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The Viterbi Algorithm and Markov Noise Memory the particular data sequence recorded: percolation is more likely in
closely separated transitions (i.e., successigein the nonreturn to

Aleksandar Katic, Member, IEEE and zero inverted (NRZI) recorded data sequence) than in widely separated
José M. F. MouraFellow, IEEE recorded transitions (i.e., successive data symbol&’ayeReference

[6]illustrates with experimental evidence this type of signal-dependent
Abstract—This work designs sequence detectors for channels with inter- noise in hlg_h-denSIty m.agnetl.c recordmgf Dye to percolation (but alsq
symbol interference (I1SI) and correlated (and/or signal-dependent) noise. d,UG to n.onllnear tran5|.t|on Sh'fts?' the n0|sells Correlateq across transi-
We describe three major contributions. i) First, by modeling the noise as tions, with the correlation statistics depending on the signal recorded.
a finite-order Markov process, we derive the optimal maximum-likelihood ~ This signal-dependent correlated noise may overwhelm the white-noise
sequence C(’jEtteCttor (M';SDd)_ a”‘i thtf] optimall Taéximqrra postetrri]oris/l\_:Az) _ component, becoming the dominant noise feature, and may severely
sequence detector, extenading to the correlated noise case the Viterpi al- . .
go(rqithm. We show that, whengthe signal-dependent noise is conditionally degrade the performance of the sequ_ence det_ector de5|g_ned for a white
Gauss-Markov, the branch metrics in the MLSD are computed from the Gauss noise ISI channel. Generalizing the Viterbi algorithm to these
conditional second-order noise statistics. We evaluate the branch metrics more complex channels raises the difficulty that, due to the noise cor-
using a bank of finite impulse response (FIR) filters. i) Second, we charac- relation, itis no longer valid to truncate the conditioning in (1) to a finite
terize the error performance of the MLSD and MAP sequence detector. The sequence. In other words, with general correlated noise there is no ap-

lysis of th detectors i licated by th lati - . .
ﬂ;?:ya;atzzlzhoannglsEOiSeec'et\:/vc;rséésri\t/::nJ&;Z? ;nd I)éwe? gggﬁdz 'ggdaigm_ propriate definition for the state sequence under which the channel be-

putationally efficient approximations to these bounds based on the banded comes memoryless, and so the madglbecomes invalid. Early work
structure of the inverses of Gauss—Markov covariance matrices. An experi- on this problem includes [7]-[9]. More recently, the noise prediction
mental study shows the tightness of these bounds. iii) Finally, we derive sev- method [10]-[12], and the so-calldl-step Viterbi detector [13] are
eral classes of suboptimal sequence detectors, and demonstrate how thesi ' . L . .
and others available in the literature relate to the MLSD. We compare their %ttemp_ts to combat the noise cqrrela_tlon |n_ magnetic recordlng.
error rate performance and their relative computational complexity, and In t_h's work, we extend the V't?rb' algorithm to channgls with ISI
show how the structure of the MLSD and the performance evaluation guide andsignal-dependent correlatetbise: we develop the optimal max-
us in choosing a best compromise between several types of suboptimal seimum-likelihood sequence detector (MLSD) and study its error per-
quence detectors. formance. The key to our approach is our modeling of the noise: we
Index Terms—Correlated noise, Gauss—Markov processes, intersymbol consider I1SI channels with correlated noise, which goes well beyond
interference, Markov channel noise, Markov memory, maximum-likeli-  white noise ISI channels, but we impose structure on the statistical
hood sequence detection, Viterbi algorithm. properties of the correlated noise. We describe the noise, not as a gen-
eral Gaussian correlated noise, but as a Gauss—Markov correlated noise
|. INTRODUCTION whose second-order statistics are signal-dependent. We use the Markov
o o o ) ) assumption to reduce the memory of the noise to finite length. We show
~ In digital communications, the Viterbi algorithm [1] is the max+, section Il that under the noise Markovianity property and with an ap-
imum-likelihood sequence detector (MLSD), [2], [3], for channelsopyriate definition for the input state sequence, the following holds:
with intersymbol interference (ISI) and memorylessn noise. Under
these conditions, ifz;. } is the state-channel input sequence, &nd:
is the observable sequence, we have that .
f (Z/C|Z/€*13 Tt ooy T—oos T TDO)
= flerlze—t1, 0y 2e—r, 21, 21) ()
f (Z"'|Z/~‘—17 Tty B—ooy L—ooy t 77, J::X?‘) = f (Z}‘7|‘T/1-"—17 II.) (l)

where L is the so-called Markov memory length of the noise. In

- - . . ection Il, we describe the basic Markovian-memory channel model,
where f denotes the conditional probability densify function (pdf)s d then develop examples of channels with sugh characteristics

of the observable channel output, conditioned on the infinite p L . :
observable sequence and on the whole channel input Sequenger_these Markov channels, the derivation of the Viterbi algorithm

Equation (1) states that under an appropriate definition of the chan gFomes a simple exercise in application of Bayes’ law. We present

state-sequence, the ISI white Gauss noise channel is memoryless 'st\:rtiirr?(ll\/?,lfls)n:r:n(; rlr?a;(rer?l?r%nliIﬂélizgze(l\jil)uzgnu?n;TaagtlaTefSon
In many applications, (1) is not an appropriate model, because, be- . . Seq .
Markovian-memory channels. In this section, we consider the

sides ISI, the channel noise is correlated, with correlation statistics that eral case of Markov noise. not necessarily Gauss. The recent
are possibly signal-dependent. Our research is motivated by detecf5 ' Y :

in high-density magnetic recording [5] where, for example, the stRaper [14] glso no_ti'ces that the \/_lterbi algori_thm solves th_e MLSD. i_n

tistics of percolation effects between transitions depend strongly SRa””e'fs with additive Markov NOISE. In Section l\./’ we derive expllcn.
expressions for the branch metric when the noise in the channel is

sighal-dependent additive Gauss—Markov. To compute efficiently the
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The transition probabilitie® («.|xx—,) may be time-dependent, as

w;
¢ originally presented by Forney [3]. This is assumed throughout, al-
though not explicitly indicated.
N Let the transition between states; andx produce an observable
noise filter | _ output random variabley,, where the statistics ofy may depend on
RAM Y the transition(«z;—1, x;), and timek. We assume that the sequence of
—— | output variables,, is a Markov sequence with a finite memory length
a ar | -] Gk L, whose memory is dependent only on the state trangitign; , =),
N , n i.e., the conditional probability density function (pdf) obeys
signal RAM y ;C_"_')_> Z f (Zk|£l.7—9ﬁ i;oo) =f (Zk|£llf:fa Th—1, 4b’k) . 4)
Again, these pdf's may also depend on time, which we will not show
Fig. 1. Block diagram of a channel with intersymbol interference (ISI) o?xpllCltIy.

length I and signal-dependent Gauss—Markov noise with Markov memory
length L. The random access memory (RAM'’s) blocks indicate that both tf®8, Examples

autoregressive filter and the intersymbol interference are signal-dependent. .
Example 1. Channel with ISI and Data-Dependent Gauss—Markov

