error event
"M (i). The probabilityP2("M (i)) can be computed either

Fig. 4. Performance evaluations of detectors applied to the channel in Table I.

through Monte Carlo simulation or with the approximation in (39). In
the binary signaling case, for every sequence	0M (i) of Mmin + 1
states, there exists only one erroneous sequence	00M (i). We
therefore have

N

i=1

P(	0M (i)) = 1

i.e., 	0M (i) are disjoint sequences. If we choosePc =
P2("M (i)) for somei where1 � i � Mmin, then

�c(Pc) �

i

j=1

P(	0M (i))

because there may be error events of lengthM > Mmin whose bi-
nary hypothesis error probability is greater thanPc. In the interest
of keeping the bound computationally simple, we ignore these error
events of lengthM > Mmin. Since for all error events of lengthMmin,
the number of erroneous bits isb#("M (i)) = 1, we have

Pb � �c(Pc) � Pc �

i

j=1

P 	0M (j) P2 ("M (i)) (42)

for any1 � i � N . Maximizing the right-hand side of(42), we obtain
a tighter lower bound

Pb � max
1�i�N

i

j=1

P 	0M (j) P2 ("M (i)) : (43)

This expression provides for a lower bound for both the ML and the
MAP sequence detector, where the appropriate binary hypothesis error
probability would be used, see footnote to (29). When all sequences
	0M (i) are equiprobable, we have

P(	0M (j)) =
1

N
=

1

2
4�(I+L):
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Thus the modified genie-assisted bound provides the lower bit-error
probability bound

Pb �
1

2
4�(I+L) max

1�i�N
[i � P2 ("M (i))] : (44)

Since the termsP2("M (i)) have already been computed as part of
(40), no further computation is needed for the lower bound. Notice also
that while (44) is always a lower bound, it may not be the tightest of
the modified genie-assisted bounds because we considered only the
minimum-length error events. The following example shows, however,
that this bound is relatively tight.

E. Performance Evaluation Example

We study the performance of the maximum-likelihood sequence de-
tector for a simple channel with ISI lengthI = 1 and Markov memory
lengthL = 1. The channel is given by the model equations (5) and (6),
also depicted in Fig. 1, where the values of the parameters are given in
Table I. The channel represented in Table I can be viewed as a nonlin-
early deviated1 � D partial response channel with signal-dependent
correlated noise.

Fig. 4 shows the performance of the ML sequence detector. The dif-
ferent values of the SNR shown in Fig. 4 are obtained by scaling the
noiseless channel response (column denoted byy(ak�1k ) in Table I)
while keeping the relative distance between the signal points the same.
This corresponds to scaling the signal power while the noise constella-
tion is kept the same. In Fig. 4, the solid line represents the simulated
performance of the ML sequence detector (MLSD). We do not show
the MLSD performance curve beyond SNR = 14 dB since the Monte
Carlo simulations become expensive to compute. Fig. 4 also shows the
simulated performance of the Euclidean detector applied to the channel
in Table I. The Euclidean detector is a Viterbi detector that assumes the
noise to be white. Fig. 4 shows that at the error rate of10�5 the MLSD
has a gain of 2.5 dB over the Viterbi Euclidean detector.

Fig. 4 also plots the bit-error probability bounds. The stars (*) in
Fig. 4 show the bounds computed by evaluating the binary hypothesis
error probability with Monte Carlo simulations. As the Monte Carlo
simulations become too computationally intensive beyond SNR = 12
dB, we only show the stars (*) for SNR� 12 dB. On the other hand,
the approximate bounds (dashed lines in Fig. 4) computed by approx-
imating the binary hypothesis error probability with aQ-function, see
(39), can be computed at a fractional computational cost for any value
of the SNR. Fig. 4 also shows that theQ-function approximation is
extremely close to the bounds computed by Monte Carlo simulations.
As expected, the bounds are tightening as the SNR increases which
helps us evaluate the MLSD performance at high SNR’s where Monte
Carlo simulations of the MLSD are impractical. We point out that at

extremely high error rates (10�1 and above) the upper bound may fail
to converge, but that is rarely a concern since at those error rates the
MLSD performance can readily be evaluated through simulations.

