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Abstrocf-Two extensions of the  classic  passive  location  problem  are 
considered.  The  first  examines  the  ranging  ability of passive  receivers. 
The  second  presents  alternative ways of describing  the  geometric 
content  in  positioning  problems.  The  implications of the  different 
approaches  on  the  structure  and  performance of the  location  receiver 
a re  discnssed. 

Because  range  determination by passive  means  is  missing,  the 
classical  formulation of passive  location may be viewed as  a local 
geometry  demodulation  problem.  With  the  explicit  consideration of 
range,  passive  location  becomes  a  global  problem. At stake  is  what 
may  be  gained by processing  the  small  but  valuable  amount of in- 
formation  carried by the  wavefront  curvature of the  signals.  Relevant 
questions  relate  to  the  design of passive  receivers  that  aptly  de- 
modulate  the  range  and  the  remaining  quantities  defining  the geom- 
etry. 

There  are  passive  applications  where  models  elhibiting  a high 
degree of (geometric)  regularity are viable  from  a  practical  point of 
view. These  occur,  for  example,  when  one  can  assume  that  the  array 
sensors  are  collinear  and  that  the  moving  target  follows  a  determinis- 
tic linear  path.  In  these  models,  the  geometry is completely  deter- 
mined  by  a  finite  set of (unknown)  parameters  (e+,  range,  bearing, 
speetl,  etc.).  Accotdingly,  it is said  that  the  regular  models use an 
integral  or  ensemble  approach  for  the  description of the  geometry. In 
many  other  problems,  the  geometry is  more  adequately  described by 
statistical  processes.  Examples  arise  when  the  sonrce  follows  a  dis- 
furbed  path, or when,  due  to  towing,  the  array  shape  deforms,  ac- 
quiring a not-completely-known  shape.  The  paper  models  these  con- 
straints- via  a  set of stochastic  differential  equations.  The  resulting 
representation is termed  a  differential  description.  It is emphasized 
that  the  differential  approach is not  only  applied to the  time  content 
(relative  dynamics),  but also to  the  spatial  dimension  (array  shape). 
The  technique  dualizes  the  space  and  time  aspects of the  problem.  It 
provides  a  more  flexible  framework  than  the  previous  one.  More 
general  motions  and  array  shapes  than  the  traditional  collinear  ones 
can be  considered by the  analysis, e.g., irregular  line  arrays or arrays 
where  the sensors are  located at  positions  with a certain  degree of 
randomness. 

Each  approach fits a  different  design  framework.  The  ensemble 
description is associated  with  the  maximum  likelihood  technique.  The 
differential  representation uses recursive  estimation  methods  (as  pro- 
vided  by  the  Kalman-Bucy  filtering  theory).  The  paper  discusses  the 
main  aspects of the  structure of the  resulting  receivers  and  the  as- 
sociated  measures of error performance. A second  advantage of the 
differential  model is immediately  app&ent.  The  recursiveness of the 
differential  receiver  reduces  its  computational  load.  The  speed-up 
obtained  is  fully  appreciated  in  tracking  applications,  where  the  ob- 
servations  are  sequentially  updated.  Finally,  it is interesting  to  note 
that  the  time/space  duality  provided by the  differential  approach 
exhibits  a  remarkable  distinction:  the  location  recursive  receiver 
behaves  in  time  as  a  filter,  while  it  behaves in space as a  smoother. 
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work was partially  supported by the  JNICT  under Research Contract 
11 8/79-82 and by INIC. 
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P-1096 Lisboa Codex,  Portugal. 

I 
I. INTRODUCTION 

N ARRAY PROCESSING, the classical problem  consists  in 
the presence  of  a  target being detected a t  a certain bearing. 

If the receiver is  passive, this is accomplished b)’ processing 
the received signature  of the target. The  approach  constrains 
the  geometry  of  the  problem,  reducing significantly the  num- 
ber of  unknowns specifSIing it.  Traditional  contexts  are  as fol- 
lows: 

i) The bearings-only problem.  The  point  source is not mov- 
ing. and  the receiver’s line  array is geometrically  linear. The 
geometry is fixed by  the  unknown bearing B of  the source 
with  respect to the receiver baseline. Other  parameters  defining 
the overall geometry,  like  the  source/receiver  separation,  are 
ignored  in  this  step  of  the processing. 

ii) The bearing and  Doppler  problem.  The  point  source 
moves with a constant speed u along  a  deterministic  linear 
track which is radial with  respect  to  the  geometric  center of 
the receiver’s linear  array.  The  determination  of the geometry 
requires  the  estimation  of 0 and u. 

In  both  problems,  the so-called  far-field assumption is made, 
i.e., the wavefront of  the received signal at  the receiver  site  is 
taken t o  be  planar. The  location  system  has no passive ranging 
ability.  Range is determined  by  alternative  means (e.g., with  an 
active  sonar). The  two  quantities B and u are assumed time in- 
variant  and  deterministic  (albeit  unknown).  The  location re- 
ceiver essentially  correlates  replicas of  the received signal. 
These  are  obtained  at sensors with  different  spatial  locations 
(spatial  diversity), or  at  different  time  instants  (temporal di- 
versity). In  other  words,  the  correlation  methods  explore the 
signal’s structure  to  find  out  the relative  delays. From  these, 
the  estimates  of  the  unknown  parameters  are  generated  by a 
geometry  conversion. At  each  time  instant,  the relative propa- 
gation  delay  between two  different  sensors s1 and s2 is 

rS = (cos 8 )  d/c 

where 

d = l l S 1  -s2 I I  (1 . a  

is the baseline defined  by s1 and s2 ~ and c is the  medium  propa- 
gating  speed. At  the reference  sensor, the relative  delay  induced 
by  the source  motion  between  two  different  instants f l  and t ,  
is 

7t = u(rl - tz)/c. (1.3) 

The receiver  accomplishes the estimation  of B and u from 
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the estimates  of T~ and T ~ .  As  seen, the bearing 0 is specified 
by  processing the spatial  structure  of  the received  signals (1 .l), 
while the speed u is determined  by processing the  time  struc- 
ture  as  enriched  by  the  Doppler  shifts  (1.3). In this  setup,  the 
location  problem  becomes  conceptually simple. It is em- 
phasized, that this  simplicity is a result of  the  geometry  con- 
straints  assumed;  namely, the planar  wavefront  (far  field), 
the linearity  of the source  track,  and  the  collinearity  of the 
receiver  baseline array. 

The present  paper  considers  generalizations  of  the  above 
problems  along  two  different  directions.  The first relates to 
the  study of the ranging  ability of  the passive receiver. The 
second  considers  more realistic positioning  problems.  These 
will include the  situation  where  the  source  motions  are  not  de- 
terministic (e.g., as  when  random  accelerations  disturb  the  tar- 
get  dynamics),  and the  instancewhere  the  shape of the receiver 
line array is not  completely  known u prim? (e.g., as  when the 
locations  of  the sensors  have  some uncontrolled degree of  un- 
certainty). 

The first  generalization  lifts the far-field assumption.  The 
wavefront  curvature  provides a small but valuable amount of 
information  about  the range  separating the source  and the re- 
ceiver. As  a  direct  consequence  of  the  higher  number  of  un- 
knowns  to be  resolved, the  location receiver  becomes more 
complex. Also, contrasting  with  the  neat  decoupling  of (1.1) 
and  (1.3),  the  wavefront  curvature  couples  the signal space and 
time  structures.  The receiver is studied in Section 111. The 
approach to be  taken generalizes the beam  form concept.  The 
receiver  searches the space of the  unknown  parameters  (two 
bearing.  angles,  speed,  range) in an  optimal  way, being  de- 
signed  by the  application of the maximum-likelihood (ML) 
technique.  The ML method  extends  to  this  multiparameter 
passive problem the ambiguity  function  approach of the 
Doppler  radar  context.  The  study can  be  carried out  quite 
far [ 11 -[3] . providing  insight on  the  structure  of  the ML re- 
ceiver  and  leading to analytical  formulas  that  quantify  its 
mean-square-error  performance. 