) ) ) ) ) Noise: Leta, be a sequence of transmitted symbols (bits). We model
is considered in Section V. We derive upper and lower bounds for thgnhannel with intersymbol interference (ISI) of lendtt 0 as
error probability and by exploiting the structure of the inverse of the

k—1
covariance matrix of a Gauss—Markov process we develop computa- e =Y (Qk ) + Nk (5)
tionally efficient approximations to the bounds. We demonstrate trlw ), y(at=1)
y Y e

tightness of these bounds with a simulation study in realistic scenari9§_. 1 latest transmitted bits. For linear channels,* ! ) may be repre-
. . . . . . . . k
The third major issue we address is the derivation of suboptimglyeq a5 the convolution of the channel response with the transmitted
sequence detectors. Guided by the structure of the optimal MLSD &g}, .ence. We consider the channel to be nonlinear. The additive noise

its error performance, we introduce in Section VI new suboptimgl ., is considered to be a signal-dependent Gauss—Markov noise
sequence detectors and show how these and other suboptimal d%%‘ﬁess with Markov memory length, i.e

tors, including the noise prediction add-step detectors, relate to the 7
MLSD. We illustrate their error performance and determine within a ng=>b (QZ_’) 4o (gf;") W (6)
certain class of suboptimal sequence detectors the best comprorcf,iﬁg vector
from an error performance and computational complexity perspective. o o -
Finally, Section VII concludes the work. blag ") =[brlay” s+, bilay )]

Notation: Before leaving this section, we introduce the basic notgpllects thel coefficients of an autoregressive filter whose values are
tion used below. Throughout, we assume that the reader is familiar wifependent on the transmitted symbefs ', w, is a zero-mean unit-
the Viterbi algorithm as presented in [3]. We attempt to use the notatiggriance white Gaussian noise process,afd ) is a signal-depen-
in [3] to the extent possible. Column vectors are denoted by underlinggnt standard deviation. Fig. 1 depicts the channel described by (5) and
characters, matrices are denoted by boldface characters, and the syggras we will derive in Section 1V, (4) holds for this channel if the

scriptT’ is used to denote matrix and vector transposition, s adis-  state is chosen as a collectionlof L consecutive transmitted symbols

crete-time indexed sequence whemgenotes the time, then the column,, — ,*="="+" |f we further haveP(ax|a; ) = P(ax|af=~"),

vector of sequence samples at tilethroughk, > k1 is denoted by  then (3) holds too and the channel may be represented by a finite-state
2k = [2k15 Zky 415 -+ 75 215)" . The notation(a| B) ~ N(m, C) de-  machine. Ifa;, are binary symbols, then there @&+’ states and
notes that the random vecterconditioned on an eveft, hasanormal 9!/+L+1 {ransition branches in this finite-state machine.

(joint Gaussian) distribution with mean and covariance matriC.

The probability of an event! is denoted byP(A). Further notationis ~ Example 2. Noncausal IS and Noncausal Data-Dependent Gauss—
introduced in Section V. Markov Noise: The following is a generalization of Example 1 to non-

causal ISI and noncausal data-dependent Gauss—Markov noise.

Il. PROCESSMODEL =y (aiiii;) + g )

is the noiseless channel output dependent only on the

In this section, we establish the appropriate model for ISI channels ”
with signal-dependent correlated noise. We structure the noise so that np = o (g’,:i’j;) bt (g::ig;) wg. (8)
the resulting channel has finite memory. In Section II-A, we discuss
the general Markov chain model with finite memory, and in Sectioferes, > I,, 4 > Ay, B > By, L, > 0, andL, > 0. For this
II-B we illustrate this model with examples that are relevant to the IShannel the state is chosen.as= Q'{:igﬁl, where
channel with correlated noise. . 2

C’l = 111111(I1 - Lz - Ll, ‘41 - LQ, B1 - Lz)

A. The Model and

Let x; represent the state of a finite-state machine at time instant Cp = max(ly, Ay — Ls. By — Lo).

k. The number of possible stat&$ is finite. We shall assume that the Example 1 is a special case of this example wher= 4> = By =

sequence of states is a Markov chain in the sense that the probability,, — 0, 7, = 4, = B, = —I, andL; = L. Note that in this

of the machine being in statg, conditioned on all states up to the statexxample the noise model ioncausalMarkov, i.e., the noise at the

attimek — 1, depends only on the state_,, i.e., current time may be dependent on past and future noise values. This is
the appropriate model, for example, in magnetic recording, where time
stands for the spatial variable, and the “past” and “future” times stand

P (mk@;fj) = P(xx|vp—1). (3) for the immediately adjacent bit-slots on a physical medium.
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Example 3. Non-Markov Observable©ften the observed processis maximized. With arguments similar to those for MAP sequence de-
is a deterministic part corrupted by additive noise. The additive noigection, it follows that the ML estimate is that sequenge for which
may not be Markov, but often it may be approximated by a Markabhe following sum of branch metrics is minimized :
process if the memory lengthis taken long enough [16]. In this case,
the Viterbi algorithm which we present in the next section is the asymp- K1
totically optimal detector of the finite-state machine state sequence. —ln f(zle, ic) = Z AmL (;'fL, Th—1, «IA) . (19
k=0
Ill. VITERBI SEQUENCEDETECTION The ML branch metric is

A. MAP Sequence Detection

given a sequence of observables- - -, zx when (3) and (4) hold. We
assume that the initial state is known and that the initial. realiza-
tionsz_r+1, - -, zo Of the observable random variable are also given, (16)
whereL is the Markovian memory length of the observable sequence
Zk.

The maximumma posteriori(MAP) sequence estimate of the state sec vjterbi Trellis Implementation
quencerk = [x1, -+, #x]T is the sequencel = [&1, ---, &x]7
that maximizes the joint conditional pdf, i.e.,

Zp =—00

We study the estimation of the state sequence - -, zx (K > 0) A, (iz—{ Th_t, 3;k> =_In /w =

The implementation of the minimization in (12) and (15) is very sim-
o L 1 ilar to the standard implementation described in [2] and [3]. The major
i = arg max f (QK-/ 2k |0, zg ) . (9) difference is that the computation of the branch metrics relies now on a
o e . . window of observed sample§ ™ = [zrc—7, - -+, ], instead of on
As shorthand notation, denote [z, z|i.c.) the conditional pdf on the just one sampley,. Depending on whether we are interested in MAP or

right-hand side of (9), where i.c. stands fioitial conditions Using (3) pL sequence detection, the branch metrics are given by (13) and (16),
and (4), we can factof (=, z|i.c.) as respectively.

