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Passive Systems Theory With  Narrow-Band  and  Linear 
Constraints : Part  111-Spatial/Temporal  Diversity 

JOSE M. MOURA 

Abstract-This is the last of a series of three papers studying  the 
theory of passive systems. The model assumes that  i)  the narrow-band 
signals are  transmitted through  a Rayleigh channel, ii) the observing ar- 
ray is geometrically linear, and iii) the source motion is deterministic. 
Ranging techniques based on synchronized  measurements  of the travel 
time delay are precluded by the incoherent phase model considered. 
The paper explores alternative methods  that process the phase modula- 
tions induced on  the signal by the extended  geometry  and relative 
dynamics. The present  work  applies maximum likelihood  theory to 
design the receiver, being concerned  with the global identifiability of 
all parameters  defining the relative source/receiver geometry  and 
dynamics. The emphasis is placed on  the passive range global acquisi- 
tion. 

In contradistinction  with the previous papers, where the  time 
stationarity (Part I) or the space  homogeneity  (Part 11) lead to a  one- 
dimensional processor, here the receiver involves processing over both 
domains. The paper  considers the issues of  space/time factorability and 
coupling arising in nonhomogeneous passive tracking. The cross coupling, 
resulting in more complex  fdters, improves the receiver acquisition 
capability. Resorting to Taylor’s series type studies, the paper  quantifies 
these  improvements, as well as the receiver’s mean  square error  perform- 
ance, in terms of intuitively  satisfying  analytical expressions. 

T 
I. INTRODUCTION 

HE PAPER is the  last  one ofa  series of  three (see [ 13 , [2] ), 
studying  the passive tracking of a source  by processing its 

radiated  signature (e.g., propeller’s noise). These problems 
arise in several contexts of practical significance, here clas- 
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Fig. 1. Passive tracking positioning/navigation  applications. (a) 
Positioning. (b) Navigation. 

sified in two groups: 

i) positioning problems (Fig. l(a)), where the  interest lies 
on locating  the source; 

ii) navigation problems (Fig. l(b)), where  a string  of bea- 
cons  (or  a moving satellite) is used as a navigational 
reference. 

The reader is referred to Parts I [ l ]  and I1 [2]  for a  brief 
discussion on these and  other applications of  the passive track- 
ing theory. Here, the analysis is focused on the passive posi- 
tioning context. 

Fig. l(a) illustrates the basic problem configuration. A 
moving source of unknown position is to be  tracked by an 
array of sensors. The space extent  of  the receiver’s array 
(spatial  diversity) and  the time baseline of the source travel 
(temporal diversity) modulate nonlinearly the radiated signal. 
The problem is the  determination  of  the relative geometry and 
dynamics  by processing the  structure  induced on the signal. 

0364-9059/79/0700-0113$00.75 0 1979 IEEE 
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The previous papers [ I ] ,  [ 2 ]  introduced a homogeneity 
in one  of  the time/space domains. Part  I  considered  a f i e d  
source, while Part I1 assumed an omnidirectional receiving 
aperture. These constraints lead to a simpler problem  where 
only  one  of  the time/space  aspects is relevant. This  work 
studies passive tracking situations where both spatial and  tem- 
poral nonnegligible baselines are  generated. The signal’s wave- 
front  has a  coupled structure, exhibiting  simultaneous  spatial 
curvature  and  temporal  modulation. 

In  Section 11, we establish the  model,  by constraining the 
geometry,  the dynamics, the signals, and the statistical  aspects 
of  the  problem. In Section 111, we present the maximum- 
likelihood (ML) receiver, while in Sections IV and V, we 
analyze its  structure  and its performance  for  two practically 
important configurations. In Section VI, we summarize the 
basic conclusions of the  work. Keeping the positioning termi- 
nology introduced in  Parts  I and 11, the class of problems  dealt 
with  herein is referred to as a Stationary Array/Moving Source 
(SAMs) application. 

11. MODEL 
The  assumptions in Parts I [ 1 ] and I1 [ 2 ]  of a  planar 

geometry, narrow-band  radiated signals, linear  array structures, 
and  deterministic  constant speed linear  dynamics  are kept. In 
connection  with Fig. 1, the range function R(t,  2) is the  distance 
between  the source at time t and the  point  at  location I in the 
linear array. Under the  deterministic assumptions on  the  mo- 
tions, R ( t ,  l )  may be completely  described  by four parameters. 
Centering the relative geometry with respect to  the array 
center and the  midpoint of the observation  interval, the pa- 
rameter  vector is defined 

A = [Rov sin et sin e,] (1 1 

where [ .] T stands  for vector transposition, Ro is the  sourcelre- 
ceiver separation at t = 0,  1 = 0, angles sin B i ,  i = t ,  I are indi- 
cated in Fig. 1, and vis the source speed.  The range function1 