Underlying  the ML approach is the possibility  of  repre- 
senting  the  geometry  by a finite  set  of  unknown  parameters. 
From a practical  point  of view, this is adequate whenever 
array  misalignments or  motion  perturbations  are  not signifi- 
cant. However,  collinearity is hard to  guarantee in  passive 
ranging  applications. To measure the  curvature of the wave- 
front,  one has to resort to very-large  baseline  arrays or  to 
listen to  the  target over extended  periods of time,  during 
which the  source  certainly  maneuvers  and deviates  from its 
linear track.  Also, in towed  array  applications, the array  shape 
deforms  significantly,  assuming  an  irregular  pattern  which 
may  not  be  completely  known to  the receiver. The ML ap- 
proach is quite sensitive to  the  perturbations  not  accounted 
for  by  the  model.  These limit the  attainable  quality of the 
range  estimate  which  may  be  below the desired level of per- 
formance. 

The paper  proposes  a  second  generalization,  which  departs 
radically from  the classical approach.  Themotions are  modeled 
as  a  statistical  process.  They  are  described  by  a  set  of  stochastic 
ordinary  differential  equations  (SODE). The derivatives  are 
with  respect to  the  time  parameter. These equations  result  by 

direct  application  of  Newton’s law of  motion.  They  describe 
the dynamics  of the  point  target relative to  the  array.  The 
same methodology is applied to  describe the shape  of the line 
array  by  a set of SODE’s. The derivatives  are taken  with  re- 
spect  to the spatial  parameter (arc  length). The  equations  are 
obtained  by  application  of  elementary  methods  drawn  from 
differential  geometry.  This  completely  dualizes the  time  and 
space  aspects  of the problem.  The receivers  are  designed via 
the  theory of stochastic  recursive  filtering e.g., the  Kalman- 
Bucy optimal  linear  filter. In  general, the  problem is nonlinear, 
the design  requiring  complex  techniques. The SODE approach 
is presented in Sections IV and V. Section IV explores  the 
stochastic  nature  of the  time  aspects of the problem.  Section 
V concentrates  on  the novel  issues  arising when describing the 
array  geometry via a  set  of SODE’s. The SODE approach is 
named the differential  description,  while the classical one is 
called the integral or ensemble  approach. 

Setting  the  problem  within  the  structure of  recursive fil- 
tering, the differential  description  provides  for: 

i) A more  robust  framework, since the  motions  and/or  the 
array  shape  become  statistical  processes.  This  loosens the  tight 
geometry  constraints  that have to  be assumed by  the integral 
approach.  The  location receiver  becomes less sensitive to  path 
instabilities  and to  irregularities of  the array  shape. 

ii) More  general  geometries. For  example,  the  array ele- 
ments  do  not have to  be collinear. They  may  form  an irregular 
pattern.  The  problem lies in finding the corresponding  equa- 
tions  describing  it. 

iii) A  reduction  of  the  computational  effort associated  with 
the  location receiver. This is a  consequence of  the recursive 
nature  of  the  Kalman-Bucy  type receiver.  This point  becomes 
of  importance in tracking  environments.  Because the ML re- 
ceiver is not recursive, the  computations have to be  com- 
pletely  redone  whenever  a  new  data  point is available.  With 
the Kalman-Bucy fi ter,   the estimates  of the source  location 
are simply updated  through  the processing  of the new  data 
without unnecessary  reprocessing of the previously obtained 
data  points. 

Besides the differences in the algorithm  design  techniques, 
it is worthwhile to  note  that  the  performance  studies also 
employ  different  procedures.  A  usual  measure  of  quality  for 
the ML estimator is based upon  the  Cram&-Rao  inequality. 
With the differential  approach, the covariance of the mean- 
square  error  requires  integration of a  nonlinear  differential 
equation  of  the  Riccati  type. 

A final  important  remark is in order. When one  goes  from 
the integral to  the differential  description, the  correct  con- 
ceptual  formulation along the time  domain is that  of  a  filter- 
ing  problem  (construction  of  the  estimate  at  the  present 
epoch, using all past  measurements).  Along  the  space  do- 
main, it is that  of  a  smoothing  processor.  Smoothing  means 
estimation  with  respect  to  an  intermediate  point of the  data 
span.  In  fact, it usually makes  more sense to  construct  the 
estimate of the  source  position  with respect to  an  interior 
point  of  the  array (e.g., its  geometric  center)  than  with  respect 
to  one  of  its  extremities (e.g., its  right  end).  This  point is re- 
lated to  the classical question of which  array  sensor  should  be 
taken  as  reference  when  localizing  noisy  sources. 
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Fig. 1.  General  geometry  for  the  positioning  problem: A line  array 
of irregular  shape  tracking  a  moving point  source P. 

11. THE POSITIONING PROBLEM 

Fig. 1 shows  a  general  planar  geometry,  where the source is 
a  point.  The  positioning  vector rp(t, s) is parameterized  by  the 
time  instant T and  the sensor’s location s. Although  only  the 
continuous  array  problem will be  treated  in  the  paper,  point s 
of  the  array will be  indiscriminately  referred to as the array 
element s or  the  location s of the array. In three-dimensional 
space, s is a vector  of  three  coordinates,  which  may  be  them- 
selves time  dependent. 

Due  to a variety  of  physical  phenomena, e.g., fading,  multi- 
path,  scattering,  the  transmission  channel  (such  as  for  example, 
the  underwater  acoustics  channel), is a  complex  system. Here! 
a simplifying point  of view  is taken,  the  action  of  the  channel 
being  reduced to  a  propagation delay and  to  the  addition  of a 
corrupting noise. The wavefield corresponds  to a propagating 
signal y( t ) .  At  time t and sensor s, the received  waveform 
z( t ,  s) is 

z(t ,s)=y(t--( t ,s))+w(t ,s) ,  t € T . s € L .  (2.1) 

The delay T( t ,  s) 

T ( ~ , s ) = I I T ~ ( ~ - ~ ( ~ , s ) ) I I / c ,  t E T ,  s E L .  (2 .2) 

which is approximated  by 

. r ( t , s )s! lrP(t ,s)II /c ,  r € T ,  s E L .  (2.3) 

Equation (2.3) is a reasonable approximation if II drp/dt Il/c Q 
1, i.e., the target  speed is significantly  smaller than  the wave 
propagation  speed c. The observation  interval is T,  and  the  ar- 
ray  definition  domain is L.  The positioning  vector r p  locates 
the source  with  respect to  the  sensors. 

It is seen from (2.1) and (2.2), that  the geometry rp(f, s) 
modulates  the received signal through  the  delay 7. The  task of 
the  positioning  processor is to  reconstruct  the  geometry, i.e., 
to  determine  the  vector rp for every t E T and s E L ,  from  the 
wavefield  window (2.1). Although  more  complex signal and 
noise structures can  be  considered,  the  paper  assumes  that 
the signal is narrow-band-a single tone-and that  the additive 
noise is wide-band,  being  uncorrelated  from  sensor to sensor. 
The  focus  of  the  work is on  the geometry  aspects.  Geometry 
means  here  the  description of rp(t ,  s) and  the  definitions  of 
T and L.  For  point  sources,  these  descriptions  depend  on: 

i) the  shape  and  dynamics of the observer’s array, 
ii) the  motions of the target. 

In  what  follows, the  processor is viewed as  accomplishing 
two tasks: a  differential  delay  or  Doppler  demodulation.  and 

- 
DOPPLER 

DEEIODULATIOM 

GEOMETRY -j- 
RECONSTRUCTION 

z ( t , s e *  
r p ( t , s )  

1. > 

Fig. 2. Conceptual  decomposition  of  the  location  receiver:  Doppler 
demodulation  followed  by a geometry  conversion. 

a  geometry  reconstruction; see  Fig. 2. In general,  this  block 
decomposition is solely conceptual, i.e., the  optimal receiver 
does  not  decouple  as suggested by Fig. 2. However,  there  are 
problems  of  practical significance for  which  the  performance 
of  the  optimal receiver is indeed  a  factor.  Examples of these 
are  the  narrow-band signal  case [ 11 - [ 3 ] ,  and  the large  time- 
bandwidth  product  application [4]. The decomposition  of 
Fig. 2 is also  useful  because it provides  guidelines  concerning 
the basic  issues  underlying the  study  of  the  positioning receiver. 
As a  rule, the  nature  of  the signal and noise  processes  influences 
directly the differential  delay  or  Doppler  estimation,  while the 
array  shape  and relative motions  strongly  affect  the  geometry 
conversion  block. 

