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Abstract—In high density magnetic recording, noise samples
corresponding to adjacent signal samples are heavily correlated
as a result of front-end equalizers, media noise, and signal
nonlinearities combined with nonlinear filters to cancel them.
This correlation significantly deteriorates the performance of
detectors at high densities. In this paper, we propose a novel
sequence detector that is correlation sensitive and adaptive to the
nonstationary signal sample statistics. We derive the correlation-
sensitive maximum likelihood detector. It can be used with any
Viterbi-like receiver (e.g., partial response maximum likelihood,
fixed delay tree search, multilevel decision feedback equalization)
that relies on a tree/trellis structure. Our detector adjusts the
metric computation to the noise correlation statistics. Because
these statistics are nonstationary, we develop an adaptive algo-
rithm that tracks the data correlation matrices. Simulation results
are presented that show the applicability of the new correlation-
sensitive adaptive sequence detector.

Index Terms—Adaptive, correlation sensitive, maximum likeli-
hood sequence detection, signal dependent.

I. INTRODUCTION

I N recent years, there has been a major shift in the design
of signal detectors in magnetic recording. The traditional

peak detectors (PD) [1] have been replaced by Viterbi-like
detectors [2] in the form of partial response maximum likeli-
hood (PRML) schemes [3], [4] or hybrids between tree/trellis
detectors and decision feedback equalizers (DFE) like fixed
delay tree search with decision feedback (FDTS/DF) [5],
multilevel decision feedback equalization (MDFE) [6], [7],
and random access memory reduced-state sequence estima-
tion (RAM-RSE) [8]. These methods were derived under
the assumption of additive white Gaussian noise (AWGN) in
the system. The resulting trellis/tree branch metrics are then
computed as Euclidian distances.

It has long been observed that the noise in magnetic
recording systems is neither white nor stationary [9]–[12].
The nonstationarity of the media noise results from its signal
dependent nature [13]–[15]. Combating media noise and its
signal dependence has thus far been confined to modifying
the Euclidian branch metric to account for these effects. Zeng
and Moon [16] and Lee and Cioffi [17] have derived a
branch metric computation method for combating the signal-
dependent character of media noise. These authors ignore the
correlation between noise samples. The effectiveness of this
method has been demonstrated on real data in [18].
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These methods do not take into consideration the correlation
between noise samples in the readback signal. These correla-
tions arise due to noise coloring by front-end equalizers, media
noise, media nonlinearities, and magnetoresistive (MR) head
nonlinearities. They cause significant performance degradation
at high recording densities. Early work addressing noise cor-
relation has been reported by Barbosa in [19]. We propose in
this paper anadaptive correlation-sensitivemaximum likeli-
hood sequence detector. We derive the maximum likelihood
sequence detector (MLSD) [20] without making the usual
simplifying assumption that the noise samples are independent
random variables. The trellis/tree branch metric computation
becomes correlation-sensitive, being both signal-dependent
and sensitive to correlations between noise samples. We refer
to our method as the correlation-sensitive maximum likelihood
sequence detector (CS-MLSD), or simply correlation-sensitive
sequence detector (CS-SD).

Because the noise statistics are nonstationary, we adaptively
compute the correlation sensitive branch metrics by estimating
the noise covariance matrices from the read-back data. These
covariance matrices are different for each branch of the
tree/trellis due to the signal dependent structure of the media
noise. Since the channel characteristics in magnetic recording
vary from track to track, these matrices are tracked (updated)
on the fly, recursively using past samples and previously made
detector decisions.

The block diagram of the newly proposed detector strategy
is shown in Fig. 1. Notice that the detector has a feedback
structure. The first block is a Viterbi-like detector. The out-
puts of this block are the decisions and the delayed signal
samples. They are used by the two feedback blocks. The
first feedback block, labeled “noise statistics tracker,” uses
the past samples and detector decisions to update the noise
statistics, i.e., to update the noise covariance matrices. The
second block, labeled “metric computation update,” uses the
updated statistics to calculate the branch metrics needed in the
Viterbi-like algorithm. Our new algorithm does not require
replacing current detectors. It simply adds two new blocks in
the feedback loop to adaptively estimate the branch metrics
used in the Viterbi-like decoder.