VI. SUBOPTIMAL DETECTORS

Being the optimal detector, the maximum-likelihood sequence de-
tector (MLSD) bounds from below the error rate of any suboptimal de-
tector of lower complexity. Furthermore, the structure of the signal-de-
pendent MLSD gives new insight into developing suboptimal detectors.
Here we cover several suboptimal schemes and discuss their relation-
ship to the MLSD.

From Fig. 4 we see that there is a performance region between the
MLSD and the Euclidean detector that can be filled with suboptimal de-
tectors with complexities possibly lower than that of the MLSD. There
are many ways to construct such suboptimal receivers. We limit our-
selves to suboptimal receivers with a certain structure. We look for sub-
optimal receivers that are Viterbi-like, i.e., that operate on a trellis and
use branch/path metric minimization as their detection strategy. We de-
fine the complexity of a Viterbi-like detector as the number of multipli-
cations it has to perform per clock interval (symbol interval) in order to
compute all its branch metrics. We ignore additions. In many realiza-
tions of the Viterbi detector this may not be an accurate representation
of the detector complexity since there exist several practical finite-pre-
cision methods to simplify the multiplication operation. Nevertheless,
for simplicity, we trust that the multiplications count provides at least
a reasonable representation for the complexity of a detector.

When I is the ISI length andL the Markov memory length, the
MLSD for the binary channel model in (5) and (6) has2I+L states
and2I+L+1 branches. Thereby,2I+1 branches share a single FIR filter
used to compute the branch metric, see Fig. 2. In Fig. 2, if we count each
tap-multiplication bybi(ak�Ik ), each division by�(ak�Ik ), and each
squaring operation as one multiplication, the count of multiplications
needed to compute all the branch metrics of the MLSD in one clock
interval is(2L + L+ 1)2I+1. Since the computational complexity of
the Euclidean Viterbi detector is2I+1 per clock interval, we have that
the computational complexity increase factor of the MLSD over the
Euclidean detector is

FMLSD (L) = 2L + L+ 1: (45)

We next consider suboptimal detectors with lower computational in-
crease factors.

A. Low-Order Autoregressive (AR) Approximation (Q-AR Detection)

We introduce in this subsection a new suboptimal detector that we
refer to as the low-orderQ-AR detector.

A Gauss–Markov noise process of orderL is the output of an au-
toregressive (AR) model of orderL. The inverse covariance matrix
of anLth-order Gauss–Markov process isL-banded, meaning that it
has2L + 1 nonzero diagonals, while the remaining are all-zero di-
agonals [15]. We obtain a suboptimal detector by using an AR ap-
proximation [16] of orderQ � L. LetCQ be the covariance matrix
of theQth-order AR process approximation. The matrixC�1Q is then
Q-banded. We can show that theQ-banded matrixC�1Q that minimizes
the Kullback–Leibler mean information loss due to approximating the
originalLth-order AR process with aQth-order AR process is given
by the following decomposition [19]:
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and

(46)

where02Q+1 denotes a band of2Q+1 all-zero diagonals, andD2Q+1

denotes a band of2Q+ 1 nonzero diagonals. Note that the decompo-
sition in (46) is unique since there exists only one matrixCQ such that
theQ-band ofCQ equals theQ-band ofC, and thatC�1Q isQ-banded.
The suboptimal Viterbi detector based on the low-order AR approxi-
mation computes the branch metric using aQ-tap FIR filter instead of
anL-tap FIR filter.2 Consequently, the detector has2I+Q states and
2I+Q+1 branches where2I+1 branches share a singleQ-tap FIR filter.
The computational complexity increase factor of the low-orderQ-AR
detector over the Euclidean detector is

FQ-AR(Q) = 2Q +Q+ 1: (47)

Obviously, ifQ = L, we have the MLSD. IfQ = 0, we obtain the
suboptimal detector presented in [7] and [8] for which the complexity
increase factor isFQ-AR(0) = 2.