The purpose  of the paper is to consider  different  ways  of 
describing the  geometry  constraints  and  to  analyze  the  impact 
of  these  different methods  on  the  structure of the receivers 
and on their  performance. The following  sections will develop 
the integral and  differential  approaches. The analysis is pur- 
sued  for  three  different  contexts: 

i) The first uses an  integral  description for  the  time  (dy- 
namics) and  the space  (array  shape)  aspects  of the problem. 
This class  is a  generalization  of the classic problem  of  array 
processing  (bearings  only) to  simultaneous  range,  bearing,  and 
speed determination.  The integral formulation  reduces  the lo- 
cation  problem to  the  estimation of a  finite  number of  un- 
known  quantities.  The ML receiver  generalizes the classical 
beam  formers,  providing  an  asymptotically  efficient  estimator. 
It  measures the spherical  curvature  of the received  wavefields: 
being  capable of globally demodulating  the  geometry.  Its  non- 
recursiveness  penalizes,  however,  its  applicability to tracking 
situations. 

ii) The second  utilizes  an  integral  description  for the space 
constraints  and  a  differential  representation  for  the  motions. 
The resulting  receiver exhibitsa  hybrid  strategy. ML techniques 
explore  the  spatial  contents of the signal to yield the estima- 
tion of  part  of  the  geometry. Recursive fdtering  tracks  the 
time  variations  of the geometry. 

iii) The  third describes, in differential  form, both  the space 
and  time  structure of the  geometry.  The receiver is recursive 
in both dimensions.  As will be  noted, it behaves  as a filter in 
the  time  domain  and  as a smoother in the spatial  dimension. 

111. INTEGRAL  SPACE/INTEGRAL  TIME  DESCRIPTION: 
MAXIMUM-LIKELIHOOD  APPROACH 

Fig. 3 shows a general  positioning  geometry. The source 
moves  with constant speed  along a linear  track. The array is 
geometrically linear. As formulated in the figure, the  position- 
ing system  locates  the  source relative to  the receiver.  Hence, 
the array  motions  are  immaterial  to  the relative  geometry  de- 
modulation  problem [ 3 ] .  The  constraints  of  a  linear  track  and 
of  a linear array  shape  lead to  the following  analytically  closed 
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- L/2 s L/2 x 

Fig. 3.  Space/time  integral  geometry: Linear array  tracking  a  constant 
speed undisturbed source. RO = reference  range, 0, and 0, = space 
and time bearings, u = speed. 

form  for  the source-receiver separation 

~ ( t ,  SI = { [ R ,  -s sin e, - vt sin e,] 
+ f S  e, + vt COS e,] 2}1/2.  (3.1) 

The observation  interval T = [-T/2, T/2],  and  the  array  do- 
main L = [-L/2,  L/2]  are intervals of  the real line. The geom- 
etry is described  by four  unknown  quantities, which  are col- 
lected in 

A = [ ~ ~ ~ ~ l ~ i n e , ~ ~ i n e , ] ~  (3 -2) 

This  generalizes the bearings-only  problem, for which the  unique 
quantity  that is estimated  directly  from the passive  measure- 
ments is the spatial  bearing sin 0,. It also  includes two  other 
important  applications:  the  nonmoving  source  configuration 
[ I ]  (u = 0), and  the moving  source/omnidirectional  observer 
problem [2]. When the source  does not move, the descrip- 
tion  of  the relative geometry  requires  solely  two  quantities 

A ,  = [R,  I sin e,] (3 -3) 

i.e., the range Ro and  the spatial  bearing sin 8,. For  this  prob- 
lem, the source-receiver separation R(s) is only  a  function  of 
the  domain s (spatial  diversity),  being  homogeneous in t. When 
the  source moves, but  the observer is omnidirectional,  as is the 
case when  the  array is reduced to  its reference  sensor,  there  are 
three  unknown  quantities 

A ,  = [R, I u I sin e,] ? (3 -4) 

The separation R(t) is now  independent of s (time diversity). 
In  (3.3)  and  (3.4),  the  subscripts s and t emphasize the  nature 
(space  and  time)  of the available  baselines. The original prob- 
lem  described  by  (3.1)  and  (3.2)  considers,  as  already men- 
tioned,  that  the  source  moves  and  that  the observer has a di- 
rectional  linear  array.  It is a coupled  problem. The separation 
R(t, s) exhibits a spatial diversity  (linear  array)  and a time 
baseline.  This  temporal  diversity is synthetically  generated  by 
the  source  dynamics. 

For problems  of  the above type,  the  positioning receiver 
generalizes the beam-former  processor  of the classical bearings- 
only  context.  It is designed  by ML techniques. The ML proc- 
essor is a correlator device in the space C2 of  the  parameter vec- 
tor A ,  followed  by a square-law  device  (fading  channel). The 
estimate of A corresponds to  the maximum in C2 of  the log- 

likelihood  function.  This  function is designated the generalized 
ambiguity  function  (GAF) [ 11 - [3] . It presents  a  peaked  struc- 
ture.  For  sufficiently large a, it exhibits  secondary  peaks  of 
strength  up  to  10  to  20  percent  of  the main  peak in a. In 
practical  terms,  the  maximization in the space is accom- 
plished in steps, The space L? is divided into  discrete  segments 
by  a succession of  lattices  of diminishing  meshes,  each one 
narrowing the resulting  expected  error.  Limiting  factors  of the 
receiver  behavior  are  evaluated from: 

i) the strength  of the main  lobe relative to  the secondary 
maxima  of the ambiguity  function; 

ii) the  quadratic  structure of the main  lobe,  as  approximately 
described  by  its  second-order  type  expansion in a, about 
the  true  actual value  of the vector A .  

In [1]-[3],  the  structure  and  performance  of  the receiver 
have  been  extensively studied  for  the case of  a  fading  channel. 
Using the closed-form  formulation  of(3.1), the analysis therein 
remains valid for  arbitrary values  (large and small) of  the  time 
and space  baselines, i.e.: of  the  geometric  ratios 

x, = UTf(uZ0) (3 5 )  

and 

x, =Lf(=o). (3 4 
The ML theory  provides insight into  the  expected behavior of 
the receiver,  suggesting the compromises  between the  error 
performance,  the  geometry  (baseline L or UT versusR,),  and 
the noise  environment  (signal-to-noise  ratio  (SNR)). For ar- 
bitrary  conditions,  the  quantitative  performance  results  are 
best  displayed  by  graphics.  For  different  geometric  conditions 
and  statistical  noise  environments,  several  curves  are  available 
in [ 11 -[3] .  To obtain  analytical  formulas  that  bound the 
mean-square  error  associated  with  each  component  of A :  one 
has to  resort to limiting  arguments in X, and/or X, .  For small 
values  of  these  parameters, one  proceeds  with a truncated 
Taylor series. For large  values  of X ,  and X,, one  pursues 
asymptotic  expansions in these  parameters. To illustrate the 
type  of  results  that  are  obtained,  the  Cram&-Rao  bound  for 
the range R ,  is indicated  for  each  one  of the  three  problems 
mentioned  above,  when X, < 1 and X ,  < 1. The  standard 
deviation is given by: 

nonmoving source 

UR = G-1/2(A/2n)[3.\/Jj(~~~  0Js2)]. (3.7) 

moving sourcejonzrzidirectionnl observer 

U, = G-112(h/2n)[5.\/51(sin e t  cos e2tx,3)] (3.8) 

moving sourcejlinear array 

U, = G - ~ / ~ ( A / ~ ~ ) [ ~ G / ( c o s  e,xS2)]p(r). (3 -9) 

In  (3.9),  the  rational  function p(y) is 

p ( y )  = (1 + 4r2/5)1[1 + (4r2/51 + r41 (3.1 0) 



where 

y =xct/xcs = UT cos e,/(L cos e,). (3.1 1) 

In the  preceding expressions, G is a gain dependent  on  the 
ratio  of  the average  signal  energy Er to  the noise level No. For 
narrow-band signals, uncorrelated noise  and  fading  channels 

G = 2 ( g r / ~ o P r / ( ~ o  + E r )  (3.12) 

where N0/2 is the white  noise  statistical level. For  the  non- 
moving  source problem,  (3.7) shows that  the range  estimation 
depends  on  second-order  effects ( x ‘ )  of  the signal curvature, 
while for  the moving  source/omnidirectional  observer  prob- 
lem it  depends  on  third-order  effects ( X 3 ) .  On the  other  hand, 
(3.9)  shows  how  coupling  affects the range estimation  per- 
formance.  For similar  expressions  concerning the standard 
deviation  of the error  of the  other  components  of A ,  the 
reader is referred to  [ 11 -[3] .  