The paper is organized as follows. Section II derives the
general maximum likelihood correlation-sensitive sequence
detection method and the corresponding branch metrics. In
Section III, we propose an adaptive filter for tracking the
statistics needed for the metric computation. Simulation per-
formance results using data generated with a realistic sto-
chastic zig-zag transition model, the triangle zig-zag transition
(TZ-ZT) model [28], are presented in Section IV. Section V
concludes the paper.
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Fig. 1. Block diagram of the Viterbi-like CS-SD.

Fig. 2. Sample signal waveform, its samples and written symbols.

II. CORRELATION-SENSITIVE MLSD

In this section, we derive the CS-MLSD. Assume that
channel bits (symbols) are written

on a magnetic medium. The symbols are
drawn from an alphabet of four symbols .
The symbols “ ” and “ ” denote a positive and a negative
transition, respectively. The symbol “” denotes a written
zero (no transition) whose nearest preceding nonzero symbol
is a “ ” while “ ” denotes a written zero whose nearest
preceding transition is a negative one, i.e., “.” We introduce
this notation because a simple treatment of transitions as “1” s
and no transitions as “0” s is blind to signal asymmetries (MR
head asymmetries and base line drifts), which is inappropriate
for our problem. In Fig. 2 a sample waveform is illustrated.
We exaggerate in Fig. 2 the signal asymmetries and base line
shifts to make our point clearer. The figure also shows the
written symbols as well as the samples
of the read-back waveform, sampled at the rate of one sample
per symbol interval.

When the written sequence of symbols is
read, the readback waveform is passed through a pulse-shaping
equalizer and sampled one sample per symbol, resulting in the
sequence of samples . Due to the noise in the
system, the samples are realizations of random variables.
The maximum likelihood detector determines the sequence of
symbols that has been written by maximizing the likelihood
function, i.e.,

(1)

In (1), the likelihood function

is the joint probability density function (pdf) of the sig-
nal samples conditioned on the written symbols

. The maximization in (1) is done over all possible
combinations of symbols in the sequence .

Due to the signal dependent nature of media noise in
magnetic recording, the functional form of the joint conditional
pdf in (1) is different for different
symbol sequences . Rather than making this dis-
tinction with more complex but cluttered notation, we keep
the notation to a minimum by using simply the same symbol

to denote these different functions. We will frequently point
out this distinction in our discussions throughout the text.

A. General Structure of CS-MLSD

By Bayes rule, the joint conditional pdf (likelihood function)
is factored into a product of conditional pdf’s

(2)

To proceed and obtain more concrete results, we now exploit
the nature of the noise and of the intersymbol interference in
magnetic recording.

1) Finite Correlation Length:We start by assuming that
the conditional pdf’s in (2) are independent of future samples
after some length . We call the correlation length of
the noise. The literature also calls this the Markov memory
length. This independence leads to

(3)

2) Finite Intersymbol Interference:We further assume that
the conditional pdf is independent of symbols that arenot in
the -neighborhood of . The value of
is determined by the length of the intersymbol interference
(ISI). For example, for PR4 we have while for EPR4

. Define as the length of the leading (anticausal)
ISI and as the length of the trailing (causal) ISI, such
that . With this notation, we can write the
conditional pdf in (3) as

(4)

Substituting (4) into (2) and applying the Bayes rule, we
obtain the factored form of the likelihood function (conditional
pdf)

(5)

If the indexes in (5) exceed , i.e., if , then assume
that . This ensures proper treatment of the boundary
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conditions. The factored form of (5) is suitable for applying
Viterbi-like dynamic programming detection techniques. No-
tice that (5) assumes anticausal factorization, i.e., it is derived
by taking into account the effect of the samples
on . If we take into account only the causal effects, we can
derive the causal equivalent of (5) as

In [21], we consider the causal formulation of the CS-MLSD.
We could combine the causal and anticausal factorization and
find the geometric mean of the two to form a causal–anticausal
factorization. Since this only complicates derivations and does
not provide further insight, we will work only with the
anticausal (5).