K K
H Q —L+1 —L+1 0
f(‘T? Z| I'C') = I | r (xk‘|£k7—17 Z0 * ) I | f (;/L" £k71+ » gl()
k=1 k=1

K K . . . . .
. We now consider the important case in applications, [16], of
= H P(xr|rr=1) H f (:A gﬁ_{“, Th_1, :vk.). (20) P PP [16]
k=1 k=1

IV. GAUSSIAN STATISTICS AND BRANCH METRICS

channels with intersymbol interference (ISI) and signal-dependent
o 41 0 ) Gauss—Markov noise as described in Example 1 in Section Il and
In (10), we assumed thdl(wi|zy 1, 25" ") = P(aelzg 1), i€, gepicted in Fig. 1. The extension to the more general context of
tha_tthe state t_ra_lr_lsmon prob_a_bllltles are independent of the ob;ervabi_g)%mple 2 is relatively easy. In the model of Exampld T; 0 is the
Using the definition of conditional pdf's, we may further substitute g, length, and > 0 is the Markov memory length. We also assume
f = ek, ax) thatay, is abinary symbol sequence.

k—L
f (Zk|£k71-/ Th—1, Ik) ==

f (ziifl'rm, i)

f (EZ_T‘ |zk—1, l'k)

A. Branch Metrics

= 7= . (11) We fist define the state.. We consider the ML sequence detec-
/ f G eemrs a) da tion and work with(16). To find the metricAwmr. (2 =%, #1—1, =x),
T oo we must find the logarithm of the pdf(zf |z, _1, x). The vector

for the last term in (10). Maximizing (10) is the same as minimizing it§2—r, in (16) involves observables._ ;. throughz;., whose conditional

negative logarithm. Taking the negative logarithmfok, =|i.c.), we | eans (ideal channel outputs) are:* ~“~') throughy(a*~"), see

get (5). Therefore, the trellis branafiz; 1. =) should be chosen so that
o1 it collects all inputsas—r,—; througha, involved in determining the
, , w1, hannel outputg(at~%~') throughy(a*~") corresponding to the ob-
-1 x, z]i.c.) = Awm ( ’7) 12) © —k—L . —k
n f(z, z[i.c.) ; AMAP (2, s Tr—1, Tk (12) servables:z;_; throughz;. A simple choice is to label the state by

grouping the incoming bits as
where the MAP branch metrics are
Amar (;Zf_r’, Tho1, rk) wp = gk~ T7LH (17)
f & ek, @)
/'°° / (ﬁi_wwk—l; wr) dzg
T (13)

The MAP sequence estimate is thus that sequémcdor which the
sum of the branch metrics in (12) is minimized.

= —1In P(eg|re—1) —In We define the vector of + 1 ideal channel outputs

V(g ox) = [y(ap=p "), oo ylag™ 1"
and rewrite (5) as

k—L __ ~-/.. o _k—L
B. ML Sequence Detection ze " = Yoen o)+ (18)
The maximum-likelihood (ML) sequence estimate is that sequenst cep,
&}, , for which the conditional pdf ’

fzle,ic) = f (2}{@%'-, ZJLH) (14 (k1. 21) ~ N(Y(zp_1, 21)C(xh 1. 1))

is a conditionally Gaussian process, we have
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whereC(xi_1, ) isthe(L 4+ 1) x (L + 1) covariance matrix of  Substituting (22) into (19), we rewrite the Gaussian ML branch
ny " conditioned on the pair of statés,_. ;). Substituting this metric as
pdf into the expression for the ML branch metric (16), and cancelling

constant terms common to all branches, we obtain the Gaussian Mly, (zﬁ_L. Thet IL)
branch metric I
2 k—1
=lno (gk )
Mo (éZ_L-/ Th—1, Th)
(E1

k—i\1 k—L -
1ot = ’ T a; ) 1 [Ek - }_(kalv lk)]
—det C(lk_h “) + [EZ_L - X(JTA:_h IL)] + ] ak—l) )
Qy

2

. . (25)
detc(rg_1, 1) o2

—

 Clapre 2™ 27 = Y, o)

) The metric in (25) is obtained by filtering the observed veetpr "

.
_ [gf:f — (k1 wk)] clap 1, xp) " through an FIR filter with coefficientsu.(xx—1, z+) given in (24).

s B This filter is the inverse of the autoregressive filter in Fig. 1 and it un-
: [zz;_l‘ = y(@h—1, Ik)] . (19) correlates the autoregressive (AR) processThus we may interpret

the metric (25) as first uncorrelating the noise with an FIR filter, and
Herec(xk—1, 1) is the uppel x L principal minor ofC(xy_,, =), then applying the Euclidean (square) metric to the output of the filter.
ie., This is illustrated in Fig. 2 where the branch metric is shown to be the

processed output of a branch-dependent FIR filter. Since the FIR filter

coeﬁicients—g(gf;") depend on only + 1 symbols, and since there

Claroy. ) = [ cler-1, “”‘) elwr—1, ‘l”")} (20) isatotal o2’ branches in each stage of the trellis, it turns out that
‘ T cleg 1. 26)  olan_1, x3) there are’*! distinct FIR filters in the detector, whet® branches
may share a single filter.
andy(xx—1, 2« ) collects the firstL elements o} (xi—1, zk). A special case of the above FIR filter occurs when the covariance
In a similar fashion, the Gaussian MAP branch metric can be showratrix is not signal-dependent, i.€(zx—1, zx) = C. In this case,
to equal the filter w.(xx—1, 2x) = w. is a state-invariant tap-delay line that
whitens the stationary Gauss—Markov noise process. This is an intu-
M (Nk—L , ) ) itively pleasing result, since it is well known that a stationary (causal)
MMAP | Zf s Tk—1, Tk

Gauss—Markov AR sequence can be whitened by a time-invariant FIR
= MuL (zZﬁLw Tr_1, u-,) —21In P(zp|zr_1). (21) filter. Notice also that, ifw. is state-invariantall branches share the
same filter. We can then move the whitening filter to the front end of the
Viterbi detector. This provides another explanation of why the Viterbi
detector is optimal only when the channel noise is Markov. Suppose
B. FIR Filter Branch Metric Implementation that the noise is not Markov, i.e., it is not the output of an autoregressive
filter as in (6). Then to whiten this noise requires passing the observed
The metric given in (19) involves two vector-matrix multiplicationschannel outputs through an infinite impulse response (lIR) filter, thus
making the complexity of the metric computation ord®r(L + 1)?).  introducing infinite-length 1SI. However, with infinite-length ISI, the
We next exploit the structure of the covariance matrices to bring théerbi detector requires an infinite number of states in order to be the
computational complexity down t&(L + 1) by implementing the optimal detector, which is clearly unrealizable.
branch metric computation using an FIR (finite impulse response) filter. We make a distinction here with what is usually done in
Let the covariance matrix be partitioned as in (20). Using the matrisalman—Bucy filtering (KBF) [20] with Markov observation noise,
inversion lemma [17], the inverse can be written as see [21, Ch. 11]. In this case, the (vector) observatigrsre modeled
as

S
Lh—1+ Tk =

o7 0

We(Tp—1, -’l?k)wc(-?“/ofl, Ik)T
Y(xr—1, 1)

Zirt = Hizy + vp (26)

(22)  wherez, is the state vector and, is a first-order Markov vector fol-
lowing the model

In (22),v(2k—1, 7x) andw.(xr_1, x4 ) are given by the solutions of
the “signal-dependent” Yule—Walker equations [18] and can be shown Vg1 = Ap v + wyi 27)
to equal [19]
wherew, is a white Gauss vector sequence. Preprocessing the obser-
det Cep_1, ) _ o ( k_[> 23) vationszy into the new observation

ep_1, ap) = ———— 2" =" [a
/(@r1, k) detc(wp—1, ) =+

2 = zk41 — Ak zk (28)