The drawbacks  of the ML formulation of the passive po- 
sitioning  problem  are  its  nonrecursive  nature,  and the diffi- 
culties in applying it to  more realistic models. Bein, a nonre- 
cursive, the ML processor  may  require  a  large  computational 
effort.  At  each  step of the search  algorithm,  this  effort  relates 
to  the  number M of  evaluations  of the log-likelihood function. 
The value of M is given by 

M = VA/vcell- (3.13) 

In (3.13), VA is the volume  of the region  of the space Ci of 
the  parameter  vector A which  has to  be scanned  in  order to 
find  the  true  location of the  source.  This is the region  of a 
priori uncertainty. VceU is the volume  of  each  basic cell of 
the search lattice.  For  the  first  step  of  the search procedure, 
a  good  compromise is to divide into  discrete  segments  the a 
priori uncertainty region  with  a lattice of mesh at  most  as 
large  as the  dimensions  of  the  main  lobe of the ambiguity 
function.  This assures that  at least a  vertex  of  the  lattice lies on 
the main  lobe.  With  high  probability,  for  weak  noise  condi- 
tions,  the  first  step will then  choose  the  right cell. To  obtain 
an estimate  of Vcell, the  main  lobe is approximated by  a 
quadratic  expression in the space a. If m is the  matrix  with 
respect to  the  components of A ,  the volume Ycell is inversely 
proportional to   the square root of the  determinant  of m [3] .  
One  obtains 

M - kVA (det m)l/’ .  (3.14) 

Figs. 4 and 5 show the behavior of  det m for  the  nonmoving 
source  and  the moving  source/omnidirectional  observer  prob- 
lems,  respectively. They assume that Ro = lo4 ft (-3 km). The 
figures  also  show formulas  for  the  limiting behavior  of det m 
(i.e., for small and large  values of  the  geometric  ratio X). For 
small X, and X, (left-end  asymptotes),  after  rearrangement, 
one  can arrive at the following  expressions  for the  number M 
of  required  evaluations of the log-likelihood function: 

nonmoving source 

M,  - k[(2n)’ / (3f i ) I  (R0/h)’ COS’ ~,(VA/Ro)Xs3 
(3.1 5) 
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Fig. 4. Det m as  a  function  of  the  geometric  ratio X ,  = L/Ro, for the 
nonmoving  source  problem. 

moving source/omnidirectwnd sensor 

moving source/linear array 

where 

and y has  been  defined  in (3.1 1). The  constant k depends on 
the specific  form of  the basic lattice cell  (e.g., ellipsoidal, 
rectangular,  etc.).  Table I evaluates the  number M for  differ- 
ent configurations.  In the  table,  the  triple sets represent the 
order  of  magnitude  of  the  normalized values of (M,, Mr, M,,)/k. 
These  values  have  been  evaluated for X ,  =X, = 0.1,6, = 0 ,  = 
45”. The values in the table  show that  the  computational  ef- 
fort  may  be  extremely large, exceeding the available  resources. 
Of  course,  more  sophisticated  algorithms  than  the grid-search- 
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Fig. 5. Det m as a function of the  geometric  ratio X ,  = VT/(2R0) for 
the moving  source/omnidirectional  sensor  problem. 

TABLE I 
THE COMPUTATIONAL COMPLEXITY OF THE  ML RECEIVER AS 

MEASURED BY THE NUMBER OF LOG-LIKELIHOOD 
FUNCTION  EVALUATIONS ( I W ~  M, ,  Jflst) 

(R& = ratio of the range  over the wavelength, V A / ( U R ~ )  = volume 
of CI priori uncertainty  normalized  by the source  parameters) 

I I (4O,10,3x1O4)  (4x102,102,3x105) I 
( 4 ~ i n ~ , 1 0 ~ , 3 ~ i o * )  ( 4 ~ 1 0 ~ , 1 0 ~ , 3 ~ 1 0 ~ )  l 

ing procedure, discussed  earlier, may  reduce the  computational 
load.  The  numbers  of  the  table,  exhibiting  the rapid growth  of 
M with (R,/X) for  the different  problems, give a  clear  indica- 
tion  of  how  the  computational  effort increases with  the  com- 
plexity  of  the  problem 

The nonrecursiveness of.the algorithm  penalizes  particularly 
applications  where  the  observations  correspond to  a  sequence 
of data,  which  increases  every  sample interval. Since  the ML 
receiver makes  no  direct use of the  previous  estimate  [except 
for  a  reduction  of  the a priori uncertainty  region;  namely, of 
VA/(uRo)] ,  the  computations have to be  completely  redone 
whenever  a  new data  point is available. In  particular,  in  track- 
ing situations, it is of  interest to  be able to  update  the esti- 
mates using  a  minimum  of computational  power.  The,next sec- 
tion  presents  a  differential  formulation for  the  time  aspects  of 
the problem.  This is a mo.re general model, in the sense that 
the target  motions  are  now  stochastic. Also, it turns  out  that 
this  accomplishes the  two objectives: the recursiveness of  the 
processor,  and the robustness of  the model. 

IV.  INTEGRAL  SPACE/DIFFERENTIAL TIME 
DESCRIPTION:  HYBRID  APPROACH 

The preceding  section  has  shown  how an integral  descrip- 
tion in both  the time  and  space  dimensions  leads to  a  geom- 
etry  which is completely  described  by  a  finite  number of un- 
known  quantities.  This  simplicity  hides two difficulties of dif- 
ferent  type: 

i) an excessive computational  load, 
ii) a  model  which is sensitive to  the instabilities that possibly 

, .  

appear in the real world. 

To overcome  these  drawbacks,  a  differential  description is 
proposed for  the  time  .aspects of the  problem. With  respect 
to  the  parameterization of Fig. 6, the source-receiver  separa- 
tion R(t, s) is written  as 

~ ( t , ~ ) = { ~ ~ ( t ) + ~ ~ - 2 s ~ ( t ) ~ i n e ( t ) } ~ ’ ~ ,   ET, s ~ ~ .  

(4.1) 

Besides the  linearity  on  the observer’s  array  shape, (4.1) as- 
sumes  no  other specific constraints on  the  motions of the  point 
source. The source-disturbed path is described by  the source- 
instantaneous  polar  coordinates R(t) and e(t). Other  coor- 
dinates  may  be  employed, e.g., the rectangular  frame (X( t ) ,  
Y(t)). To describe the dynamics  of the  source, use is made of 
Newton’s  second law of  motion. A system of differential  equa- 
tions  results.  For  a  constant  nominal  linear  path  disturbed  by 
random  accelerations,  the  source  dynamics in rectangular  co- 
ordinates is described by 

2(t) = u&) (4.2) 

Y(t) = u y( t )  (4.3) 

where (*) stands  for  time derivative, [ux(t)  I uy( t ) ]  is the 
vector  of  random  accelerations.  In  polar  coordinates,  an  equiv- 
alent  description is 

&(t) = P(tyz(t) + #R( t )  (4  -4) 
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Fig. 6 .  Geometry  for  the  positioning  problem  where a linear  array 
tracks a source moving  along  a  distributed path  geometry. 

0(t) = -2e(tyqt)/R(t) -F ug (t) 

Defining the  state  vector 

and  the  random  vector 

the dynamics  can  be  written  as 

with  some  unknown  initial  conditions. By making  appropriate 
assumptions on  the  input noise,  a  meaningful  statistical  model 
results.  For  the same  physical  dynamics,  (4.2) and (4.3) and 
(4.4) and (4.5),  provide  different  modeling classes. The first 
set  corresponds to  a linear  state-variable  system,  while the sec- 
ond  set  to  a  nonlinear  one. In the sequel, the discussion  uses 
the polar  system. 