B. Block Partitioning (K-Step Detection)

In [13], Altekar and Wolf present a suboptimal detector by replacing
the covariance matrixC by a matrixC0 obtained by keeping only the
K �K block diagonal elements ofC, i.e.,

C �

R 0

. . .

0 R

= C0 (48)

whereR is aK �K principal minor ofC. This contrasts with the
Q-AR approximation of(46) where it is theinversecovariance that
is bandedrather than the covariance matrix itself, which isblock-par-
titioned. In [13], the method is called theK-step Viterbi detector. In
[13], the authors provide a metric computation method involving vec-
tors of observed samples and covariance matricesR. Using techniques
presented in Section IV-B, we can show that theK-step detector may
also be implemented with low-order FIR filters (which is also a com-
putationally less expensive implementation than in [13]). However, the
orderQ of the FIR filters is cyclicly time-varying. For example, the
three-step detector would use banks of2I+1 (Q = 0)-FIR filters for
the first stage of the trellis,(Q = 1)-FIR filters for the second stage,
and(Q = 2)-FIR filters for the third stage (for low-order signal-depen-
dent AR processes, see [16] and [19]). In the fourth stage of the trellis,
the detector goes back to the bank of(Q = 0)-FIR filters and repeats
the cycle. Thus generally, aK-step detector would cyclicly employ
(Q = 0)-AR through(Q = K � 1)-AR approximations at different
stages of the trellis. Thereby, the FIR filters used to calculate the branch
metrics are the exact inverses of theQ-AR filter approximations, see
Section IV-B. At trellis stages whereQ � L, the bank of FIR filters

2Note that the th-order filter isnot simply a truncation of the optimal
th-order filter.

are the inverses of the bank ofL-AR filters used in the channel model
equations (5) and (6). Since theK-step detector uses nonuniform AR
approximations at different trellis stages, the number of multiplications
has to be averaged over a cycle ofK trellis stages to get the average
computational complexity per clock interval. The computational com-
plexity increase factor of theK-step Viterbi detector over a Euclidean
Viterbi detector is

FK-step(K) =

2K � 1

K
+
K + 1

2
; for K � L

2L � 1 + (K � L)(2L + L� 1)

K

+
L(L+ 1)

2K
; for K > L:

(49)

Clearly, the(K = 1)-step detector is the same as the(Q = 0)-AR
detector, which is the detector presented in [7] and [8].

C. Block Skipping (S-Skip Detection)

A drawback of theK-step detector is that it reaches the MLSD per-
formance only in the limit asK ! 1. We propose here a new class
of suboptimal detectors that reaches the MLSD performance for a fi-
nite order of suboptimality. The following equation shows theL-band
of a covariance matrixC of anLth-order Gauss–Markov process par-
titioned in contiguous principal blocks of size(L+ 1)� (L+ 1)

(50)

It can be shown, see for example [19], that the elements of theL-band
of C determine in a unique way the covariance matrixC of theL-th
order Gauss–Markov process, in particular, they determine the ele-
ments of the blocks�. We can conclude that the MLSD derives the
branch metrics based on all covariance coefficients in thisL-band of
C. As an alternative, out of the(L + 1) � (L + 1) blocks outlined
on the right-hand side of (50), a suboptimal algorithm may ignore the
blocks outlined by the dashed lines in (50). We refer to such a proce-
dure as the(S = 1)-skip detector. In general, if we skipS blocks at a
time, we have theS-skip detector. Much like detailed in Section VI-B,
theS-skip detector may be designed through cyclic implementation
of nonuniformQ-AR approximations. Each cycle spansS + 1 trellis
stages and the detector cyclicly employs banks of(Q = L� S)-FIR,
(Q = L � S + 1)-FIR, � � �, (Q = L)-FIR filters. The bank of
(Q = L)-FIR filters is given by the inverses of the actualLth-order
AR filters in (5) and (6). The computational complexity increase factor
of theS-skip Viterbi detector over the Euclidean Viterbi detector is