Eﬂ(wk'—lz Jk) -

—c(ze_1, 24) te(Trn, »T/c)}
1

—b(a
= [ ble )} one can then apply standard KBF theory. Although similar, there is a
fine distinction with Viterbi decoding. Due to the requirement of finite
I1SI, the Markov noise model (27) needs to be restricted to autoregres-
sive processes (see (6)), while in KBF no such restriction is required.
Whel’ea(gé_l) andg(g’,j_[) are the autoregressive coefficients from Finally, we comment on the practical implementation of the branch
the model equation (6). metric computation. As seen from (19) @25), implementing the

(24)
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branch label | gy |---| ap |---|ap, | analyzing the detector performance of a simple ISI channel with finite
memory Markov noise.
filter w_: addressed by a; through a;,; Notation: Let
variance o2: addressed by g, through a,,;
vector Y : addressed by a, through a;,; enr = (W, UY))

gL

Blss

denote a lengttdd error event. By¥',, we denote the correct path

k
through the trellis spanning/ + 1 consecutive states,, - -+, @ a;-
G e = filter w The erroneous path is denotedby/, and spans state§, - - -, =}, ;.
—¢ Itis assumed that), = z, @}y = ¥, andal ., # @), for
1 < m < M — 1. Since a state is defined as = o ~'~"T', an
equivalent notation is
z / 1k—T—T+1
Vi = A gy M
* and
o oy =
2
Ino where
T =1 — e c— 14— e
Y'w /o W a fpim At L g s for 1 <m < M — 1
(- My,
and
Fig. 2. Block diagram of an FIR filter computing the ML branch metric for a ali;fn7L+nl+l — a”i;fn*fﬁmﬂ

channel with ISI of lengtll and Gauss—Markov noise with memory lendih

Since there ar@’ -1 branches in each stage of the trellis, the branches may

be labeled byl + L + 1 bits. Of these bits, only + 1 are used to address the fOr all otherm.
FIR filters. A bank of2 ™* different FIR filters is needed for optimal detection,

NS ]
while 2% branches share the same filter. A. Binary Hypothesis Error Probability

The binary hypothesis error probabili® (=s) is the probability of

H " I H .
ML branch metric requires knowledge of the second-order statisti@§!€Cting?s, when¥’, is the true path. This error occurs when the

C(xx_1. xx). In practice, the second-order statistics are typically nfccumulated metric (2”5) glorllg the paltfy, is greater than the accu-
known and need to be estimated from the data. Tracking the statisffédlated metric alongy,, i.e.;
adaptiyely is prgferab[e in many appliqations because the covariance ) =D M “ kbm—L  rkfm—I—L
statistics may time-drift or be nonstationary for some other reason.' 2\M) = Z MML A\ Zkgm > Lkdm
Adaptive covariance tracking has been widely covered in the literature, m=1
see, e.g., [18] and [22]. For a method applied in magnetic recording v ( — //k+m—1—L> 29
signal detection see [5]. Notice also that, if the involved covariance > Z ME A Zetm > Skdm - (29
matrlces]:rar_e &g:;l-depend_ent, alnd s_?]nonsiaglonggy ek‘)”d ngn'ToehpNgrice that we can use an arbitraryn (29). For convenience, we shalll
anany € |c||3entb' estlr'nanor.]“ ;gont {ns [k ], [23] based on t Biser = L throughout this subsection.

evinson-burbin recursion will then not work. To evaluate the expression on the right-hand sid€2&¥), we use

the special structural properties of Gauss—Markov covariance matrices
V. ERRORANALYSIS [19] and rewrite (29) as

A7/l T =1 A/l
N M+L) C\y(\I N s
M

We develop in this section the error analysis for the Viterbi sequenfe(517) =P {ln det C, +(
decoder when the noise in the ISI channel is signal-dependent and " T =1 artil
1" In det Cgr +(N", cyl N, }
correlated. Our results extend the error analysis in [2] and [24] to >In det Cyy +(Nari) =ML (30)
correlated finite memory ISI channels. However, due to the chanrte matricesCy, andC,, are the covariance matrices QLM
nonlinearity and the signal-dependent noise correlation, the analygisen,/1—L andg/'lff arglthe transmitted (or written on a memory

. Q@ 14 @ 4+nM
must carefully treat the lack of symmetry. For example, in contragfedium) binary sequences, respectively. The innovation vector
with the linear channel with stationary white noisegalf, - -+, a, '}, 4 is defined as
andaf, ---, a}l, are two valid binary sequences in the trellis, the vl 1 y
probability of detecting’ whena'’ is sent isnotthe same as detecting ~ £—L+M — £L+M — ¥ B
a"” whena' is sent. Also, unlike the linear channel with stationary _.1 o fai=1\ o pen—1\]? 31

=ZL4+M yla, s » Y\ aA i ( )

white noise, we cannot formulate the upper bound using the flowgraph

transfer function [2] because relative distances between trellis patgere the valueg(a’; ') are the same as those used in the model
are not symmetric due to the asymmetric signal-dependent no@guation (5). The vector;”}wﬂ andg” are defined similarly as in
correlation. (31), where the superscripts replaced by’ .

To formulate the bounds, we introduce first the necessary notationNext, we briefly describe how to obtain the inver§gs, andC,,/,
Then, in Section V-A, we derive theinary hypothesi®rror proba- of the covariance matrices from the model parame?érs in (6)“./[ Since
bility for asymmetric Gauss—Markov noise channels, followed in Sethe process is conditionally Gauss—Markov with Markov memory
tion V-B by a computationally efficient approximation to this error
probability. In Sections V-C and V-D, we formulate upper and lower
bounds using the binary hypothesis error probability expressions. Fizifthe detector is an MAP detector rather than the ML detector, we substitute
nally, in Section V-E, we illustrate the error performance results hije MAP metric into (29) to get the MAP binary hypothesis error probability.
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length L, it follows from [15] thatC,, is an L-banded matrix. Its decision
upper Cholesky decomposition is givén by boundary
. . Sy () =0, Z¢,, - correlated
C, =Uy D, UL 32 white noise " noise cloud
wh, T W W, P (32) cloud

In (32), according to [19] and [25], the upper triangulabanded ma-
trix Uq,/w is

U b (@ hH) 0
1
Uy = (33) . . L . i
M ) / Fig. 3. Binary hypothesis signal and noise constellation encountered when
=D (“_//CIM_ T) computing the binary hypothesis error probability. Note the asymmetric noise
clouds.
0 1
and the diagonal matriy, is
Do = diae (D 1 S gt 1/o? (o LA =1 determined on a case-by-case basis, which ultimately may be compu-
wy, = diag[Dy 1/0* (@7577) - 1/0* (230 )] tationally impractical. A brute-force alternative is to evaluate (35) nu-

(34) merically by Monte Carlo, but this is also computationally intensive

ri—1I» re—1Iy
Thethvalue_sg(%h,. ) a:jncli o(d; i ) '”6(333ha”d (34) ta_re th? Sametf.or low error rate (high sisgnal-to-noise ratio (SNR)) scenarios. In the
as fhose In e model equation (6). The upper triangular ma rrl?éxtsubsection,we develop a computationally efficig¢function ap-
U, and the diagonal matriP>,, are the upper Cholesky factors of

C-' = U, D UL whereC.. is th ditional ) i proximation that leads to an accurate evaluation of (35) for high SNR
v = Frbu by, Wherehy IS Ihe conditional covanance matniX oo arios where Monte Carlo numeric evaluations are not viable.
of z} when the sequence of transmitted (written) symbolg'}5'.

