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Correlation-Sensitive Adaptive Sequence Detection

Aleksandar Kagic, Student Member, IEEEand Jo8 M. F. Moura,Fellow, IEEE

Abstract—In high density magnetic recording, noise samples  These methods do not take into consideration the correlation
corresponding to adjacent signal samples are heavily correlated petween noise samples in the readback signal. These correla-
as a result of front-end equalizers, media noise, and signal {j5ns arise due to noise coloring by front-end equalizers, media
nonlinearities combined with nonlinear filters to cancel them. . di i it d t isti MR) head
This correlation significantly deteriorates the performance of n0|s_e, mg_la nonlinear |es,_an__ magnetoresistive (MR) e_a
detectors at h|gh densities. In this paper, we propose a novel n0n|.|near|t|es..They Cal.J§E S|gn|f|cant pel’forman(.:e degradatlon
sequence detector that is correlation sensitive and adaptive to the at high recording densities. Early work addressing noise cor-
nonstationary signal sample statistics. We derive the correlation- relation has been reported by Barbosa in [19]. We propose in
sensitive maximum likelihood detector. It can be used with any this paper aradaptive correlation-sensitivenaximum likeli-

Viterbi-like receiver (e.g., partial response maximum likelihood, - . Lo
fixed delay tree search, multilevel decision feedback equalization) hood sequence detector. We derive the maximum likelihood

that relies on a treeftrellis structure. Our detector adjusts the Sequence detector (MLSD) [20] without making the usual
metric computation to the noise correlation statistics. Because simplifying assumption that the noise samples are independent

these statistics are nonstationary, we develop an adaptive algo-random variables. The trellis/tree branch metric computation
rithm that tracks the data correlation matrices. Simulation results  pa~omes correlation-sensitive, being both signal-dependent
are presented that show the applicability of the new correlation- . . .
sensitive adaptive sequence detector. and sensitive to correlatlons'betweer? noise sgmpleg. We refer
to our method as the correlation-sensitive maximum likelihood

sequence detector (CS-MLSD), or simply correlation-sensitive
sequence detector (CS-SD).

Because the noise statistics are nonstationary, we adaptively
|. INTRODUCTION compute the correlation sensitive branch metrics by estimating

N recent years, there has been a major shift in the desif}§ N0ise covariance matrices from the read-back data. These
I of signal detectors in magnetic recording. The traditiongPvariance matrices are different for each branch of the
peak detectors (PD) [1] have been replaced by viterbi-ligee/trellis due to the signal dependent structure of the media
detectors [2] in the form of partial response maximum likeli?0!S€- Since the channel characteristics in magnetic recording
hood (PRML) schemes [3], [4] or hybrids between tree/trell 1Y from track to track,_these matrices are tracke_d (updated)
detectors and decision feedback equalizers (DFE) like fix@Q the fly, recursively using past samples and previously made
delay tree search with decision feedback (FDTS/DF) [sj€tector decisions.
multilevel decision feedback equalization (MDFE) [6], [7], 'he block diagram of the newly proposed detector strategy
and random access memory reduced-state sequence estifngOWn in Fig. 1. Notice that the detector has a feedback
tion (RAM-RSE) [8]. These methods were derived undéiructure. The first block is a \_/|t_erb|—l|ke detector. The out-
the assumption of additive white Gaussian noise (AWGN) RUtS Of this block are the decisions and the delayed signal
the system. The resulting trellis/tree branch metrics are th@mPles. They are used by the two feedback blocks. The
computed as Euclidian distances. first feedback block, labeled “noise statistics tracker,” uses

It has long been observed that the noise in magnem:e Ppast samples and detector decisions to update the noise
recording systems is neither white nor stationary [9]-[12§tatiStics, i.e., to update the noise covariance matrices. The
The nonstationarity of the media noise results from its signa#cond block, labeled “metric computation update,” uses the

dependent nature [13]-[15]. Combating media noise and HRdated statistics to calculate the branch metrics needed in the

signal dependence has thus far been confined to modifyi}{ﬁel;tg;g;ec[?:?eorztggég;rs nﬁvgiriggrzg:jns ?vc\)/isng\?vt brli?;lliisr?n

the Euclidian branch metric to account for these effects. ZeHdf ) i !
and Moon [16] and Lee and Cioffi [17] have derived ihe feedback loop to adaptively estimate the branch metrics
branch metric computation method for combating the signalSed in the Viterbi-like decoder. , ,
dependent character of media noise. These authors ignore thEN® Paper is organized as follows. Section Il derives the
correlation between noise samples. The effectiveness of tAf1€ral maximum likelihood correlation-sensitive sequence
method has been demonstrated on real data in [18]. detection method and the corresponding branch metrics. In
Section lll, we propose an adaptive filter for tracking the