For  narrow-band  and  emitted signals, the received wave- 
form is, in exponential  notation, 

where b represents  a  fading  gain.  It is an appropriate  model 
for slowly  fading  channels.  According to Section 11, the meas- 
urement noise w(t, s) has a flat spectral  density in the  frequency 
band  of  interest, being  uncorrelated  from  sensor to  sensor. The 
phase is 

$(t, s) = wot - 2riR(t, s)/X. (4.10) 

Assuming that  the  array length L is much smaller than  the 
source-receiver separation,  the  functionR(t, s) is approximated 
by  its  first-order  truncated  Taylor series expansion 

\ /  I 
FILTER ACCROSS. THE 

TIME OBSERV. t C T  

Fig. 7. Suboptimal decoupling of the location  receiver: Angle and 
range  estimation. 

quentially  updating  the  bearing  through the ML processor in 
the s dimension.  This  sequential  updating is fed  into  the  struc- 
ture  of  the range filter.  The  latter is a  nonlinear  recursive fil- 
ter. Recursive  waveform filters  can be  designed by  application 
of the Kalman-Bucy theory.  This  theory provides optimal 
solutions  when  the  underlying  models are linear. When  non- 
linearities  are  present,  as in (4.4) and (4.9), the  application of 
the  theory requires  linearization  of the  model  nonlinearities. 
The resulting  filter is the  extended Kalman-Bucy  filter ( E D ) .  
The EKB is well suited  for  tracking. For certain  geometries 
and signal-to-noise  ratios, it may  exhibit  initialization  prob- 
lems. This is reflected  by  the persisting  bias on  the range esti- 
mate.  These  initialization  problems  may  be  overcome  by  de- 
signing the filter via nonlinear  filtering  techniques;  see [ 51 and 
references  therein. The  optimal  filter  has  remarkable acquisi- 
tion  properties [6]. The difficulty lies in the  computational 
complexity  associated  with  the  optimal  nonlinear fiter  that 
makes it practical  only  for  low-dimensional  problems. 

An  alternative  method  has  been  presented in [7]. This  ap- 
proach uses a hybrid  strategy.  The  hybrid  algorithm  switches 
between  two  modes  of  operation:  an  acquisition  mode  and  a 
tracking  mode. The first  mode  uses an ML processor  designed 
via the  techniques  of  the previous section.  The ML filter ac- 
quires  the  source.  Acquisition is accomplished  when the initial 
global uncertainty in the source  location  and  dynamics is re- 
solved to within a prescribed  value.  This  threshold is deter- 
mined  by  the  initialization  requirements  of  the  second  mode. 
The length  of the  time interval  needed for acquisition is refer- 
red to as the acquisition  time Tacq. The  second  mode  tracks 
the source  dynamics. The tracking  filter is recursive,  corre- 
sponding to  an EKB filter.  It is initialized  in  agreement  with 
the  acquisition  step.  Relevant issues  concerning the hybrid 
strategy  relate to: 

R(t ,s)%R(t)+sinO(t)s,  s E L , t E T .  (4.1 1) 
i) the sensitivity of  the ML processor to  the  path  perturba- 

tions; 

Equation (4.1 1) represents a linearization in the s domain  of 
the wavefront  end, leading to an instantaneous planar  ap- 
proximation of the wavefront  curvature  across the array.  It is 
important  to  remark  that (4.1 1) practically  decouples the  bear- 
ing  estimation  from  the  range  determination. The angle 6 is 
instantaneously  estimated  from the spatial  diversity,  while the 
polar  distance is measured  by  processing the time  sequential 
measurements;  see  Fig. 7. 

The decoupling is suboptimal.  It  steers the array  by se- 

ii) the nonlinear  behavior  of the linearized  tracker. 

The  path  perturbations,  not being accounted  for  by  the ML 
analysis, contribute  to  the mean-square  error  at the  output  of 
the receiver  with  an extra  component E;. For  simplification, 
these  two  error  components  are  assumed to  be independent. 
The total mean-square  error (ER L)2-at  the  output of the ML 
receiver is then 

(4.12) 
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(b) 
Fig. 8. Typical  regions of behavior for  the hybrid  ilgorithm in PO- 

sitioning  systems.  (ERML)2 = total mean-square error at ML output, 
ZR = component  of mean-square  error due  to  path  perturbations, 
SNR = signal-to-noise  ratio, h = wavelen,@h. 

The first  component  decreases  monotonically  with t h e  
(Cram&-Rao),  while the  second increases  (typical  behavior 
of  diffusion  processes).  Their  sum  has  the  convex  cup  be- 
havior  depicted in Fig. 8. The curves  have a  minimum  which 
corresponds  to  the  maximum  time Tma, that can  be  used 
during the acquisition  step; i.e., one should take Tacq such 
that 

Tacq  <Tmax.  (4.13) 

In  other words, Tma, is an upper  bound  to  the  time  during 
which the ML receiver  can  be  used in a  meaningful  way. 

Besides Tacs and Tmax, there is a thud time limit T,,, 
to  be  considered.  This  limitation is imposed on  the  hybrid 
strategy  by  the  nonlinear behavior  of the EKB fdter. Phase 
trackers like the EKB and  the phase-locked loop (PLL)  are 
common  circuitry in radio  communication PM (phase-modu- 
lated)  and FM (frequency-modulated)  systems. Even for 
high  SNR's,  these  systems  exhibit  from time  to  time  a loss of 
lock,  known  as  phase or cycle slips. These slips, usually identi- 
fied  as clicks, represent  bursts  of  sudden jumps of the phase 
error process.  These jumps  correspond  to an indeterminacy 
of several multiples of the wavelength on  the range R(t)  (see 
(4.10)  and (4.1 1)). In  tracking  problems,  where  distance is 
being  measured  by (a sort of) integration of the  Doppler, 
these slips penalize permanently  the  error associated with  the 
range estimate  at  the  output  of  the EKB tracker.  The  error 

variance  associated  with the slip process  increases with  time  at 
a  certain  diffusion  rate. The  parameter  that  characterizes  the 
jump behavior is the average  time to slip a cycle or  the  fre- 
quency  of  cycle slips. After  the EKB filter  has  been  initialized, 
the filter slips cycles at  random  from  time  to  time.  Its  mean- 
square  error  degrades  monotonically  with  time till it reaches 
an  intolerable  preset limit. The  maximum elapsed time, being 
a  random  variable,  has  a  mean  value  which i s  proportional  to 
the  mean  time  between  jumps. Because the maximum  time is 
related to the slip phenomenon,  it is indicated  here  by Tslp. 
After T,,, seconds, the  error  at  the  tracker  output  exceeds  the 
desired level of performance.  The EKB  has to be  reinitialized 
by  the ML processor. The  three  numbers Tacq: Thax, and 
Tslp are  nonlinearly  dependent on  the geometry  and on  the 
statistical  environment, i.e., on  the  SNR.  Contingent  on  the 
relation  between  these  numbers,  one  can distinguish typical 
patterns of  behavior for  the  hybrid  strategy; see  Fig. 8(a) and 
(b).  These  curves  illustrate  four  typical  regions.  Regions I and 
I1 correspond  to  the  situations  where 

T a c q   < T m a x   @ T s ~ p .  (4.14) 

This  means  that  the ML step  leads to  the desired  global ac- 
curacy,  and  that  the EKB  filter  can  be  used  for  a  useful  in- 
terval  of  time,  during  which it filters  and  integrates the source 
dynamics. The  two regions  are  distinguished  by the value of 
the standard  deviation OR of  the final  error  associated to  the 
acquisition  step. 