The elements ofC;, can be obtained by rearranging a signal-deé
pendent set of Yule-Walker equations and solving a linear system
of equations. Since computinG,. is tedious but straightforward, ~Computing(35)requires integrating a zero-mekovariance mul-
we refer the reader to an example provided in [26]. The Choleskyariate Gaussian pdf over a region where
decomposition ofC,, is obtained similarly.

Once we have corﬂﬁputed the Cholesky decompositions (32) of bo}g

—1 —1 H i i ili
C, 3 andC\T,,n,/f , we can rewrite the binary hypothesis error probability
for the error eventy, = (¥, ¥4,) as

Approximate Binary Hypothesis Error Probability

M (E) :ETE_IH det 25]\/{ - (ﬂ_ﬂsM)Tz_l (E_EQM) > 0.

&M
(38)

" Fe1 Since a Gaussian function has a very fast decay, we approximate (35)
PQ(EM)ZP{; w>n det X, +(w—m.,, )" X, (Q—msM)} by
(39)

Pa(en) = Q(d2) (39)

wherew is an(L + M) x 1 Gaussian random vector withjw] = 0 whereds is the point onf. ,, (w) = 0 closest to the origin and

andE[w w’] = I. The vectom. ,, is given by
1/2 310 " ' T Qx) = L /00 e~ (/2 g,
Mep = QD\yZMU‘llfw (y —y)=[d 0 - 0] (36) NI

To determinel,, one may use any minimization technique (Lagrange
multipliers, steepest descent, etc.). A particularly fast method is to find
the pointd, on the boundary.,,(w) = 0 between) andm.,, by

whered = ||DY/’ U;{,',V(y” — "], y" andy” are defined in (31),
1 M= = = =

|| - || is the L, vector norm,Q is a unitary matrix (for example, the

— 90 LT 1,112 _ _ € tEMm
Housetlj)zlde/rrreflest(ﬂ) = 2ow” /llell” - 1, where% = 4/llall +er, solving a quadratic equation, see Fig. 3. For a given matiy, , the
1= D\I,,MI-J\T,ZM (y" —y'), ande; = [1,0,:--, 0", see [27]), and pgint 4, will be betweer) andm.,, if d is large enough, i.e., if the
X, satisfies SNR is large enough. Sinek is typically close tod;, we can obtain

d» in a few iterations, or we may simply sét ~ d; cos 6, see Fig. 3.

-1 C1/2p1m1 nml p=T a—1/2 T We prefer the iterative method since it is not too computationally ex-
EEM _QD‘T'ZM U‘I',MC Uq',MDq’, Q

T M pensive.
and
dot 3. — det D, 37) C- Upper Bound
o Enr T *
detD‘Di‘\,/I The bit-error probabilityP;, can be upper-bounded by the union

bound [2]. Since our channel is asymmetric (nonlinear with signal-de-
In the general case, the expression on the right-hand side of (®§1dent noise correlation) we need a union bound expression that gen-

cannot be simplified by integrating & -like distribution. These sim- eralizes the one in [2]. One can verify that the two expressions are
p|iﬁca’[i0ns are possib|e on|y in Specia| cases, for examp|e, VE@J[‘] equivalent for Iinear-symmetric channels. L&t denote the Iength
is diagonal (for a list of all special cases where a simplification is po§h branches) of an error event, = (¥}, ¥%,). For our binary
sible, see [28]). In the general case, however, evaluation of (35) Fflannel, the minimum allowable error event length can be verified to
volves integrating a zero-medrcovariance multivariate Gaussian pdft€ Mmin = I + L + 1, wherel is the ISl length, and. is the Markov
in the region where the condition on the right-hand side of (35) hold&emory length of noise. The set of all allowable error events of length
Since this is a region outlined by a quadratic form, its shape must f&is denoted by, . Denote by (.1 ) the number of erroneous bits



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 1, JANUARY 2000 297

corresponding to the error eveni;. Let P(«) be thea priori proba-
bility of the trellis stater. Similarly, letP(xy, xx_1) denote the con-
ditional probability of transition from state;_, to stater;. The bi-
nary hypothesis error probability associated with the error evgnis
P2(=ar) and can be computed by either Monte Carlo simulation or aj
proximated by (39). The upper bound on bit-error probability is give

by

[0
[
o0 M S
P, < Z Z P(I;c) H p (41:;6+i|$;c+i71) :_.’ ]
M=Mpyin ‘1/5‘\/1 i=1 Qo 10 H Euclidean . .\.:.\ U 4
Z by (ea1)P2(em)- (40) -7 *  Monte Carlo bounds h \\: |
/! such that 10 r . T N
e =(W W VEE 3 . -~ - Q-function approx. bounds : . \:\
10 L e . T \:\._
This bound accounts for both the ML and the MAP sequence detect 7 8 9 10 11 12 13 14 15 16
where the corresponding binary hypothesis error probatifiti: 1, ) SNR (dB)

needs to be substituted (see footnote to (29)). If all symbol sequences
are equally likely, thei®(x},) = 2= (4D andP () ;|*x% ;_1)=1/2. Fig.4. Performance evaluations of detectors applied to the channel in Table I.
A practical method for evaluating the bound in (40) is to truncate the
first sum to values o < Mmax, Where M.« is a predetermined ) ] ) S
large enough constant. Notice that in (40), the binary hypothedffough Monte Carlo simulation or with the approximation in (39). In
error probabilityDs (=) needs to be determined for every qualifyingh® binary signaling case, for every sequette, ., (i) of Minin + 1
error event 7, which makes the bound computationally expensive gtates, there exists only one erroneous sequebite . (i). We
P2 (2ur) is computed by Monte Carlo simulations rather than by trigerefore have
approximation (39). N
P(Wh . (i) =1

D. Lower Bound ; (¥btia (D)

Obviously, a lower bound is obtained by picking any single term (?f
the union bound (40). This, however, may not be a tight bound. To 915,
a tighter bound, we modify the genie-assisted bound [24]. 2(e

¥, . (i) are disjoint sequences. If we choode. =
M, (1)) for somei wherel < i < Muin, then

Modified Genie-Assisted BoundDenote by’ () the probability of ;
an error event. Let.(P.) be the probability that the input sequence 7o(Pe) > Z P(Ty, . (3))
a}, is such that there is a probabilify > P, of confusion with some e
allowable sequencé;. Even with a genie-assisted detector that has to
choose only betweer}, anday, the probability of an error eveffit(z)

will be greater thanr.(P.) - P... Clearly, then because there may be error events of length> M,,;, whose bi-

nary hypothesis error probability is greater thn. In the interest

of keeping the bound computationally simple, we ignore these error

P(e) > max [7.(P.)-P.]. (41) eventsoflengtdd > Mui,. Since for all error events of lengffix
0sbest the number of erroneous bitslig (=, (1)) = 1, we have

min (

The difference between this formulation and the one in [24] is that we ;
assumeP > P, instegd ofP = P.. In_ fact, the bound in (_41) will Py > me(P.) - Pe > [Z P (‘I’i\flmin(j))} Py (e, (i) (42)
never be looser (and in many cases tighter) than the one in [24], even
in linear-symmetric channels.