Manuscript received June 9, 1997; revised December 17, 1997. This ws@tistics needed for the metric computation. Simulation per-
was supported in part by the National Science Foundation under Grant EfDrmance results using data generated with a realistic sto-
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is the joint probability density function (pdf) of the sig-
/ nal samplesry,---,ry conditioned on the written symbols
gl samples | Viterbi-ike detector decisions a,---,ay. The maximization in (1) is done over all possible
— delayed signal samples combinations of symbols in the sequens,---,ax}.
PRML or FDTS . . . .
Due to the signal dependent nature of media noise in
PTT T T T oo T e e magnetic recording, the functional form of the joint conditional
novel bloc Y . . . .
= Hoise statisti pdf f(ri,---,rn | a1,---,an) in (1) is different for different
tracker symbol sequencesy,---,ay. Rather than making this dis-
me tinction with more complex but cluttered notation, we keep
omputation the notation to a minimum by using simply the same symbol
update f to denote these different functions. We will frequently point
S S e e out this distinction in our discussions throughout the text.

Fig. 1. Block diagram of the Viterbi-like CS-SD.
A. General Structure of CS-MLSD

BITS: 001000010000101000 By Bayes rule, the joint conditional pdf (likelihood function)
131, is factored into a product of conditional pdf's
X 4
r
j \ f(/]’l’...’/]’]\r CLZ‘,---,CLN)

SAMPLES: _E ™ / N
|+ ZZLIE :Hf(7z |7’i+17"'77’]\77a17"'70/1\7)- (2)

To proceed and obtain more concrete results, we now exploit

SYMBOLS: ? ? ;' (f eBE-0000+6-0 ?? the nature of the noise and of the intersymbol interference in
aj a3 a3 ay a17018 magnetic recording.

1) Finite Correlation Length:We start by assuming that
the conditional pdf's in (2) are independent of future samples
after some lengtll. > 0. We call L the correlation length of

Fig. 2. Sample signal waveform, its samples and written symbols.

IIl.- CORRELATION-SENSITIVE MLSD the noise. The literature also calls this the Markov memory
In this section, we derive the CS-MLSD. Assume thdength. This independence leads to
N > 1 channel bits (symbolsy,,asz,---,ay are written
on a magnetic medium. The symbalg, i = 1,---,N are Flrifriqs, sy, ag,00san)
drawn from an alphabet of four symbais € {+,®, —, &}. = f(ri | g1, rigrs a1, an). 3
The symbols 4" and “-" denote a positive and a negative 2) Finite Intersymbol InterferenceWe further assume that

transition, respectively. The symboky” denotes a written he conditional pdf is independent of symbols that aoein
zero (no transition) whose nearest preceding nonzero symf:H)j K-neighborhood ofry, - - ,riy. The value ofK > 1
S a + while © Qenotes a Wr|tten.zer’(l)‘ whpse nearest yetermined by the length of the intersymbol interference
preceding transition is a negative one, i.e-,™We introduce (ISI). For example, for PR4 we hav§ = 2 while for EPR4
this notation because a simple treatment of transitions as “1 :'3 Definek; > 0 as the length of the leading (anticausal)
and no transitions as “0” s is blind to signal asymmetries (M landK, > 0 as the length of the trailing (causal) ISI, such

head asymmetries and base line drifts), which is inappropriiheatK — K, + K, + 1. With this notation, we can write the
for our problem. In Fig. 2 a sample waveform is illustrate onditional pdf in (3) as

We exaggerate in Fig. 2 the signal asymmetries and base line

shifts to make our point clearer. The figure also shows the  f(r; | riyx1, -, 740,01, -, an)

written symbolszy, - - -, a;3 as well as the samples, - - -, 73 = f(ri | Pigts e PiL Gk Gip Dk ). (8)

of the read-back waveform, sampled at the rate of one sample

per symbol interval. Substituting (4) into (2) and applying the Bayes rule, we

When the written sequence of symbals i = 1,---, N is obtain the factored form of the likelihood function (conditional
read, the readback waveform is passed through a pulse-shapidf)
equalizer and sampled one sample per symbol, resulting in the,, ]
sequence of samples, i = 1,---, N. Due to the noise in the Flry- TN
system, the samples are realizations of random variables. "
The maximum likelihood detector determines the sequence of — Hf(” | 71,7, a1 )
symbolsa; that has been written by maximizing the likelihood Z;}
function, i.e., _ H Fririgts s Tig L | Gimkys oo Qi LK, ) (5)

alv"'vaN)

{&17 T &N} = arg[larlllg}f_(f(Tlv TN
! If the indexes in (5) exceed, i.e., if : > N, then assume