In region I, ,ZR is smaller than half the wavelength X, 
while in region 11, it is greater.  Region I is referred to as the 
tracking  within the wavelength  region,  while  region I1 corre- 
sponds  to  the  tracking  within  the  geometry region. In  this 
latter case, at  the  output of the EKB filter,  the range estimate 
is biased  by a  tolerable  error.  Region 111 is characterized  by 

T s ~ p   < T a c q   < T m a x -  (4.15) 

In  this  region, no use  can be  made of the EKB filter, since 
it  loses  lock  in  a  time  which is smaller than  the  acquisition 
time.  Finally,  region N corresponds to 

Tmax  <Tacq-  (4.1 6 )  

In  this  case, the system has  to be  redesigned,  either by using 
better sensors  (improvement  of  their  quality), or by  inducing 
sensor motions, e.g., as  with  maneuvering  of the observer's 
array, or  by  applying  more  sophisticated  processors.  This 
author [7] quantifies  the  qualitative discussion for several 
conditions of the  underwater  acoustics  environment.  For  a 
relatively  stable path, as when the power  spectral level q of the 
random  accelerations  (see  (4.2)  and  (4.3)) is about  4 X 
ft2/s3 (= 0.37 X lop3 m2/s3),  cycle slipping is not  a  problem, 
even when  the  SNR is low (0 dB or  under)  (regions I and 11). 
However, for larger random  accelerations:  as  when the spectral 
level q is 4  ftz/s3:  the working  horizon T,, ,  of  the EKB sig- 
nificantly  determines  the  positioning  processor  performance. 
For  this value  of q and  when SNR = 0 dB, one can  show that 
Tmax - 3 min and T s k p  is ten  times  as large. The  tracker  has 
to be  reinitialized  every  half  hour  (region 111). For  a  tenfold 



156 IEEE  JOURNAL OF OCEANIC ENGINEERING, VOL. OE-8, NO. 3,  JULY 1983 

increase in the noise level (SNR = -10 dB),  keeping the same I 
random  accelerations power q, T,,, is slightly increased to  
4 min,  but Tskp decreases  significantly to  21 s. The EKB is 
of  no use, the algorithm  reducing to  its htL component  (region 
111). This  illustrates  how,  for the  underwater  acoustics  environ- 
ment,  the  geometric  parameters  and  the SNR's are at critical 
levels. The designer may  typically  encounter  underwater  con- 
figurations  for  eachof  the  above regions. See [7] for  analytical 
and  simulated  studies. 

* 

P 
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Fig. 9. Line array with the shape of a  cardioid. 
V. DIFFERENTIAL  SPACE/DIFFERENTIAL TIME 

DESCRIPTION:  RECURSIVE APPROACH Equation (5.1) is what  has  been  termed  in  Section I11 an in- 

In a natural  way,  Section IV has  generalizedthe  positioning 
framework  to  applications  where  more realistic dynamics  can 
be  considered. B>r a  suitable  reinterpretation  of  the  array  de- 
scription, it is interesting to  observe  that  the same techniques 
may  be used in the spatial  domain s. What  results is a more 
general  and  robust class of  location  problems  that  includes 
arrays  of irregular  shape, as well as  arrays  where  there is un- 
certainty  about  the  exact  location  of  the sensors. If  the  array 
is fixed,  the  impact  of  this  problem  of  sensor  location  un- 
certainty  may  be  reduced  by  determining the sensor's location 
with  sources  of  known  position. However, with  towed  arrays 
in the  ocean,  bending,  stretching,  and  misalignment lead to 
complex shapes. Uncertainty  is  added.  These  effects  are mag- 
nified by  the  disturbances  that  affect  the  motion  of  the  towing 
ship.  Also,  with  ocean  bottom-moored  sensors or  with  buoy- 
suspendedhydrophones,  their precise locationmay  be  unknown. 

The new framework  has  the  added  advantage  that  the re- 
ceivers are  of a  recursive nature.  It is emphasized  that recursivity 
is now  meant  for  both  dimensions:  time t and  space s as well. 

tegral or ensemble  description  for the line  array.  Equation (5 2 )  
is a  differential  representation. The  parameter used in both, 
Le., the  independent variable, is the polar angle 0 .  

A trajectory  of a  line  curve is the  function  F(u),  together 
with the interval U on  the real  line IR' where  its  defining  pa- 
rameter u takes values. With  respect to  the above  example, F 
1s 

F :  U = [0,7r] (IR1 -+ IR2 

In (5.3), IR' is the real  line,  and IR2 is the plane.  Equations 
(5.1)  and (5.2) provide two  different  defmitions  for F. Both 
definitions use the parameter 8 and  the same  interval U. In 
the differential  description, the initial  condition is part  of  the 
definition. 

Let +(u) represent the  positioning  vector  of  the  running 
point P of  the  trajectory 

Differential Description of the  Line Array 

To obtain  the  differential  description  for the space  aspects 
of  the  positioning  problem,  the  array is, treated  as a  curve  in 
space. To simplify the discussion, only  the case of a  line  array 
lying. on a plane will be studied.  This  plane is here called the 
reference  plane. It  contains  the  point  source  and  its  motions. 
As known  from  geometry,  curves  may  be  described by different 
parameterizations. In the usual language of  the  theory  of 
curves, the  word  parameter is  reserved to  the independent 
variable used in the description  of the curve,  such  as the time t 
in  trajectories  of  moving  platforms.  This  contrasts  with the 
meaning  of unknown  quantity given to  the  word  parameter 
in Section 111. In  the following, its  meaning wil l  be  trans- 
parent  from  the  context. 

To motivate  the  approach,  let  the  line  array  be rigid with 
the  shape  shown  in Fig. 9. It is an arc of a  cardioid.  The origin 
0 of  the reference  frame  coincides  with  its  cusp. The curve is 
represented by 

For  the arc  connecting  the  reference  point uo to  u,  the  arc 
length is 

where I I - I I  is the norm function.  The  arc  length s(u) is  in- 
dependent  of  the  parameterization  chosen.  Under  general  con- 
ditions, a  curve  admits  a  representation in terms of its  arc 
length s. From  the practical  side,  this  parameterization is the 
one  that  can  be generalized in the simplest way. To see this, 
consider the line array  represented  in Fig. 10. From Fig.  1 O(a), 
a  possible description is 

dY/dX = 0 Y ( 0 )  = 0 ,  X €  [-L/2, L / 2 ] .  (5.6) 

r = 2 ( 1  -cos e) ,  e €  u= [0,4. (5.1) A second  possibility is 

Alternatively,  differentiating  this  equation dY/ds = 0 
Y(0)  = X(0)  = 0, s E L  = [-L/2,   L/2]  . 

dr/dO = 2a sin 8 ,  dX/ds = 1 

r(0) = 0 ,  . (5 -7) 
e E u[o, 4.  (5.2) 
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Fig. 11. Disturbed circle array. 

Y 

Fig. 12. Moving rigid array with respect to absolute frame. 

general array shapes, not necessarily  geometricaiiy iinear. 
For  example, using  arguments  similar to  the  ones  above,  the 
disturbed circle array of Fig. 11 is described by 

d2p(s)/ds2 = u1 (s)  

d2e(s)/ds2 = u2(s), s E L  

To describe the  disturbed  linear  array of Fig.  10(b), (5.7) is p(0) = R  p’(0) = 0 e(0) = 0 e’(0) = 1/R. (5.13) 
more  naturally generalizable than (5 .6) .  One  obtains 

The  more general state variable class is the nonlinear class 
d 2  Y/ds2 = u&) 

dx(s)/ds =fix@), s ]  4- g[x(s), s] u(s) (5.14) 

X(0)  = 0 X‘(0) = 0 Y(0) = 0 Y’(0) = 0. (5.8) x ( s O ) = x O ~  s E L  

In (5.8), ( )‘ stands  for  the derivative with  respect to the arc 
length  parameter s. The  random  vector u = [ux, u y ]  * models 
the  uncertainty  about  the  location  of  the  array sensors. In  the 
following, it will be  assumed to be  uncorrelated  for  different 
values of s (“white noise”), i.e., 

As done in Section IV, the  position  coordinates  of  the  sensors 
and  their derivatives up  to a  given order  are  collected in a  state 
vector. For (5.8), a  four-dimensional  state  vector is required 

where f and g are  nonlinear  vector  functions  satisfying  ap- 
propriate  conditions to  ensure  the  existence  and  uniqueness 
of  solutions to  (5.14), i.e., that  guarantee  that  (5.14) is a 
suitable  mathematical  model.  To  write  (5.14)  properly in- 
volves the definition  of  stochastic integrals, and  the use of 
the so-called It6 stochastic  calculus.  This is avoided here  by 
interpreting (5.14)  formally.  Equation (5.14), as well as 
(5.12), describes the  array  shape. It also  leads to  the  position 
coordinates  of  the  sensors  with  respect  to  a  frame  coincident 
with  the  array itself. This will now  be  generalized to  the case 
where the rigid array is moving. 

The  array  shape is now  determined  by  a  state  equation  and an 
initial  condition.  The  defining  set L of  the  array is simply an 
interval of  the real line. 