Maximizing the likelihood function in (5) is equivalent
to minimizing its negative logarithm. Thus, the maximum
likelihood detector is now shown in (6) found at the bottom
of the page. The symbol represents the branch metric
of the trellis/tree in the Viterbi-like algorithm. The metric is
a function of the observed samples . It is
also dependent on the postulated sequence of written symbols

which ensures the signal-dependence of
the detector. As a consequence, the branch metrics for ev-
ery branch in the tree/trellis is based on its corresponding
signal/noise statistics.

B. Specific Branch Metrics for the CS-MLSD

We next consider specific expressions for the branch metrics
that result under different assumptions on the noise statistics.

1) Euclidian Branch Metric: In the simplest case, the noise
samples are realizations of independent identically distributed
Gaussian random variables with zero mean and variance.
This is a white Gaussian noise assumption. This implies that
the correlation distance is and that the noise pdf’s have
the same form for all noise samples. The total ISI length is
assumed to be where and are the
leading and trailing ISI lengths, respectively. The conditional
signal pdf’s are factored as

(7)

Here the mean signal is dependent on the written sequence
of symbols. For example, for a PR4 channel ,
for details see, e.g., [3] and [4]. The branch/tree metric is then
the conventional Euclidian distance metric

(8)

2) Variance Dependent Branch Metric:We assume again
that the noise samples are samples of independent Gaussian
variables, but that their variance depends on the written
sequence of symbols. The noise correlation length is still

, but the variance of the noise samples is no longer
constant for all samples. The variance is where the index

denotes the dependence on the written symbol sequence. As
for the Euclidian metric, we assume the total ISI length to be

. The conditional signal pdf is factored to give

(9)

The corresponding branch metric is

(10)

which is the metric presented in [16] and [17].
3) Correlation-Sensitive Branch Metric:In the most gen-

eral case, the correlation length is . The leading and
trailing ISI lengths are and , respectively. The noise
is now considered to be both correlated and signal-dependent.
We assume joint Gaussian noise pdf’s. This assumption is well
justified in magnetic recording since the experimental evidence
shows that the dominant media noise modes have Gaussian-
like histograms [22]. The conditional pdf’s do not factor out
in this general case, so we have the general form for the pdf

(11)

The matrix is the covariance matrix
of the data samples when a sequence of
symbols is written. The matrix in the
denominator of (11) is the lower principal submatrix of

(6)
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The -dimensional vector is the vector of differences
between the observed samples and their expected values when
the sequence of symbols is written, i.e.,

(12)
The vector collects the last elements of

. With this notation,
the general correlation-sensitive metric is

(13)

The computation of the metric written as in (13) requires
roughly multiplications. In our recent work [21],
we show that the metric in (13) can be implemented using
an -tap finite impulse response (FIR) filter, bringing the
computational complexity down to only multiplications.
The well-behaved impulse response of FIR filters and the
computational complexity only linearly proportional tomake
this metric attractive for practical implementations even for
fairly large .

In the derivations of the branch metrics (8), (10), and (13),
we made no assumptions on the exact Viterbi-type architecture,
that is, the metrics can be applied to any Viterbi-type algorithm
such as PRML [3], [4], FDTS/DF [5], RAM-RSE [8], or
MDFE [6], [7]. In Section IV, we show results on how the
chosen metric affects the performance of several class-4 partial
response (PR4 and EPR4) detectors. Before considering that,
we address the question of the on-the-fly estimation of the
covariance matrices that are needed in the branch metric
computation in (13).

III. A DAPTIVE STATISTICS TRACKING

Computing the branch metrics in (10) or (13) requires
knowledge of the signal statistics. These statistics are the mean
signal values in (12) as well as the covariance matrices

in (13). In magnetic recording systems, these statistics
will generally vary from track to track. For example, the
statistics that apply to a track at a certain radius will differ from
those from another track at a different radius due to different
linear track velocities at those radii. Also, the signal and noise
statistics will be different if a head is flying slightly off track
or if it is flying directly over the track. The head skew angle is
another factor that contributes to different statistics from track
to track. These factors suggest that the system that implements
the metric in (13) needs to be flexible to these changes. Storing
the statistics for each track separately is out of the question
because of the memory span required to accomplish this. A
reasonable alternative is to use adaptive filtering techniques to
track the needed statistics.