In (1), the likelihood functionf(ry,---,ry | a1,---,an) thatr; = 0. This ensures proper treatment of the boundary
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conditions. The factored form of (5) is suitable for applyindlere the mean signat; is dependent on the written sequence
Viterbi-like dynamic programming detection techniques. Naf symbols. For example, for a PR4 channel € {-1,0,1},

tice that (5) assumes anticausal factorization, i.e., it is derivéat details see, e.g., [3] and [4]. The branch/tree metric is then
by taking into account the effect of the samples;,---, 7. the conventional Euclidian distance metric

onr;. If we take into account only the causal effects, we can N2 N2

derive the causal equivalent of (5) as Mi= N7 = (ri = mi)”. (8)

2) Variance Dependent Branch MetridMe assume again

r DRI & N4 a e AN . . .
flrorw fag, o an) that the noise samples are samples of independent Gaussian
N . . . .
_ Hf(ri,rﬂrl,---,ri% | @ik, -+, 0i+L+xK,) Vvariables, but that their variance depends on the written
b i1 | Gimk o G Lk, " sequence of symbols. The noise correlation length is still

L = 0, but the variance of the noise samples is no longer
In [21], we consider the causal formulation of the CS-MLSDconstant for all samples. The varianceoi® where the index

We could combine the causal and anticausal factorization andenotes the dependence on the written symbol sequence. As
find the geometric mean of the two to form a causal-anticau$at the Euclidian metric, we assume the total ISI length to be
factorization. Since this only complicates derivations and doés = K;+ K, +1. The conditional signal pdf is factored to give

not provide further insight, we will work only with the . .

. Jrigs, - migr | Gimk,, o+ 5 GigLyK,)
anticausal (5). — - ‘ ‘

Maximizing the likelihood function in (5) is equivalent Flrisvigrs o rign [ ik Gig Ly i) ,
to minimizing its negative logarithm. Thus, the maximum _ /2wa2exp[w} 9)
likelihood detector is now shown in (6) found at the bottom ‘ 207
of the page. The symbalM; represents the branch metricrhe corresponding branch metric is
of the trellis/tree in the Viterbi-like algorithm. The metric is ) )
a function of the observed samples Titly s Tig L It is M; = logaf + ; — logaf + M (10)
also dependent on the postulated sequence of written symbols o; a;
ai—i,, 5 Git L+, Which ensures the signal-dependence Qfhich is the metric presented in [16] and [17].

the detector. As a consequence, the branch metrics for V3) Correlation-Sensitive Branch Metrictn the most gen-
ery branch in the tree/trellis is based on its correspondiggy| case, the correlation length Is > 0. The leading and

signal/noise statistics. trailing 1SI lengths arek; and K, respectively. The noise
- . is now considered to be both correlated and signal-dependent.
B. Specific Branch Metrics for the CS-MLSD We assume joint Gaussian noise pdf's. This assumption is well

We next consider specific expressions for the branch metrigétified in magnetic recording since the experimental evidence
that result under different assumptions on the noise statisti§§ows that the dominant media noise modes have Gaussian-
1) Euclidian Branch Metric: In the simplest case, the noisdike histograms [22]. The conditional pdf's do not factor out
samples are realizations of independent identically distributBtithis general case, so we have the general form for the pdf
Gaussian random variables with zero mean and variarice f
This is a white Gaussian noise assumption. This implies thﬂ

the correlation distance i& = 0 and that the noise pdf's have
the same form for all noise samples. The total ISI length is _ [(2m)"+1det C; exp [N CT'N] (11)
assumed to bé& = K; + K, + 1 where K; and K, are the (2m)tdete;  explnfe;in;]
leading and trailing ISI lengths, respectively. The condition
signal pdf's are factored as

(Ti—l—lv s Ti L | Ai—K;y" " a/i-l—L—l—I(t)

TisTitly 3 TitL | Bi—Kps" "7 ai-I—L—i—Kt)

I . . , :
Fhe (L +1) x (L+ 1) matrix C; is the covariance matrix

of the data samples;,r;+1,---,7:+ When a sequence of
Flragr, -+ Titr | Gimkyy 5 Qi L4 K,) symbolsa;_,, -+, a;++x, iS Written. The matrixc; in the
Frisrisr, -+ rivL | Gick,s s Qid L4 K, ) denominator of (11) is thé& x L lower principal submatrix of
— (ri —m;)? .
= 27(0’2 GXP{# (7) Cz = [ CZ‘]'

i N
{a1 an} =arg|minlog [ | rivn, oo tive | ik o, Githi)
ceanY = a
T alle; ~ 2 f(risriga, 5T | @i o5 Qi Dt k)
N
= arg min Z IOg f(Ti—l—lv Tk L | Ai—K;y" " a/i-l—L—l—I(t)
=2
alla; =7 f(risvigrs 5 Tivn | @m0 Gik L4k,
- N