Equation (5.8) is an  example  of the linear class of state 
models 

dx(s)/ds = A (s)r(s) + B(s)u(s) (5.1 1)  

x(s0) = x g ,  S E L .  (5.1 2) 

The  array  structure, i.e., the system matrices A(s) and B(s), 
may be known.  If  not, an identification  procedure  must  be 
carried out, off-line or on-line. The  elements  of A and B can 
be  s-dependent. The linear class (5.11)  encompasses  quite 

To simplify the discussion, the  motions  are restricted to  the 
reference  plane. The dynamics  of  a rigid body  can  be  decom- 
posed in a  translation  and  a  rotation.  Referring to  Fig. 12, let 
(X, Y )  be  an absolute  frame F,  Vp(t) and V(t, s) be the in- 
stantaneous  position  vectors  at  time t with  respect to  the 
frame F of the reference  point P of  the line  array  and  of  the 
general  sensor  element s, and  let u(t ,  s) be  the position  vector 
of  element s with  respect to  P. From Fig. 12 

V(t, S )  = Vp(t) + v(t, s), C E T,  s E L  . (5.1 5) 

Time  differentiation  leads  to 

dV/dt = d  Vpldt + dV/dt (5.16) 
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with 

dv/dt = W, A u (5.17) 

where W Z ( t )  = W(t)e,, and W ( t )  is the angular rate  of  rotation 
with  respect to P, and A stands  for  the  external  vector  product. 
Equations (5.16) and  (5.17) have  used the rigid assumption on 
the line array. Higher order derivatives of (5.1 5) are constructed 
by  observing that derivatives  of rotating  bodies  with respect 
to fixed  frames  follow  the  rule 

( M . )  ={(*I + Wz AN.). (5.1 8) 

For  example, if the motion’s  description  requires  second-order 
time derivatives,  application of(5.18) leads to 

d2V/d?  =d2Vp/dt2 + W A v +  WA(W/\v) .  (5.19) 

Equations (5.1 5) to  (5.19)  reflect the special structure  assumed: 
namely,  that  of a rigid array.  Because  of this,  time derivatives 
and  spatial  derivatives do  not couple. 

Using the  techniques  of  Section IV, the disturbed  motions 
of  the  array  reference  point P may  be  modeled  by a stochastic 
differential  equation in f .  Also,  the  instantaneous angular  fre- 
quency  may  be  described  by  a  lumped  state  model.  For a 
second-order  process W(t ) ,  a  suitable  model is 

W(f )  + aw(r)  = uw( t )  

W(t0)  = wo. (5.20) 

In summary,  the general  problem  of a  line  array  of  irregular 
and  uncertain  shape,  moving  through  a  disturbed  path on a 
plane  requires the following  setup: 

i) Array  shape  equations.  For  a rigid anay,  two differential 
equations are  required,  one in s (5.14) and the  other in t 

ii) Rotation  frequency  description. W(t) is given by  an  equa- 

iii) Translational  disturbed  motion. Vp(t) as  represented  by 

iv) Absolute  frame  composition. V(t,  s) as in (5.1 5). 

(5.17). 

tion of the  type (5.20). 

an  equation of the  type of (4.8). 

Recursive Smoothing Receiver 
The previous  framework is applied to  the passive position- 

ing  problem.  Given  its  generality,  the  receiver is derived  and 
studied in a simpler context, so that  its novel features are not 
clouded  by the technical  details. The line array  and the  point 
source  are  taken to be  fixed. The shape of the array is as- 
sumed to be  described  by the  linear class given by (5.12). To 
be  specific, the analysis is presented  for  the  following  particu- 
lar  example. The  state  vector x(s) corresponding to  the array 
description is two dimensional 

(5.21) 

where R(s) is the separation  between the  point  source  and  the 
sensor s. The  array  shape is described  by 

s € L  (5.22) 
X ( S 0 )  = xo. 

In (5.22), u(s) is a  white  process in the s variable, x. is un- 
known. If in (5.22),  the  matrix  element a has a bell shape  de- 
pendence  on s, it  models  a  line  array  which  almost  replicates 
a nominal  linear  shape. For simplicity, the  parameter a is here 
assumed constant.  Then,  (5.22)  models  an  array  which  has a 
nominally  hyperbolic sine/cosine  geometric  shape. 

The receiver is decomposed in two  blocks  as in Fig. 2 ;  see 
Section 11. It is recalled from  the discussion  following the 
block  decomposition  of  Fig.  2, that  the first  block,  the  Dop- 
pler  demodulator,  depends on  the signal temporal  structure. 
Here,  solely the  study  of  the  geometry  reconstructor is con- 
sidered.  It is derived  by  application  of  recursive  techniques. 
From Fig. 2,  the  input  to  the  reconstructor is (after  the  re- 
quired  normalization) 

z(s) = CX(S) -k w(s), s € L  (5.23) 

where C = [0 11. The measurement  (5.23)  corresponds to 
noisy  spatial  observations  of the Doppler R’(s). This is the 
continuous  parameter analog of  the relative delays between 
elements  of  a  discrete  array.  The  positioning  problem is re- 
duced to  the  construction  of  the  “best”  estimate  (with  respect 
to  a given criterion) ofx(s) given  by  (5.22) and  (5.23). 

At  first  sight,  the  linear  model  (5.22)  and  (5.23)  may seem 
quite unrealistic from a practical view point.  However,  two 
comments will underline  its  relevance  for the passive loca- 
tion  problem.  First, it is noted  that, because the  model is 
linear, the application of  the  estimation  algorithms is straight- 
forward,  invohing  no  approximations.  Thus  one  obtains in- 
sight on  the  effects of the sensor uncertainty on  the passive 
location  question.  The  second  point is conceptually  more 
delicate.  It  relates to  the  fact  that,  with  the  model (5.22) and 
(5.23),  the bearing  angle isnot observable.With a geometrically 
linear array,  this observability comes  into  the  model  through 
the dynamical  description  of  the  array  shape.  For  linear 
shaped  arrays, the polar  differential  description  requires  a 
four-dimensional  coupled  range/bearing  state  equation. The 
range and bearing  observability is obtained  at  the  cost  of using 
a more  complex  model  that  requires  higher  order  nonlinear 
coupled  differential  equations. The  model  (5.22)  and  (5.23) 
still preserves the basic question  of  range  determination  from 
Doppler  measurements  (or, as commented  above,  from  the 
relative delays  between  the sensors  of a  discrete  array),  ad- 
dressing it in a very  simple theoretical  framework. As will be 
seen  from the  simulation  studies,  this simple  model quite il- 
lustrates  the  expected  difficulties  underlying  the behavior 
of the passive positioning  receiver.  It  does so, at  the cost  of 
uncoupling it (through  the  assumption  of  an  hyperbolic 
shaped  array)  from the bearing  estimation  problem. The 
more general context  may be  pursued  by  applying to  the 
nonlinear  model  the  corresponding  filtering  techniques (e.g., 
EKB  filters, or  optimal  nonlinear  filters:  as in [6]). 

In summary,  the simplified  linear model  (5.22)  and  (5.23), 
preserving the  important  features of  global  range  determina- 
tion  from passive measurements  (range  spatial  Doppler), 
serves the basic purpose of illustration of the  application of 
the  theory of recursive  smoothing to passive location  prob- 
lems. The analysis  of the receiver for  this  particular  example 
also gives important insight on  the behavior of  the passive lo- 
cator  for  more  sophisticated  and realistic models. 
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To construct  an  estimate of the  state x(s) from  the  meas- 
urements (5.23), it is noted  that  these  observations  correspond 
to a  fixed  interval L (total  length  of  the  line  array). Also, one 
is interested in the  estimate  of x(s)  with  respect to  a  reference 
sensor.  Usually, this  reference  point  of the  array is its  geometric 
center.  The  estimation  problem in the s variable contrasts  then 
with  the  corresponding  tracking  of  source  motion in the  time t 
parameter,  where  one is interested in estimating the  state using 
all available  measurements  up to  the present  (filtering).  The 
problem  of  estimating the  state  vector  at  a  point  intermediate 
to  a span of  measurements is a  smoothing  problem.  This is a 
noncausal  processing. There  are available in the  literature al- 
ternative  implementations of the  fixed  interval recursive  linear 
smoother [8]-[IO].  Here,  the  formulation  of [9] ,  and [ l o ]  
is adopted. Basically, it consists  of two Kalman-Bucy  filters 
(KBF),  one  running  forward  (from  the  left  end Li of the  array 
to  the right)  and the  other  running  backwards  (from  the  right 
end Lo to  the  left).  The  forward  filter uses the  measurement 
span [Li, s]  to  construct  the  estimate  xf(s) of ~ ( s ) .  This is 
sometimes  emphasized  by  the  notationxf(s I s). The backward 
filter  uses  the  data  record [s, Lo]   to  construct  the  estimate 
xb(s)  of x(s). Often,  the  notation  xb(s I s) is used. 