Tracking the mean signal values is generally done so
that these values fall on prespecified targets. An adaptive front-
end equalizer is employed to force the signal sample values
to their targets. This is certainly the case with partial response
targets used in algorithms like PR4, EPR4, or EEPR4 where
the target is prespecified to one of the class-4 partial responses.
For example, in a PR4 system, the signal samples, if there is
no noise in the system, fall on one of the three target values

1, 0, or 1. Typically this is done with a least mean squares-
class (LMS) algorithm that ensures that the mean of the signal
samples is close to these target values. In decision feedback
equalization (DFE) based detectors or hybrids between fixed
delay tree search and DFE, such as FDTS/DF [5] or MDFE [6],
[7], the target response need not be prespecified. Instead, the
target values are chosen on the fly by simultaneously updating
the coefficients of the front end and feedback equalizers with
an LMS-type algorithm; for details see [23].

When there are severe nonlinearities in the system (also
referred to as nonlinear distortion or nonlinear ISI) a linear
equalizer will generally not be able to place the signal samples
right on target. Instead, the means of the signal samples will
fall at a different value. For example, in a PR4 system, the
response to a sequence of written symbols
might result in mean sample target values 0, 1, 0.9, ,
while a sequence of written symbols might
result in a sequence of mean sample values 0.95, 1.05,
0, . Clearly, in this example, what should be a target value
of 1 becomes either 1, 0.9, or 0.95 depending on the written
sequence. Since we are talking about mean values and not
about noisy samples, this deviation is due to nonlinearities in
the system. There are two fixes for this problem. The first
is to employ a nonlinear filter (neural network or Volterra
series filter) that is capable of overcoming these nonlinear
distortions; see [24] and [25]. Although recently very popular,
such a method introduces further correlation between noise
samples due to the nonlinear character of the filter. The second
fix is to track the nonlinearities in a feedback loop and use
the tracked value in the metric computation. For example, let
the response to a written symbol sequence
be consistently 0, 1, 0.9, . Then, rather than using the
value 1 in the metric computation for the third target, we can
track this behavior and use the value .

In the remainder of this paper, for simplicity, we assume that
the front-end equalizer is placing the signal samples right on
the desired target values and that there is no need for further
mean corrections. We shift our focus to tracking the noise
covariance matrices needed in the computation of the branch
metrics (13).

Assume that the sequence of samples is
observed. Based on these as well as all other neighboring
samples, after an appropriate delay of the Viterbi trellis, a
decision is made that the most likely estimate for the sequence
of symbols is . Here

is the noise correlation length and is
the ISI length. Let the current estimate for the

covariance matrix corresponding to the sequence of
symbols be . We
abbreviate this symbol with the shorter notation . If the
estimate is unbiased, the expected value of the estimate is

(14)

where is the vector of differences between the observed
samples and their expected values, as defined in (12).

Note that once we have observed the samples
, and once we have decided that most

likely they resulted from a series of written symbols
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, we know the sequence of target (mean)
values that correspond to these samples.
We use them to compute the vector with which we form
the empirical rank-one covariance matrix .

In the absence of prior information, this rank-one matrix
is our estimate for the covariance matrix for the detected
symbols. In a recursive adaptive scheme as we are proposing,
we use this rank-one data covariance estimate to update our
current estimate of the covariance matrix . A simple way
to achieve this is provided by the recursive least-squares (RLS)
algorithm [26]. The RLS computes the next covariance matrix
estimate as

(15)

Here, is a forgetting factor. The
dependence onsignifies that is a function of time. Equation
(15) can be viewed as a weighted averaging algorithm, where
the data sample covariance is weighted by the factor

, while the previous estimate is weighted by . The
choice of should reflect the nonstationarity degree of the
noise. For example, if the nonstationarity is small, should
be close to one, while it should drop as the nonstationarity
level increases. The forgetting factor is typically taken time
dependent to account for the start up conditions of the RLS
algorithm in (15). As more data is processed, a steady state
is expected to be achieved and is made to approach
a constant value. If we lack a good prior estimate ,

should be close to zero, to weigh more the current data
estimate. With time, will increase and settle around a
value close to one. In our simulations in Section V, we chose a
constant forgetting factor independent of time. In particular,
we use .