=arg|min » M;(ri,7iq1, 0 Tid L, oKy ai+L+I(t)] . (6)
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The (L+1)-dimensional vectotV, is the vector of differences 1, 0, or—1. Typically this is done with a least mean squares-
between the observed samples and their expected values wtiass (LMS) algorithm that ensures that the mean of the signal

the sequence of symbols_x,, - -, a;+r+x, IS Written, i.e., samples is close to these target values. In decision feedback
r  equalization (DFE) based detectors or hybrids between fixed
N =[(ri=mi) (riga —mip1) -+ (rigr =misr)] - delay tree search and DFE, such as FDTS/DF [5] or MDFE [6],
(12) [7], the target response need not be prespecified. Instead, the
The vectorn; collects the lastl eIeTmen_ts ofN;, n; = {arget values are chosen on the fly by simultaneously updating
[(ri4r —=mit1) - (ripr —maipr)]”. With this notation, he coefficients of the front end and feedback equalizers with
the general correlation-sensitive metric is an LMS-type algorithm: for details see [23].
det C; When there are severe nonlinearities in the system (also

referred to as nonlinear distortion or nonlinear ISI) a linear

equalizer will generally not be able to place the signal samples

The computation of the metric written as in (13) require§ype on target. Instead, the means of the signal samples will
roughly 4L(L + 1) multiplications. In our recent work [21], t4 a¢ 4 different value. For example, in a PR4 system, the

we show that the metric in (13) can be implemented USi'?gsponse to a sequence of written symbols, &, +, &, - -
an L-tap finite impulse response (FIR) filter, bringing thq,night result in mean sample target values,é), ’1 ’09’
computational complexity down to only. multiplications. | 1 ua o sequence of written symbols- ,+, —, &, - -- might

The well-behaved impulse response of FIR filters and tlf’gsult in a sequence of mean sample values 0.95~ 1.05
computational complexity only linearly proportional fomake 0,--. Clearly, in this example, what should be a target value

this metric attractive for practical implementations even fq;f 1 becomes either 1, 0.9, or 0.95 depending on the written
fairly rl1arg(]je L . fthe b h ) q sequence. Since we are talking about mean values and not
In the derivations of the branch metrics (8), (10), and (13}t noisy samples, this deviation is due to nonlinearities in

we made no assumptions on the exact Viterbi-type architeCtfig, ystem. There are two fixes for this problem. The first
that is, the metrics can be applied to any Viterbi-type algorlth{g to employ a nonlinear filter (neural network or Volterra

such as PRML (3], [4], FDTS/DF [5], RAM-RSE [8], Or e filter) that is capable of overcoming these nonlinear

MDFE 6], [_7]' In Section IV, we show results on how thedistortions; see [24] and [25]. Although recently very popular,
chosen metric affects the performance of several class-4 par&'ﬁ%h a method introduces further correlation between noise

M; = log doto +N/C'N, —nfci'n,.  (13)

we address the_qugstlﬁn of the og-tgg-flyhesgmatlﬁn of e is to track the nonlinearities in a feedback loop and use
covariance matrices; that are needed In the branch metrig,, 5cked value in the metric computation. For example, let

computation in (13). the response to a written symbol sequence &, +, @, - - -
be consistently--, 0, 1, 0.9;--. Then, rather than using the
lll. ADAPTIVE STATISTICS TRACKING value 1 in the metric computation for the third target, we can