We use the resultin (41) to find a lower bound for the bit-error prob-
ability. Consider only error events of lengMimin = I + L + 1. The foranyl <i < N.Maximizing the right-hand side ¢#2), we obtain

number of these events for binary signaling is a tighter lower bound

j=1

N = ol Muin _ o ylH+L

Py > max { [Z P (‘I’iw,,,i,,(.)'))} P, <st;“<1:>>}. (43)

j=1
Label these error events asu,;, (1), enrpn (2), 05 Ensn (NV),
where their order is such that This expression provides for a lower bound for both the ML and the
MAP sequence detector, where the appropriate binary hypothesis error
robability would be used, see footnote to (29). When all sequences
Po (it (1) 2 Pa(e1n(2) 2 o 2 Palean (V) 0o 29 :

¥, () are equiprobable, we have

min

and Py (eas . (7)) is the binary error probability of the error event 1 1
(€ Minin e , ; ' o+ l-aen
zu. (i). The probability Py(zar, . (i) can be computed either P, (1) = 5 = 54 :
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TABLE | extremely high error rated ' and above) the upper bound may fail
NONLINEARLY DISTORTED 1 — D to converge, but that is rarely a concern since at those error rates the

PARTIAL RESPONSECHANNEL WITH ISI LENGTHI = 1 AND MARKOV : . .
MEMORY LENGTH I — 1 MLSD performance can readily be evaluated through simulations.

() [v(at™) [o(ah) | o ()
00 -0.1 1.0 0.2 VI. SUBOPTIMAL DETECTORS
01 1.2 1.8 -0.6
10 -0.8 1.2 -0.6
11 0.1 1.0 -0.2

Being the optimal detector, the maximum-likelihood sequence de-
tector (MLSD) bounds from below the error rate of any suboptimal de-
tector of lower complexity. Furthermore, the structure of the signal-de-
pendent MLSD gives new insight into developing suboptimal detectors.
Here we cover several suboptimal schemes and discuss their relation-
ship to the MLSD.

Thus the modified genie-assisted bound provides the lower bit-errorrom Fig. 4 we see that there is a performance region between the
probability bound MLSD and the Euclidean detector that can be filled with suboptimal de-
tectors with complexities possibly lower than that of the MLSD. There
are many ways to construct such suboptimal receivers. We limit our-
P, > l 4=+ max [i - Py (sar,,, ()] - (44) selves to suboptimal receivers with a certain structure. We look for sub-
2 IsisN optimal receivers that are Viterbi-like, i.e., that operate on a trellis and
use branch/path metric minimization as their detection strategy. We de-
) fine the complexity of a Viterbi-like detector as the number of multipli-
Since the term#(c1r,,,, (i)) have already been computed as part ofations it has to perform per clock interval (symbol interval) in order to
(40), no further computation is needed for the lower bound. Notice alggmpyte all its branch metrics. We ignore additions. In many realiza-
that while (44) is always a lower bound, it may not be the tightest g5 of the Viterbi detector this may not be an accurate representation
the modified genie-assisted bounds because we considered onlydfge detector complexity since there exist several practical finite-pre-
minimum-length error events. The following example shows, howevelision methods to simplify the multiplication operation. Nevertheless,
that this bound is relatively tight. for simplicity, we trust that the multiplications count provides at least
a reasonable representation for the complexity of a detector.
E. Performance Evaluation Example When I is the ISl length and. the Markov memory length, the
LSD for the binary channel model in (5) and (6) h2is"" states

We study the performance of the maximum-likelihood sequence id2/+"+1 branches. Therebg!/*! branches share a single FIR filter
tector for a simple channellwnlh ISl length= 1 and Mar!<ov MEemory sedto compute the branch metric, see Fig. 2. In Fig. 2, if we count each
lengthL = 1. 'I_'he _channel is given by the model equations (5) anc_zl (6[ “multiplication byb: (a*~"), each division byr(a"~/), and each
also depicted in Fig. 1, where the \_/alues of the parameters are give uaring operation as one multiplication, the count of multiplications
Table I. The channel represented in Table | can be viewed as a non

. . e eded to compute all the branch metrics of the MLSD in one clock
early deviated. — D partial response channel with &gnal-dependerﬂ]iterval is(2” + L+ 1)2'*'. Since the computational complexity of
correlated noise.

Fia. 4 sh th ¢ f the ML detector. Th He Euclidean Viterbi detector & *! per clock interval, we have that
'g. 4 Snows he periormance otthe sequence detector. 1he ge, computational complexity increase factor of the MLSD over the
ferent values of the SNR shown in Fig. 4 are obtained by scaling t

noiseless channel response (column denotegj(gﬁi’l) in Table 1)
while keeping the relative distance between the signal points the same.
This corresponds to scaling the signal power while the noise constella-
tion is kept the same. In Fig. 4, the solid line represents the simulated FmLsp
performance of the ML sequence detector (MLSD). We do not show
the MLSD performance curve beyond SNR = 14 dB since the Monte
Carlo simulations become expensive to compute. Fig. 4 also shows YMe next consider suboptimal detectors with lower computational in-
simulated performance of the Euclidean detector applied to the chanfi€@se factors.
in Table |. The Euclidean detector is a Viterbi detector that assumes the
noise to t_>e white. Fig. 4 shows that Qt the_error ratiof’ the MLSD A. Low-Order Autoregressive (AR) Approximatiéi-AR Detection)
has a gain of 2.5 dB over the Viterbi Euclidean detector.