FS-skip(S) =
2L+1 � 2L�S

S + 1
+

2L� S + 2

2
; for 1 � S � L:

(51)
The (S = 0)-skip detector is clearly the MLSD. It is also apparent
that the(S = L)-skip detector is equivalent to theK-step block par-
titioning detector whenK = L + 1, whereL is the Markov memory
length of the noise.

D. Nonuniform AR Approximations

TheK-step andS-skip detectors are subclasses of Viterbi detectors
that apply differentQth-order AR approximations at different stages of
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TABLE II
NONLINEARLY DISTORTED 1 PARTIAL RESPONSECHANNEL (PR4 CHANNEL) WITH ISI LENGTH = 2

AND MARKOV MEMORY LENGTH = 2

the trellis. One can easily think of numerous other Viterbi-like detec-
tors based on this concept, where the different orders of AR approxima-
tions are not necessarily cyclicly employed. A typical scenario would
be in nonstationary detection. Suppose that at some point during data
transmission the data rate increases, i.e., the clock interval (symbol in-
terval) shrinks. If the new clock interval is too short to perform Viterbi
detection based on a high-order AR approximation, the detector may
resort to a less computationally expensive lower order AR approxima-
tion, still retaining the communication link at the price of a less reliable
communication. Combinations of different orders of AR approxima-
tions will lead to a large number of possible detector designs.

E. Decision Feedback

Decision feedback mechanisms can be used to lower the computa-
tional complexity of Viterbi detectors. Reduced-state sequence estima-
tors (RSE) [29] use premature decisions to reduce the ISI length and
thus lower the number of states. Noise predictors [11], [12], [30] on the
other hand, use premature decisions to guess the future noise sample.
In the context of Markov noise models, this corresponds to lowering
the Markov memory length. Hybrids between reduced-state sequence
estimators and noise predictors are also possible. Furthermore, we can
envision combining the nonuniform AR approximations with decision
feedback strategies to form a larger subclass of Viterbi-like suboptimal
detectors. A common feature to all decision feedback suboptimal de-
tectors is error propagation, see results presented within [13]. Error
propagation precludes the use of decision feedback detectors in many
applications where larger blocks of errors cannot be tolerated, e.g., in
block error-correction coding/decoding.

F. Comparative Results

In this subsection we provide the error performance for a number
of detectors and show that theQ-AR detectors provide usually the best
compromise between error rate and computational complexity. Table II
shows the parameters (for explanations, see (5) and (6)) of a very noisy
real channel encountered in magnetic recording applications [16]. The
channel in Table II is a nonlinearly distorted class-4 partial response
(PR4) channel with ISI lengthI = 2 and signal-dependent correlated
noise with Markov memory lengthL = 3. Fig. 5 shows for this channel
the error rate versus the computational complexity increase factorF

for a number of detectors: the MLSD, the Euclidean Viterbi decoder,
and several suboptimalQ-AR,K-step, andS-skip detectors. The com-
putational complexity increase factors are normalized with respect to
that of the Euclidean detector, whose operating point in Fig. 5 corre-
sponds then to the value1 on the horizontal axis. We do not consider
decision feedback suboptimal detectors since they suffer from error
propagation. The error rates were computed by Monte Carlo simula-
tions with106 bits. The results confirm, as mentioned above, that the

Fig. 5. Performance versus computational complexity. Shown are the
operating points of the Euclidean detector, the MLSD, and different orders
of the suboptimal -AR, -skip, and -step detectors. The detectors are
applied to the channel given in Table II.

suboptimal detectors based on low-order AR approximations (Q-AR
detectors) provide the best complexity-versus-error-rate tradeoff. The
K-step detector is a reasonable alternative to theQ-AR detector only
for low complexities and high error rates. On the other hand, theS-skip
detector is a reasonable alternative to theQ-AR detector only for high
complexities and low error rates.