Computing the branch metrics in (10) or (13) require§ack this behavior and use the valug = 0.9.
knowledge of the signal statistics. These statistics are the meaH the remainder of this paper, for simplicity, we assume that
signal valuesm; in (12) as well as the covariance matrice&he front-end equalizer is placing the signal samples right on
C, in (13). In magnetic recording systems, these statistiide desired target values and that there is no need for further
will generally vary from track to track. For example, thénean corrections. We shift our focus to tracking the noise
statistics that apply to a track at a certain radius will differ frorgovariance matrices needed in the computation of the branch
those from another track at a different radius due to differefitetrics (13).
linear track velocities at those radii. Also, the signal and noiseAssume that the sequence of samplgs;i1,- -+, 7L IS
statistics will be different if a head is flying slightly off trackobserved. Based on these as well as all other neighboring
or if it is flying directly over the track. The head skew angle i§amples, after an appropriate delay of the Viterbi trellis, a
another factor that contributes to different statistics from traglecision is made that the most likely estimate for the sequence
to track. These factors suggest that the system that implemedftsymbolsa; i, -+, @it L4k, 1S @ik, "+ s it L4k, . Here
the metric in (13) needs to be flexible to these changes. StorihgS the noise correlation length and = K; + K; + 1 is
the statistics for each track separately is out of the questiii¢ ISI length. Let the current estimate for the + 1) x
because of the memory span required to accomplish this.(A + 1) covariance matrix corresponding to the sequence of
reasonable alternative is to use adaptive filtering techniquessinbolsa; ., - - -, it L+ x, b€ Clai—r,+, Gitr4x,). We
track the needed statistics. abbreviate this symbol with the shorter notatiofia). If the
Tracking the mean signal values, is generally done so estimate is unbiased, the expected value of the estimate is
that these yalugs fall on prespecified target's. An adaptive front- EC(&) _ E[ N, ﬂ;r] (14)
end equalizer is employed to force the signal sample values
to their targets. This is certainly the case with partial responadere IV, is the vector of differences between the observed
targets used in algorithms like PR4, EPR4, or EEPR4 whesamples and their expected values, as defined in (12).
the target is prespecified to one of the class-4 partial responsedNote that once we have observed the samples
For example, in a PR4 system, the signal samples, if thererjsr;1+1,---, 7,41, and once we have decided that most
no noise in the system, fall on one of the three target valuldeely they resulted from a series of written symbols
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di—r,, 0+ L+K,, We know the sequence of target (mean)
valuesm;, m;y1, - - -, m;y, that correspond to these samples.
We use them to compute the vectldr, with which we form
the empirical rank-one covariance mati N .

In the absence of prior information, this rank-one matrix
is our estimate for the covariance matrix for the detected
symbols. In a recursive adaptive scheme as we are proposing,
we use this rank-one data covariance estimate to update our
current estimate of the covariance matiXa). A simple wWay i, 3 one cell of a PR4 trellis.
to achieve this is provided by the recursive least-squares (RLS

algorithm [26]. The RLS computes the next covariance matrix a; Aiv] G2

estimateC’(a) as + o o +
C'(a) = p)C@) +[1 - pOIV; NF.  (15)

Here, 5(t), 0 < p(t) < 1 is a forgetting factor. The ® e °

dependence ohsignifies that3 is a function of time. Equation O o o

(15) can be viewed as a weighted averaging algorithm, where

the data sample covariandé, N is weighted by the factor -0 o —

[1—73(#)], while the previous estimate is weighted B¢). The 0 4 petected path in a PR4 trellis.
choice of 3(t) should reflect the nonstationarity degree of the
noise. For example, if the nonstationarity is sméllt) should in Fig. 3. The number next to each branch in Fig. 3 represents
be close to one, while it should drop as the nonstationaritiye target value (mean sample value) for the corresponding
level increases. The forgetting factor is typically taken timpath between states. The target values in PR4 can be one of
dependent to account for the start up conditions of the RliBree values-1, 0, or 1.
algorithm in (15). As more data is processed, a steady statén this example, we assume a noise correlation length of
is expected to be achieved amtit) is made to approach L = 1. We also assume that the leading and trailing ISI
a constant value. If we lack a good prior estimzfm&), lengths arekK; = 0 and K, = 1, respectively, to give the
A3(t) should be close to zero, to weigh more the current datatal ISI lengthK = K; + K; + 1 = 2 for the PR4 response.
estimate. With time3(¢) will increase and settle around aSinceL = 1, we will need to track signal covariance matrices
value close to one. In our simulations in Section V, we choseo size (L + 1) x (L + 1) = 2 x 2. The number of these
constant forgetting factg# independent of time. In particular, matrices equals the number of different combinations of two
we uses = 0.95. consecutive branches in the trellis. A simple count in Fig. 3
Although our simulations have shown (15) to convergeeveals that this number is 16, since there are four nodes in
even when we pick the zero matrix as the initial conditiorthe trellis and two branches entering and leaving each node.
in practice, we want to have a good starting condition to Assume that using the branch metric in (13), the Viterbi-
obtain fast convergence. By dividing the disk in a numbdike detector decides that the most likely written symbols
of sectors and picking the middle track as the representativg a;+1, a;+2 equal {d;, d;+1,4;4+2} = {©,+,—}. This is
track of the sector, the covariance mat@(&) for this track illustrated in Fig. 4 where the corresponding path through the
provides a good starting condition for all tracks in that sectarellis is highlighted. The noisy signal samples corresponding

Convergence can be expected then to take a few hundtedhe trellis branches arg = 0.9 andr;+; = —0.2 which
samples (bits). deviate slightly from their ideal partial response target values
The one-dimensional equivalent of (15) is of one and zero, respectively.
Suppose that prior to making the decisibiy, d;1, d; 2}
A2 _ a2 2 . . P .
Tnew = P1q + [1 = PN} (16) - {e,+, —}, the estimate for the covariance matrix associated