The original  two-filter  smoothing  setup  of [9]  and  [lo] 
presented  conceptual  difficulties.  The  problem resided on  the 
correct  formulation of a backward  and  reversed  Markovian 
representation of the processes.  These  difficulties  have  been 
clarified [ 1 1 ] -[ 131 . The  continuous  parameter  framework 
can  then  be  formulated in symmetrized  format.  Although it 
uses  twice the  measurement  at  point s, this  poses  no diffi- 
culties.  With  the  discrete  array, sensor s must  only  be  used 
once. An asymmetry is built into  the problem.  These  tech- 
nicalities  are not  further  pursued  here,  the  reader being  referred 
to  the references. 

Since  the  Kalman-Bucy  algorithm is widely  known in the 
literature,  only  the  backward  filter  equations  are  written  here. 
Given the system  matrices A(s): B(s), and C(s) (see  (5.12), 
(5.22),  and  (5.23)),  the driving  noise  covariance matrix Q(s), 
and  the measurement  noise  covariance  matrix R(s), the back- 
ward  filter is 

--dx,(s)/ds = --A(s)w,(s) + Kb(S)[Y(S) - C(s)X,(s)l. 

(5.24) 

In  (5.24),  the  matrix gain Kb(s) is 

Kb@) = P b ( S ) C = ( s w ( @  (5.25) 

where Pb(s) is the  error  covariance associated  with xb(s), given 
by  the  solution of the  nonlinear  matrix  differential  Riccati 
equation 

d P b  (s)/ds = -A (s)pI, (s) - Pb (s)A T ( s )  o(s) 

-P&)CT(sYZ- l(S)C(S>P,(S). (5.26) 

These  equations  are  initialized  at 

Pb- l (Lo)  = 0 (5.27) 

and 

lim Pb-l(s)xb(S) = 0. (5.28) 
$+LO 

In  fact,  interpretation of condition  (5.27)  shows  that xb(s) 
as given by  (5.24)-(5.28) is an  estimate (no a priori knowl- 
edge is assumed when  constructing  this  estimate); see [ 131 for 
comments  on  this issue. Condition (5.28) requires that  the 
fiiter  be  implemented  as  an  “information  filter,”  see  for  ex- 
ample [ 141 . 

The  smoothed Bayesian estimate x(s Is) and  its associated 
error covariance matrix P(s/L) are obtained  by  suitably  com- 
bining the forward  estimate x f ( s )  and  its  covariance error  ma- 
trix Pf(s)  and  the  backward  estimate  xb(s)  and  its  error  co- 
variance matrix Pb(s). The combining  formula is  well known 
from  statistics 

x(slL)P(S  IL)[Pf-lxf+Pb-lxb], $ E L  (5.29) 

P(slL)=[Pf-I  f P b - 1 1 - 1 ,  s € L .  (5.30) 

In  (5.29)  and  (5.30),  explicit  dependence  on s has  been  par- 
tially omitted. 

The  two-filter  implementation  of  the  optimal  linear  recur- 
sive smoother has  been  simulated in a digital computer.  The 
processes u(s) and w(s) have  variance parameters 4 and r ,  re- 
spectively. The  total length  of the line  array is L .  The  follow- 
ing  figures  show,  for  different  conditions, the behavior of  the 
elements  of P(s) = Pf(s), Pb(s), and p(s  IL). In  Fig. 13, L is 
kept  fixed,  and  the  statistical  parameters q and ra re  changed. 
The set  of  curves  study  the behavior  of the  Fist  element, i.e., 
the range error  covariance,  of  each  of the  matrices Pf, p(s I L) ,  
and Pb as  a  function of the reference  point s of the array.  It is 
interesting to note  themonotonic behavior ofP, ,(s) = Pfl ,(s), 
and Pbl ,(s). Its  combined value: according to  (5.30),  has, 
however, a convex  cup  shape,  with  a  minimum  at  the  interior 
of  the  array.  This  indicates  that  positioning  with  respect  to  an 
interior  point  has  smaller  error  variance  than  with  respect to 
the  extremes of the  array.  The  array  length L has  been  chosen 
large  enough, so that  a  steady-state behavior is exhibited in 
both  the  forward  and  backward filters‘ Riccati  equations.  To 
emphasize  this  steady-state  error  behavior,  Fig. 14 shows 
P, ,(s I,!,) as a  function of s for different  values  of L .  The 
min P, ,(s IL) monotonically decreases to  a  threshold; see 
Fig. 15.  This  contrasts  with  the usual  integral formulations  of 
the passive location  problems.  In  these, the  error  performance 
improves  monotonically  with  the  array  length.  Here, because 
of the  error  uncertainty  associated  with  the  location  of  the  ar- 
ray sensors, there is a minimum in the  error  performance 
(steady-state behavior  of the  Riccati  equation).  There is no 
point in increasing the array  length  beyond  a given total 
length. 

The set of  curves of Fig. 13, also  show the variation  of 
P I  ,(s IL) with the statistical  parameters 4 and r. To  study  the 
sensitivity of  the passive recursive smoother  to  the a priori 
knowledge, Le., to  the  uncertainty Pf(0) associated  with the 
initial condition of the  smoother, Fig. 16 studies, for  four  sets 
of widely different initial variances P, ,(O), the mean-square- 
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Fig. 14. Existence  of a steady state  for  the range  error smoothing 
variance PI1 (s I L )  (ft2)  for large  array  length L (ft). 
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Fig. 15.  Study  of  the minimum  of the range  error  smoothed  variance 
PI 1 mh(s I L )  ( f t2)  as a  function  of  the  array  length L (ft). 

error behavior  of the linear recursive smoother.  The conclusion 
is that,  excluding  the unrealistic situation where the initial un- 
certainty is smaller than  the  steady-state  min P ,  l(s), the pas- 
sive locator is quite insensitive to  the initial conditions.  This 
robustness to  the c1 priori knowledge of  the recursive smoother 
is quite  important in practical  applications. It is also em- 
phasized that by combining the forward and backward  esti- 
mates  according to  (5.27) and  (5.2&), a significant  improve- 
ment is obtained  with  respect  to each  of the individual estimates. 
In fact,  the best the  forward  fdter can do is a t  the  extreme 
right of  the  array,  after having processed the  whole  data  span 
L .  This,  of course, assumes that  the  array is sufficiently large, 
so that  steady  state has  been  reached. At this point,  due  to 
(5.27): the  forward filter and  the linear smoother exhibit 

identical performances.  From all figures, it is apparent  that  the 
minimum  error  performance of the  optimal  smoother is sig- 
nificantly smaller than  its  right-end  error  performance. 

VI. CONCLUSION 

The  paper  has  focused on  the geometric aspects  of  the pas- 
sive positioning  problem.  The  type  of  formulation chosen to 
describe  these geometry (spatial and  temporal)  constraints 
affects significantly the  structure of the receiver. Section I11 
has addressed the problem  where the  geometry  and  the  mo- 
tions are completely described by a finite  number of un- 
known  parameters.  This  has been termed  the integral  space/in- 
tegral time  description.  The receiver performs  an  ML  estimation 
of  the  unknown parameters. The  computational  complexity 
and  the sensitivity of  the receiver to  model  perturbations have 
been  discussed.  In applications  where significant dynamics  are 
available, tracking with this ML passive receiver is compu- 
tationally ineffective. In  Section  IV,  the  motions have been 
modeled using a set of stochastic  differential  equations in time. 
The resulting tracking receiver is quite insensitive to  the  path 
instabilities of the source motions.  Finally,  Section  V  has  con- 
sidered the problem  of irregular array  shapes and  applications 
where, for  example,  due to stretching and  bending, the  exact 
array configuration is uncertain. A differential  description using 
the  arc length s of  the array has been introduced. Again, this 
approach  completely dualizes the  time  and space descriptions, 
but  now in differential  terms. It  has been noted, however, that 
the passive receiver is conceptually accomplishing different 
tasks in time  and space. The recursive time tracker is a filter, 
while the space locator is a recursive smoother.  The  paper  has 
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