Fig. 4 also plots the bit-error probability bounds. The stars (*) in We introduce in this subsection a new suboptimal detector that we
Fig. 4 show the bounds computed by evaluating the binary hypothestfer to as the low-ordep-AR detector.
error probability with Monte Carlo simulations. As the Monte Carlo A Gauss—Markov noise process of ordeiis the output of an au-
simulations become too computationally intensive beyond SNR = i@egressive (AR) model of orddr. The inverse covariance matrix
dB, we only show the stars (*) for SNR 12 dB. On the other hand, of an Lth-order Gauss—Markov processlisbanded, meaning that it
the approximate bounds (dashed lines in Fig. 4) computed by apprbrs2L + 1 nonzero diagonals, while the remaining are all-zero di-
imating the binary hypothesis error probability witlafunction, see agonals [15]. We obtain a suboptimal detector by using an AR ap-
(39), can be computed at a fractional computational cost for any valpeximation [16] of order) < L. Let C, be the covariance matrix
of the SNR. Fig. 4 also shows that thgfunction approximation is of the @th-order AR process approximation. The malﬁ)‘g1 is then
extremely close to the bounds computed by Monte Carlo simulatiordig-banded. We can show that tfebanded matri>C(31 that minimizes
As expected, the bounds are tightening as the SNR increases whianKullback—Leibler mean information loss due to approximating the
helps us evaluate the MLSD performance at high SNR’s where Moragginal Lth-order AR process with @th-order AR process is given
Carlo simulations of the MLSD are impractical. We point out that diy the following decomposition [19]:

clidean detector is

(L)y=2"4+L+1. (45)
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A are the inverses of the bank bfAR filters used in the channel model
C=Cq+ wm\ equations (5) and (6). Since ttié-step detector uses nonuniform AR
AT approximations at different trellis stages, the number of multiplications

has to be averaged over a cycleldftrellis stages to get the average
computational complexity per clock interval. The computational com-
and plexity increase factor of th& -step Viterbi detector over a Euclidean

r Viterbi detector is
0
O3 = |~ Dy (46)
Q NQ“
| 0

2K 1 K+1

where02¢ 4+ denotes a band @i + 1 all-zero diagonals, anB ¢+ I + 5 forKk <L
denotes a band @) + 1 nonzero diagonals. Note that the decompo- I . I

sition in (46) is unique since there exists only one matiy such that  Frc-step (K) = ¢ 2~ 1+ (&~ €)(2 +L-1) (49)
the@-band ofC, equals th&)-band ofC, and than1 is @-banded. L(L+1) K

The suboptimal Viterbi detector based on the low-order AR approxi- Y for K > L.

mation computes the branch metric usin@dap FIR filter instead of
an L-tap FIR filter? Consequently, the detector has™“ states and

2/@* branches wher2 ! branches share a singletap FIRfilter.  clearly, the( K = 1)-step detector is the same as i@ = 0)-AR

The computational complexity increase factor of the low-o@@eAR  getector, which is the detector presented in [7] and [8].
detector over the Euclidean detector is

C. Block Skipping.§-Skip Detection)

A drawback of thel{ -step detector is that it reaches the MLSD per-
formance only in the limit ag¢ — oo. We propose here a new class
of suboptimal detectors that reaches the MLSD performance for a fi-
nite order of suboptimality. The following equation shows théand

Obviou.sly, ifQ = L, we have the MLSD. IR = 0', we obtain the _of a covariance matrixC of an Lth-order Gauss—Markov process par-
suboptimal detector presented in [7] and [8] for which the complexnt[}iioned in contiguous principal blocks of sigé + 1) x (L + 1)
increase factor igy-Ar(0) = 2.

Fo-ar(Q) = 294 Q+1. 47

eets A
B. Block Partitioning {<-Step Detection) JIS Sl
In [13], Altekar and Wolf present a suboptimal detector by replacing C=| wfiiil (50)
the covariance matri&€ by a matrixC’ obtained by keeping only the ST A
K x K block diagonal elements &, i.e., A e o o

It can be shown, see for example [19], that the elements af thand
of C determine in a unique way the covariance ma€iof the L-th
R 0 order Gauss—Markov process, in particular, they determine the ele-
N . o ments of the block&A. We can conclude that the MLSD derives the
Cx E =C (48) branch metrics based on all covariance coefficients inZhzand of
0 R C. As an alternative, out of thel + 1) x (L + 1) blocks outlined
on the right-hand side of (50), a suboptimal algorithm may ignore the
blocks outlined by the dashed lines in (50). We refer to such a proce-
whereR is a K’ x I principal minor ofC. This contrasts with the dure as thé.S = 1)-skip detector. In general, if we skif blocks at a
Q-AR approximation of(46) where it is theinversecovariance that time, we have thé-skip detector. Much like detailed in Section VI-B,
is bandedrather than the covariance matrix itself, whictbleck-par- the S-skip detector may be designed through cyclic implementation
titioned In [13], the method is called th& -step Viterbi detector. In of nonuniform@-AR approximations. Each cycle spafist 1 trellis
[13], the authors provide a metric computation method involving vegtages and the detector cyclicly employs bank§@t= L — S)-FIR,
tors of observed samples and covariance matiitedsing techniques () = L — § + 1)-FIR, -+, (Q = L)-FIR filters. The bank of
presented in Section 1V-B, we can show that fliestep detector may () = L)-FIR filters is given by the inverses of the actuzh-order
also be implemented with low-order FIR filters (which is also a comaR filters in (5) and (6). The computational complexity increase factor

putationally less expensive implementation than in [13]). However, the the S-skip Viterbi detector over the Euclidean Viterbi detector is
order@ of the FIR filters is cyclicly time-varying. For example, the

three-step detector would use bank6t' (Q = 0)-FIR filters for

the first stage of the trellig,) = 1)-FIR filters for the second stage, oL+l _9L=S 9p _ G549
and(@ = 2)-FIRfilters for the third stage (for low-order signal-depen- Fs-aip(5) = S+1 + B) ) for1 <S5 <L
dent AR processes, see [16] and [19]). In the fourth stage of the trellis, (51)

the detector goes back to the bank §f = 0)-FIR filters and repeats The (S = 0)-skip detector is clearly the MLSD. It is also apparent
the cycle. Thus generally, & -step detector would cyclicly employ that the(S = L)-skip detector is equivalent to tHe-step block par-
(Q = 0)-AR through(@Q = K — 1)-AR approximations at different titioning detector whed{ = L + 1, whereL is the Markov memory
stages of the trellis. Thereby, the FIR filters used to calculate the brarlehgth of the noise.

metrics are the exact inverses of )eAR filter approximations, see

Section IV-B. At trellis stages wher@ > L, the bank of FIR filters D. Nonuniform AR Approximations

2Note that the@th-order filter isnot simply a truncation of the optimal  T1he I{-step and5-skip detectors are subclasses of Viterbi detectors
Lth-order filter. that apply different)th-order AR approximations at different stages of
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TABLE I
NONLINEARLY DISTORTED 1 — ID? PARTIAL RESPONSECHANNEL (PR4 GHANNEL) WITH ISI LENGTHI = 2
AND MARKOV MEMORY LENGTH L = 2

() | wlah™) [o (™) | b (o) [0 () | 0 (st )
000 -0.12 0.10 -0.3 -0.1 0.2
001 0.8 0.20 0.4 0.4 0.1
010 0.0 0.12 -0.2 -0.3 0.0
011 0.8 0.17 -0.1 -0.3 -0.1
100 -0.62 0.11 -0.4 -0.2 0.2
101 -0.12 0.14 -0.6 0.5 0.2
110 -0.62 0.10 -0.6 -0.4 0.2
111 -0.12 0.12 -0.3 -0.1 0.0

the trellis. One can easily think of numerous other Viterbi-like detec-ERROR
tors based on this concept, where the different orders of AR approxime
tions are not necessarily cyclicly employed. A typical scenario would*
be in nonstationary detection. Suppose that at some point during da2.9‘10-3 ____________
transmission the data rate increases, i.e., the clock interval (symbol ir Q=0:%
terval) shrinks. If the new clock interval is too short to perform Viterbi P
detection based on a high-order AR approximation, the detector ma L N Tes3 :
resort to a less computationally expensive lower order AR approxima 1410 i T8 P 1
tion, still retaining the communication link at the price of a less reliable o CONO ‘Keg '
communication. Combinations of different orders of AR approxima-
tions will lead to a large number of possible detector designs.