This equation can be used in conjunction with the metric i\ﬁ'th this sequence of three symbols is

(10). &6+ —) = 0.5 —0.2
It is important to point out that, due to the signal-dependent T =02 08|

character of the media noise, there will be a different co- . o as ,
variance matrix to track for each branch in the treeftrellis O t the forgetting factor bg = 0.95. To update the covariance

the Viterbi-like detector. Practical considerations of memorrg/ﬁlatrlx we first form the vector

requirements, however, limit the dimensions of the matricesto N = [(r; — 1) (rip1 —0)]" =[=0.1 —0.2]F. (18)
be tracked..Fortunater, as we show in the nex} sgctlon, smg;l{% use the rank-one sample covariance maMiay” to find
2 x 2 matrices are enough to show substantial improvemep ) .
; € covariance matrix update
in error rate performance.

Example: The following example illustrates how the algo- 2 oA T
rithm in (15) works. Assume a PR4 target response with a c©+-)= /30(@,::,—) +A-HNN
simple trellis structure as shown in Fig. 3. Notice that for PR4, _ | 04755 —0.189 . (19)
the symbols can be equated to the trellis states, as is illustrated —0.189  0.7620

17)
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TABLE | PR4 at 4.4 a/ symbol (2 symbols/PW50)
RECORDING PARAMETERS USED IN SIMULATIONS 1071
Parameter Symbol Value
media remanence M, 450kA/m
media coercivity H, 160kA/m
media thickness [ 0.02um E 102f
media cross-track correlation width s 2004 é
head-media separation d 15nm [1a ;
head field gradient factor Q 0.8 8 C2 metric
head gap length g 0.1354m L1078 C1 metric
track width ™ 2um Euclidian metri
transition width parameter a 0.019m
percolation length L =1.4a | 0.0266um
50% pulse width PW50 | 0.167um 10 : : : ~

10 11 12 13
S(AWG)NR [dB]

The matrixC’(e, +,—) becomes our estimate for the covariFig. 5. PR4 detection results at 4/4ymbol.

ance matrix corresponding to this particular symbol sequence

(trellis path) and we use it to compute the metrics (13) in the , EPR4ata.4a/symbol (2 symbols/PW50)
subsequent steps of the Viterbi-like algorithm. :

IV. SIMULATION RESULTS

In this section, we present simulation results using two
partial response detection algorithms, namely PR4 and EPR4.
To create realistic waveforms, corrupted by media noise, we
used an efficient stochastic zig-zag model, the TZ-ZT model - C2 metric
[15], [22], [28]. These waveforms are then passed through the 5L —— =~ C1 metric
detectors. A Lindholm inductive head [27] is used for both : Euclidian metric
writing and reading. Table | presents the recording parameters ; : -
of the model. These recording parameters are chosen so that 10
with a moderately low symbol density pétWW50, we have

ERROR RATE

11 12 13 14
S(AWG)NR [dB]

a low number of transition widths per symbol transition fig. 6. EPR4 detection results at 4/4ymbol.
separation. Namely, at 3 symbpBW 50, we have a transition

separation of only2.9qa. We modeled the transition profilenoise to simulate the head and electronics noise in a real
by an error function, where the transition widthdenotes system. We quote the power of the additive white Gaussian
the distance from the transition center to the point where theise as the signal to additive white Gaussian noise ratio

magnetization equaldz,./2. S(AWG)NR which we obtain as

We write the symbols utilizing the (0, 4) run length limited A2
code. No error correction is applied, so the obtained error rates S(AWG)NR = 10log —5° (20)
are not bit error rates, but (ravgymbolerror rates. In

We tested both the PR4 and EPR4 detectors using thBere Ai, is the mean (media noise free) amplitude of an
following three different metric computation methods: thésolated pulse and? is the variance of the additive white
Euclidian metric (8), the variance dependent metric (10), al§gaussian noise. The noise distorted signal is first passed
referred to as the C1 metric, and thex2 correlation sensitive through a low-pass filter to clean out the noise outside the
metric (13), named the C2 metric for short. For a PR4 targdyquist band. The signal is then sampled at a rate of one
response, the total ISI length I§ = K; + K, + 1 = 2 where Sample per symbol and subsequently passed through a partial
the leading and trailing IS lengths a#;, = 0 and K, = 1, response shaping filter, either PR4 or EPR4. The partial
respectively. The noise correlation length for the Euclidiai¢sponse shaping filter is implemented as an adaptive FIR filter
and the C1 metrics if. = 0, while for the C2 metric the Whose tap weights are adjusted using the LMS algorithm. Note
noise correlation |ength i& = 1. We refer to these three PR4that both filters add correlation to the noise. For the C1 and
detectors as PR4(Euc), PR4(C1), and PR4(C2). C2 metrics in (10) and (13), the RLS algorithms (15) and