VII. SUMMARY

We studied the maximum-likelihood sequence detector (MLSD) and
the MAP sequence detector for intersymbol interference (ISI) channels
with correlated noise whose statistics are possibly signal-dependent.
We describe three major contributions to the problem. First, by mod-
eling the correlated noise as a Markov process of finite order, we derive
the optimal MLSD and MAP sequence detector as extensions of the
Viterbi decoder for ISI channels with finite memory noise. Second, we
provide an error performance study of the MLSD and MAP sequence
detector, deriving tight upper and lower bounds for the probability of
error. Finally, we present several classes of suboptimal sequence detec-
tors, including new algorithms, and compare their computational com-
plexity and their error performance.

The key to deriving a finite implementation for the optimal sequence
detector is our modeling the correlated noise as a finite-order Markov
process, see Section II. We showed in Section III that, as long as the
memory of the noise is Markov, we can extend the Viterbi algorithm
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to implement the maximuma posteriori(MAP) detector and the max-
imum-likelihood sequence detector (MLSD). The complexity of the
MLSD is exponentially proportional to the sum of the ISI lengthI plus
the Markovian noise memory lengthL. The branch metrics of the de-
tector are functions ofL + 1 consecutive samples of the observable
process.

When the noise is Gaussian with Markovian memory (signal-de-
pendent Gauss–Markov noise), see Section IV, the branch metrics
are expressed in terms of the conditional second-order statistics of
the noise. In the binary signaling case, there are2

I+L states in
the trellis and2I+L+1 branches in each stage of the trellis. We
presented an efficient FIR filter based computation of the branch
metrics using a bank of2I+1 Lth-order FIR filters. The structure of
the receiver resembles the structure of the detector in the memory-
less noise scenario, in which we preprocess the received sequence
to uncorrelate the noise and then apply the Viterbi detection. In
the case of noise with memory, however, the preprocessing cannot
be done up-front—it needs to be implemented separately in every
branch of the Viterbi trellis. The constraint of finite ISI length re-
quires that we use only FIR filters for the preprocessing, which in
turn limits us to Markov (i.e., autoregressive) channel noise only.
When the channel noise memory is not Markov, we find the best
fitting Markov process to describe it and then apply the Viterbi
algorithm to asymptotically reach optimality. In nonstationary envi-
ronments, adaptive tracking of the conditional covariance statistics
is required since the branch metrics depend on these statistics.

We presented in Section V the error analysis in terms of bounds on
the probability of bit errors. While formally similar to the analysis for
white and signal-independent noise, the bounds are computationally
more complex due to the signal-dependent noise correlation asymmetry
in the channel. We simplified the computation of the bounds by de-
veloping a method that exploits the banded structure of the inverses
of Gauss–Markov covariance matrices. We have further simplified the
bound computations usingQ-function approximations. A simulation
study was carried out showing the good quality of the bounds as pre-
dictors of the error performance. As expected, the bounds are tighter at
higher values of the signal-to-noise ratio (SNR).

We use the structure of the extended Viterbi detector for Markovian
memory channels as a guideline to derive new suboptimal detectors
that are computationally simpler than the MLSD. We also showed how
several suboptimal algorithms proposed in the literature are related to
the MLSD. In Section VI, low-order autoregressive (AR) approxima-
tions were utilized to yield a whole class of suboptimal sequence de-
tectors. An experimental study was carried out to show that, out of
all these suboptimal methods, the strategy that provides the best com-
plexity-versus-performance tradeoff is the one based on fully utilizing
aQ-band of the noise covariance matrix, i.e., theQ-AR detector. We
have shown how to exploit the banded form of the inverse of Markov
covariance matrices to construct suboptimal receivers that asymptoti-
cally reach optimality with higher order approximations and that do not
suffer from error propagation problems.
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