3100 .+ Euclid.

* Euclidean

Cathis © K-step
e---9o S-skip

o——o Q-AR

T N s SO, SRR SRR o0 ]
E. Decision Feedback 46107} R R ST eMLSD
Decision feedback mechanisms can be used to lower the comput (S):(t);s
tional complexity of Viterbi detectors. Reduced-state sequence estims Koo

tors (RSE) [29] use premature decisions to reduce the ISI length an 1 5 ‘i‘ 5', 6 7 é é 1i0 1'1 1'2

thus lower the number of states. Noise predictors [11], [12], [30] on the COMPUTATIONAL COMPLEXITY INCREASE FACTOR

other hand, use premature decisions to guess the future noise sample.

In the context of Markov noise models, this corresponds to lowerirRig. 5. Performance versus computational complexity. Shown are the

the Markov memory length. Hybrids between reduced-state sequefperating points of the Euclidean detector, the MLSD, and different orders

estimators and noise predictors are also possible. Furthermore, we Yafje suboptimalQ-AR, S-skip, andK-step detectors. The detectors are
- - . - . . ._._applied to the channel given in Table II.

envision combining the nonuniform AR approximations with decision

feedback strategies to form a larger subclass of Viterbi-like suboptimal ) o

detectors. A common feature to all decision feedback suboptimal dlPoptimal detectors based on low-order AR approximatiGh#R

tectors is error propagation, see results presented within [13]. Erfi§itectors) provide the best complexity-versus-error-rate tradeoff. The

propagation precludes the use of decision feedback detectors in mériptep detector is a reasonable alternative todh@R detector only

applications where larger blocks of errors cannot be tolerated, e.g./@h0w complexities and high error rates. On the other hand5tskip

block error-correction coding/decoding. detector is a reasonable alternative to¢h&R detector only for high

complexities and low error rates.
F. Comparative Results

. . . VII. MMARY
In this subsection we provide the error performance for a number Su

of detectors and show that thie AR detectors provide usually the best We studied the maximum-likelihood sequence detector (MLSD) and
compromise between error rate and computational complexity. Tablehe MAP sequence detector for intersymbol interference (I1SI) channels
shows the parameters (for explanations, see (5) and (6)) of a very naisth correlated noise whose statistics are possibly signal-dependent.
real channel encountered in magnetic recording applications [16]. TWe describe three major contributions to the problem. First, by mod-
channel in Table Il is a nonlinearly distorted class-4 partial responsking the correlated noise as a Markov process of finite order, we derive
(PR4) channel with ISI length = 2 and signal-dependent correlatedhe optimal MLSD and MAP sequence detector as extensions of the
noise with Markov memory length = 3. Fig. 5 shows for this channel Viterbi decoder for ISI channels with finite memory noise. Second, we
the error rate versus the computational complexity increase fattorprovide an error performance study of the MLSD and MAP sequence
for a number of detectors: the MLSD, the Euclidean Viterbi decodetetector, deriving tight upper and lower bounds for the probability of
and several suboptimél-AR, I -step, and>-skip detectors. The com- error. Finally, we present several classes of suboptimal sequence detec-
putational complexity increase factors are normalized with respectttys, including new algorithms, and compare their computational com-
that of the Euclidean detector, whose operating point in Fig. 5 cornglexity and their error performance.

sponds then to the valdeon the horizontal axis. We do not consider The key to deriving a finite implementation for the optimal sequence
decision feedback suboptimal detectors since they suffer from erd®tector is our modeling the correlated noise as a finite-order Markov
propagation. The error rates were computed by Monte Carlo simufaocess, see Section Il. We showed in Section Il that, as long as the
tions with 10° bits. The results confirm, as mentioned above, that thmemory of the noise is Markov, we can extend the Viterbi algorithm
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to implement the maximura posteriori(MAP) detector and the max-  [6]
imum-likelihood sequence detector (MLSD). The complexity of the
MLSD is exponentially proportional to the sum of the ISI lengtblus 7]
the Markovian noise memory lengfh The branch metrics of the de-
tector are functions of. + 1 consecutive samples of the observable
process. [8]

When the noise is Gaussian with Markovian memory (signal-de-
pendent Gauss—Markov noise), see Section IV, the branch metric
are expressed in terms of the conditional second-order statistics OTQ
the noise. In the binary signaling case, there afel states in
the trellis and2’*"*' branches in each stage of the trellis. We [10]
presented an efficient FIR filter based computation of the branch
metrics using a bank @i’ Lth-order FIR filters. The structure of [11]
the receiver resembles the structure of the detector in the memory-
less noise scenario, in which we preprocess the received sequence
to uncorrelate the noise and then apply the Viterbi detection. 112
the case of noise with memory, however, the preprocessing cannot
be done up-front—it needs to be implemented separately in everp s
branch of the Viterbi trellis. The constraint of finite 1SI length re-
quires that we use only FIR filters for the preprocessing, which in[14]
turn limits us to Markov (i.e., autoregressive) channel noise only.
When the channel noise memory is not Markov, we find the bes}g
fitting Markov process to describe it and then apply the Viterbi
algorithm to asymptotically reach optimality. In nonstationary envi-
ronments, adaptive tracking of the conditional covariance statisticbL6]
is required since the branch metrics depend on these statistics.

We presented in Section V the error analysis in terms of bounds op 7
the probability of bit errors. While formally similar to the analysis for
white and signal-independent noise, the bounds are computationally8]
more complex due to the signal-dependent noise correlation asymmetﬁ/g]
in the channel. We simplified the computation of the bounds by de-
veloping a method that exploits the banded structure of the inverses
of Gauss—Markov covariance matrices. We have further simplified the
bound computations usin@-function approximations. A simulation [20]
study was carried out showing the good quality of the bounds as pr 51
dictors of the error performance. As expected, the bounds are tighter at
higher values of the signal-to-noise ratio (SNR). [22]

We use the structure of the extended Viterbi detector for Markovian
memory channels as a guideline to derive new suboptimal detectoré]
that are computationally simpler than the MLSD. We also showed how
several suboptimal algorithms proposed in the literature are related {o4]
the MLSD. In Section VI, low-order autoregressive (AR) approxima-
tions were utilized to yield a whole class of suboptimal sequence de-
tectors. An experimental study was carried out to show that, out oPS]
all these suboptimal methods, the strategy that provides the best com-
plexity-versus-performance tradeoff is the one based on fully utilizing
a Q-band of the noise covariance matrix, i.e., tHeAR detector. We  [26]
have shown how to exploit the banded form of the inverse of Markov
covariance matrices to construct suboptimal receivers that asymptot[i27]
cally reach optimality with higher order approximations and that do not

suffer from error propagation problems. [28]
29
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