Similarly to the PR4 detectors, we tested three EPH46) are used to estimate the noise variances and covariance
detectors: EPR4(Euc), EPR4(C1), and EPR4(C2). The ormatrices for the branch metric computations. In both cases,
difference between the PR4 detectors and the EPR4 detectBfs forgetting factor is set t¢ = 0.95.
are the target response and the ISI |ength, which for the EPR(A" six detection algorithms were tested at three different
target response equalé = K; + K, + 1 = 3, with X; = 1 recording densities.
and K; = 1. « Symbol separation of 4¢4 This recording density cor-

The signal obtained by the TZ-ZT model is already cor- responds to a symbol density of 2 symbdi3¥ 50; see
rupted with media noise. To this signal we add white Gaussian Table I.
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Fig. 5 shows the symbol error rate performance of
the PR4 detectors for different additive noise SNR's.
Keep in mind that the media noise is embedded in the
system, which is why the-axis on the graph is labeled
as S(AWG)NR instead of simply SNR. Notice that, at this
density, the PR4(Euc) and PR4(C1) detectors perform just
about the same while the PR4(C2) detector outperforms
them both by about 3 dB. The reason for this is that the

PR4 shaping filter averages noise samples from different
symbols, which masks the signal dependent nature of the
media noise. This is why there is not much to gain by
using PR4(C1) over PR4(Euc). The PR4(C2) detector
performs better because it partially removes the effects
of noise correlation introduced by the PR4 shaping filter.
Fig. 6 shows how the EPR4 detectors perform at this
same density (symbol separation é).4Here we see that
the EPR4(C2) has the best performance, while EPR4(Euc)
has the worst. The difference in performance at the error
rate of 10°° is only about 0.5 dB between EPR4(Euc)
and EPR4(C2). This is because the media noise power
at this density is low and the signal is well matched to
the target so the EPR4 shaping filter does not introduce
unnecessary noise correlation.
Symbol separation of 3¢5 This recording density corre-
sponds to a symbol density of 2.5 symb@f1’50.
Fig. 7 shows the performance of the PR4 detectors at
this density. The figure is very similar to Fig. 5 except
that the error rates have increased. This is again due to a
mismatch between the original signal and the PR4 target
response, which is why the PR4 shaping filter introduces
correlation in the noise. PR4(C2) clearly outperforms the
two other algorithms, showing the value of exploiting the
correlation across signal samples.
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Fig. 8 shows the error rates obtained when using tléa Viterbi-like algorithm. The only visible difference between
EPR4 detectors. Due to a higher density, the media notbe CS-SD and the conventional Viterbi-like detector is that
is higher than in the previous example with symbdhe CS-SD has two blocks in a feedback loop. These two
separations of 44 This is why the graph in Fig. 8 blocks perform two tasks. The first block updates the noise
has moved to the right by 2 dB in comparison to theorrelation statistics, while the second one uses these statistics
graph in Fig. 6. While the required S(AWG)NR increasedthe covariance matrices) to compute the correlation-sensitive
the margin between the EPR4(Euc) and EPR4(C2) algee/trellis branch metrics.
increased from about 0.5 dB to about 1 dB, suggestingThe characteristics of the CS-SD make it attractive for
that the correlation-sensitive metric is more resilient tose in high density recording systems where correlations
density increase. This is illustrated in Fig. 9 where theetween noise samples can be expected. These correlations
S(AWG)NR required for an error rate of 10 is plotted can be a result of media noise, front-end equalizers, and
versus the linear density for the three EPR4 detectoraedia and MR head nonlinearities. We presented simulation
From this figure we see that, for example, with amesults showing how the CS-SD works when combined with
S(AWG)NR of 15 dB, the EPR4(Euc) detector operatewsvo partial response detectors PR4 and EPR4 in a magnetic
at a linear density of about 2.2 symbalBIW 50, while recording system. We showed that the CS-SD outperforms its
the EPR4(C2) detector operates at 2.4 symhl§'50, correlation-insensitive counterparts in all cases. The margin
thus achieving a gain of bout 10% in linear density. of this performance difference is dependent on the correlation

« Symbol separation of 229 This recording density corre- between the noise samples. The higher their correlation, the
sponds to a symbol density of 3 symba¥’50. Due to larger the gain provided by the CS-SD. Because the media
a very low number of symbols pe, this is the density noise samples become more correlated at high densities,
where the detectors significantly lose performance duettee achieved gain in performance by the CS-SD over the
the percolation of magnetic domains also referred to asrrelation-insensitive detectors increases with growing den-
nonlinear amplitude loss or partial signal erasure. sity.