Although our simulations have shown (15) to converge
even when we pick the zero matrix as the initial condition,
in practice, we want to have a good starting condition to
obtain fast convergence. By dividing the disk in a number
of sectors and picking the middle track as the representative
track of the sector, the covariance matrix for this track
provides a good starting condition for all tracks in that sector.
Convergence can be expected then to take a few hundred
samples (bits).

The one-dimensional equivalent of (15) is

(16)

This equation can be used in conjunction with the metric in
(10).

It is important to point out that, due to the signal-dependent
character of the media noise, there will be a different co-
variance matrix to track for each branch in the tree/trellis of
the Viterbi-like detector. Practical considerations of memory
requirements, however, limit the dimensions of the matrices to
be tracked. Fortunately, as we show in the next section, simple
2 2 matrices are enough to show substantial improvement
in error rate performance.

Example: The following example illustrates how the algo-
rithm in (15) works. Assume a PR4 target response with a
simple trellis structure as shown in Fig. 3. Notice that for PR4,
the symbols can be equated to the trellis states, as is illustrated

Fig. 3. One cell of a PR4 trellis.

Fig. 4. Detected path in a PR4 trellis.

in Fig. 3. The number next to each branch in Fig. 3 represents
the target value (mean sample value) for the corresponding
path between states. The target values in PR4 can be one of
three values 1, 0, or 1.

In this example, we assume a noise correlation length of
. We also assume that the leading and trailing ISI

lengths are and , respectively, to give the
total ISI length for the PR4 response.
Since , we will need to track signal covariance matrices
of size . The number of these
matrices equals the number of different combinations of two
consecutive branches in the trellis. A simple count in Fig. 3
reveals that this number is 16, since there are four nodes in
the trellis and two branches entering and leaving each node.

Assume that using the branch metric in (13), the Viterbi-
like detector decides that the most likely written symbols

equal . This is
illustrated in Fig. 4 where the corresponding path through the
trellis is highlighted. The noisy signal samples corresponding
to the trellis branches are and which
deviate slightly from their ideal partial response target values
of one and zero, respectively.

Suppose that prior to making the decision
, the estimate for the covariance matrix associated

with this sequence of three symbols is

(17)

Let the forgetting factor be . To update the covariance
matrix we first form the vector

(18)

We use the rank-one sample covariance matrix to find
the covariance matrix update

(19)
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TABLE I
RECORDING PARAMETERS USED IN SIMULATIONS

The matrix becomes our estimate for the covari-
ance matrix corresponding to this particular symbol sequence
(trellis path) and we use it to compute the metrics (13) in the
subsequent steps of the Viterbi-like algorithm.

IV. SIMULATION RESULTS

In this section, we present simulation results using two
partial response detection algorithms, namely PR4 and EPR4.
To create realistic waveforms, corrupted by media noise, we
used an efficient stochastic zig-zag model, the TZ-ZT model
[15], [22], [28]. These waveforms are then passed through the
detectors. A Lindholm inductive head [27] is used for both
writing and reading. Table I presents the recording parameters
of the model. These recording parameters are chosen so that
with a moderately low symbol density per 50, we have
a low number of transition widths per symbol transition
separation. Namely, at 3 symbols 50, we have a transition
separation of only . We modeled the transition profile
by an error function, where the transition widthdenotes
the distance from the transition center to the point where the
magnetization equals .

We write the symbols utilizing the (0, 4) run length limited
code. No error correction is applied, so the obtained error rates
are not bit error rates, but (raw)symbolerror rates.