Figs. 10 and 11 show the performance of the PR4 and
EPR4 families of detectors at this density. The detectors
with the C2 metric outperform the other two metrics. The[q; 5. nakagawa, K. Yokoyama, and H. Katayama, “A study of detec-
error rates are quite high in all cases. This is because at tion methods of NRZ recording,JEEE Trans. Magn. vol. 16, pp.
the Symbd separations of &monlllnear eﬁeCtS’, such [2 I%F)‘Il-lla_nlgrllgy Ii]agp:elgggr “Comparison of different detection techniques
as partial erasure due to percolation of domains, start” for digital magnetic recording channeldEE Trans. Magn.vol. 31,
to dominate. These effects can only be undone with pp. 1128-1133, Mar. 1995. o ] )
a nonlinear pulse shaping fiter, which we have nof®l ' . 1ood and B, . Petesen, vier seecton of e v parte
employed here. COM-34, pp. 454-461, May 1986. _

In conclusion, the experimental evidence shows that thé! ﬂbﬁaz?nngoigge%gﬂl'sﬁiti?ml'mggcrﬁfii ?;f;g'ﬁg;;pggsni_sﬁ;?s for

correlation sensitive sequence detector outperforms the cor- vol. MAG-23, pp. 3666-3668, Sept. 1987.

relation insensitive detectors. We have also demonstrated tHat J- J. Moon and R. L. Carley, “Performance comparison of detection

. . " methods in magnetic recordingf/EEE Trans. Magn. vol. 26, pp.
the performance margin between the correlation sensitive and 3155 3170 Nov. 1990.
the correlation insensitive detectors grows with the recordingf] J. G. Kenney and R. W. Wood, “Multilevel decision feedback equal-
density. In other words, the performance of the correlation gf“gg'_ ﬁl%fﬂi'legéyrﬁgf_atl'ggso_f FDTS/DFJEEE Trans. Magn.vol.
insensitive detector deteriorates faster than the performance gf L. Bi, J. Hong, Y. Lee, H. Mutoh, Q. Sun, H. Ueno, J. Wang, and
the correlation sensitive detector. Quantitatively, this margin R. W. Wood, “An experimental MDFE detector,” IEEE INTERMAG
depends on the amount of correlation in the noise passqg g.o%%ﬁ?nﬁe‘mﬂeggle(ﬁLIg?rzisétééfoﬁP%nldQ%Gaptive signal processing for
through the system. Qualitatively, the higher the correlation magnetic disk recording,” Ph.D. Thesis, Stanford University, Stanford,
between the noise samples, the greqter WI.". be the margi?)] ISAAD%CauE?l%E S. Murdock, and B. R. Natarajan, “Measurement
between the CS-SD and its correlation insensitive counter part. of noise in magnetic media,[EEE Trans. Magn. vol. MAG-19, pp.

17221724, Sept. 1983.

[10] R.N.Belk, K. P. George, and S. G. Mowry, “Noise in high performance
hin-film longitudinal magnetic recording medidEEE Trans. Magn.

V. ConcLusion (- opatucinal magnet recordng medaEEE Trans. Magn

We have developed the correlation sensitive adaptive &l :j(.-s. ,Tatngv “',EtXP'iCi,Itggé“#'a fOF;/Ihin film |di§|z(1 ﬂOiseg Eggegl%r:lz:\ﬁl-zag
quence detector in this paper. The detector is a correlation jgga o oo rans. Magn.vel. 24, pp. s1icmals, Nov.

sensitive MLSD. Because it is a sequence detector, it can [08 J.-G. Zhu and N. H. Bertram, “Recording and transition noise simula-

used with the basic architecture of any Viterbi-like sequence }L%r\‘/s i{‘gg‘é” film media,"|EEE Trans. Magn.vol. 24, pp. 2706-2708,

detector; see Fig. 1. The basic difference between the GEs) j.-G. zhu and H. Wang, “Noise characteristics of interacting transitions
SD and the conventional Viterbi-like sequence detector is that in longitudinal thin fim media,”|[EEE Trans. Magn. vol. 31, pp.
: P 1065-1070, Mar. 1995.

the branch metrics _Of the CS-SD "_ire computed taking mf94}1 J.-G. Zhu and X.-G. Ye, “Impact of medium noise on various partial
account the correlation between noise samples. These branch response channels|EEE Trans. Magn.vol. 31, pp. 3087—3089, Nov.
metrics are computed using noise covariance matrices which 1995. . . - .

daotivel timated from past sianal samoles usin g5 A. Kavtic and J. M. F. Moura, “Expedient media noise modeling:
are adaptyvely 'es p ; g .p A g Isolated and interacting transitiondEEE Trans. Magn. vol. 32, pp.
RLS-type algorithm. The CS-SD retains the basic architecture 3875-3877, Sept. 1996.
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