We tested both the PR4 and EPR4 detectors using the
following three different metric computation methods: the
Euclidian metric (8), the variance dependent metric (10), also
referred to as the C1 metric, and the 22 correlation sensitive
metric (13), named the C2 metric for short. For a PR4 target
response, the total ISI length is where
the leading and trailing ISI lengths are and ,
respectively. The noise correlation length for the Euclidian
and the C1 metrics is , while for the C2 metric the
noise correlation length is . We refer to these three PR4
detectors as PR4(Euc), PR4(C1), and PR4(C2).

Similarly to the PR4 detectors, we tested three EPR4
detectors: EPR4(Euc), EPR4(C1), and EPR4(C2). The only
difference between the PR4 detectors and the EPR4 detectors
are the target response and the ISI length, which for the EPR4
target response equals , with
and .

The signal obtained by the TZ-ZT model is already cor-
rupted with media noise. To this signal we add white Gaussian

Fig. 5. PR4 detection results at 4.4a=symbol.

Fig. 6. EPR4 detection results at 4.4a=symbol.

noise to simulate the head and electronics noise in a real
system. We quote the power of the additive white Gaussian
noise as the signal to additive white Gaussian noise ratio
S(AWG)NR which we obtain as

(20)

where is the mean (media noise free) amplitude of an
isolated pulse and is the variance of the additive white
Gaussian noise. The noise distorted signal is first passed
through a low-pass filter to clean out the noise outside the
Nyquist band. The signal is then sampled at a rate of one
sample per symbol and subsequently passed through a partial
response shaping filter, either PR4 or EPR4. The partial
response shaping filter is implemented as an adaptive FIR filter
whose tap weights are adjusted using the LMS algorithm. Note
that both filters add correlation to the noise. For the C1 and
C2 metrics in (10) and (13), the RLS algorithms (15) and
(16) are used to estimate the noise variances and covariance
matrices for the branch metric computations. In both cases,
the forgetting factor is set to .

All six detection algorithms were tested at three different
recording densities.

• Symbol separation of 4.4. This recording density cor-
responds to a symbol density of 2 symbols ; see
Table I.
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Fig. 7. PR4 detection results at 3.5a=symbol.

Fig. 8. EPR4 detection results at 3.5a=symbol.

Fig. 9. S(AWG)NR margins needed for error rate of 10�5 with EPR4
detectors.

Fig. 5 shows the symbol error rate performance of
the PR4 detectors for different additive noise SNR’s.
Keep in mind that the media noise is embedded in the
system, which is why the-axis on the graph is labeled
as S(AWG)NR instead of simply SNR. Notice that, at this
density, the PR4(Euc) and PR4(C1) detectors perform just
about the same while the PR4(C2) detector outperforms
them both by about 3 dB. The reason for this is that the

Fig. 10. PR4 detection results at 2.9a=symbol.

Fig. 11. EPR4 detection results at 2.9a=symbol.

PR4 shaping filter averages noise samples from different
symbols, which masks the signal dependent nature of the
media noise. This is why there is not much to gain by
using PR4(C1) over PR4(Euc). The PR4(C2) detector
performs better because it partially removes the effects
of noise correlation introduced by the PR4 shaping filter.

Fig. 6 shows how the EPR4 detectors perform at this
same density (symbol separation 4.4). Here we see that
the EPR4(C2) has the best performance, while EPR4(Euc)
has the worst. The difference in performance at the error
rate of 10 is only about 0.5 dB between EPR4(Euc)
and EPR4(C2). This is because the media noise power
at this density is low and the signal is well matched to
the target so the EPR4 shaping filter does not introduce
unnecessary noise correlation.

• Symbol separation of 3.5. This recording density corre-
sponds to a symbol density of 2.5 symbols 50.
Fig. 7 shows the performance of the PR4 detectors at
this density. The figure is very similar to Fig. 5 except
that the error rates have increased. This is again due to a
mismatch between the original signal and the PR4 target
response, which is why the PR4 shaping filter introduces
correlation in the noise. PR4(C2) clearly outperforms the
two other algorithms, showing the value of exploiting the
correlation across signal samples.
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Fig. 8 shows the error rates obtained when using the
EPR4 detectors. Due to a higher density, the media noise
is higher than in the previous example with symbol
separations of 4.4. This is why the graph in Fig. 8
has moved to the right by 2 dB in comparison to the
graph in Fig. 6. While the required S(AWG)NR increased,
the margin between the EPR4(Euc) and EPR4(C2) also
increased from about 0.5 dB to about 1 dB, suggesting
that the correlation-sensitive metric is more resilient to
density increase. This is illustrated in Fig. 9 where the
S(AWG)NR required for an error rate of 10 is plotted
versus the linear density for the three EPR4 detectors.
From this figure we see that, for example, with an
S(AWG)NR of 15 dB, the EPR4(Euc) detector operates
at a linear density of about 2.2 symbols 50, while
the EPR4(C2) detector operates at 2.4 symbols 50,
thus achieving a gain of bout 10% in linear density.

• Symbol separation of 2.9. This recording density corre-
sponds to a symbol density of 3 symbols 50. Due to
a very low number of symbols per, this is the density
where the detectors significantly lose performance due to
the percolation of magnetic domains also referred to as
nonlinear amplitude loss or partial signal erasure.

Figs. 10 and 11 show the performance of the PR4 and
EPR4 families of detectors at this density. The detectors
with the C2 metric outperform the other two metrics. The
error rates are quite high in all cases. This is because at
the symbol separations of 2.9nonlinear effects, such
as partial erasure due to percolation of domains, start
to dominate. These effects can only be undone with
a nonlinear pulse shaping filter, which we have not
employed here.

In conclusion, the experimental evidence shows that the
correlation sensitive sequence detector outperforms the cor-
relation insensitive detectors. We have also demonstrated that
the performance margin between the correlation sensitive and
the correlation insensitive detectors grows with the recording
density. In other words, the performance of the correlation
insensitive detector deteriorates faster than the performance of
the correlation sensitive detector. Quantitatively, this margin
depends on the amount of correlation in the noise passed
through the system. Qualitatively, the higher the correlation
between the noise samples, the greater will be the margin
between the CS-SD and its correlation insensitive counter part.

V. CONCLUSION

We have developed the correlation sensitive adaptive se-
quence detector in this paper. The detector is a correlation
sensitive MLSD. Because it is a sequence detector, it can be
used with the basic architecture of any Viterbi-like sequence
detector; see Fig. 1. The basic difference between the CS-
SD and the conventional Viterbi-like sequence detector is that
the branch metrics of the CS-SD are computed taking into
account the correlation between noise samples. These branch
metrics are computed using noise covariance matrices which
are adaptively estimated from past signal samples using an
RLS-type algorithm. The CS-SD retains the basic architecture

of a Viterbi-like algorithm. The only visible difference between
the CS-SD and the conventional Viterbi-like detector is that
the CS-SD has two blocks in a feedback loop. These two
blocks perform two tasks. The first block updates the noise
correlation statistics, while the second one uses these statistics
(the covariance matrices) to compute the correlation-sensitive
tree/trellis branch metrics.

The characteristics of the CS-SD make it attractive for
use in high density recording systems where correlations
between noise samples can be expected. These correlations
can be a result of media noise, front-end equalizers, and
media and MR head nonlinearities. We presented simulation
results showing how the CS-SD works when combined with
two partial response detectors PR4 and EPR4 in a magnetic
recording system. We showed that the CS-SD outperforms its
correlation-insensitive counterparts in all cases. The margin
of this performance difference is dependent on the correlation
between the noise samples. The higher their correlation, the
larger the gain provided by the CS-SD. Because the media
noise samples become more correlated at high densities,
the achieved gain in performance by the CS-SD over the
correlation-insensitive detectors increases with growing den-
sity.
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[28] A. Kavčić and J. M. F. Moura, “Statistical study of zig-zag transition
boundaries in longitudinal digital magnetic recording,IEEE Trans.
Magn., vol. 33, pp. 4482–4491, Nov. 1997.
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