R(t,Z,A)GR(t,1)={Ro2 + P  +(~t)~-2RO(ZsinOl 

+ ut sin 0,) + 21vt COS (e, - Bt)}l/2 (2) 

or equivalently, 

R(t, I, A )  = { [Ro - 2  sin O l  - ut sin 0, 

+ [ I  cos el + ut cos 0,1211 

The received signal 

r(t, Z) = fi Re (Fexp iw,t} 

where  the  complex  amplitude 

F=F+Z.  

l 2  
. / 2 .  (3) 

(5) 

1 As in Parts 1 and I1 t ,  I ,  and A will usually be  omitted from the 
functions’s list of arguments. 

The measurement noise GJ is a zero  mean, spatially and  tem- 
porally “white” Gaussian noise with  double  spectral height of 
N o .  The signal complex envelope 

F = asn (6) 

with Fn the normalized version 

- 1 
s,(t, I, A )  = - m 
In these equations,  E, = PLT = total energy received during 

the observation  interval [-T/2, T/2] ; P = signal power; L = 
array length; X = cff = wavelength; 6 = b expi$,  with b Ray- 
leigh,  and $ uniformly  distributed  random variables. The  zero- 
mean Gaussian random variable 6, with variance 2ab2,  is in- 
dependent  of Z ( t ,  I). Besides measuring  model  inaccuracies, d 
precludes the passive determination  of  the range from  the 
synchronous observation of the  constant travel time delay [3], 
see related  remark  in  Part I1 [ 2 ]  . 

Note  that  the  model  works  with sin ei,  i = I, t and  not  with 
the angles themselves. This does not specify uniquely  the 
angles B i  in (-n, n). It is the usual ambiguity  cone,  character- 
istic of linear  arrays.  To  illustrate the  point, consider  a ship 
navigation problem.  Then,  either  it is known  the side where 
the source center is or  the  experiment has to be  repeated with 
a different line course. 

The  subsequent analysis wiu make use of  the following ge- 
ometry parameters: 

X ,  = L/2Ro and X ,  = vT/2Ro. (8) 

They  normalize with respect to  the source/receiver separation 
the linear  dimensions  (half of  the array length,  or  half  of  the 
source travel). 

111. RECEIVER  STRUCTURE 
The passive positioning/navigation application  with spatial 

and temporal diversity has been  cast  in the  context  of  an esti- 
mation problem with a finite  number  of  nonrandom  unknown 
parameters. These are imbedded  nonlinearly on signals cor- 
rupted  by a  multiplicative random  quantity (Rayleigh channel) 
and by an additive  (temporally white, spatially  homogeneous) 
Gaussian noise. The ML estimation theory [4] is now applied 
to derive the asymptotically efficient ML-receiver. The proces- 
sor is a matched filter  followed by a  square  law  envelope de- 
tector.  The ML-receiver maximizes the log  ML-function, 
the  structure  of which is determined  by  the signal correlation 

and by the Generalized Ambiguity Function (GAF) 
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In these expressions A stands for the actual  source  parameter ysis on  the spatial variable. The range function becomes 
vector and ki for the scanning value over L!. For details see 
[ l ]  and  [2]. 

Equations (9) and (10) describe a processing over two di- 
mensions;  space and time. In Parts I and 11, the  homogeneity 
introduced  in  one  of these domains (the  time  stationarity  of 
the relative dynamics  in  Part I or the omnidirectional  sensor 
in Part 11) lead to a simpler one-dimensional  filter.  This sta- 
tionarity can  be viewed as  a special case of the  more general 
one where the receiver's structure is decoupled, i.e., where 

In (1  1) $i(A, A3, i = I ,  t are one-dimensional  integrals. The  im- 
portance of (1 1) is twofold.  First,  it expresses the filter in 
terms of two  independent blocks, each representing an opera- 
tion in  a single domain. If there are changes in one  of them 
not affecting the assumptions  underlying the factorability 
( l l ) ,   the  block in the  other  domain is left  unaltered.  Second, 
(1 1) may lead to separability over the parameter  space i-2 of 
the signal autocorrelation, and  hence of the generalized 
ambiguity function, giving  rise to considerable savings in the 
processing load work.2 

The present SAMs model exhibits  no  homogeneity in either 
of the  space/time  domains, so that in general factorability (1 1) 
does not occur. The  direct analysis of the receiver is not  con- 
ducive to intuitively interpretable expressions. Numerical and 
graphical studies, as done in Parts I and 11, could  be  pursued. 
Here,  however, attention is turned  to  two configurations il- 
lustrating two basic questions.  The first, studied in Section IV, 
assumes that  the temporal  diversity dominates  the spatial  di- 
versity, leading to a receiver presenting, for all practical pur- 
poses, a  decoupled structure. The SAMs problem can be put in 
the perspective of  the simpler  reduced-dimension problems of 
Parts I and 11. The  second, analyzed in Section V, considers 
comparable  temporal and spatial baselines, assessing how  the 
space/time coupling  affects the receiver and its performance. 
In both sections,  a  least order analysis, based on  truncated 
Taylor's series approximations, is pursued. 

IV. DECOUPLED SPATIAL/TEMPORAL S A M s  
STRUCTURE 

This  section considers the limiting  configuration where the 
receiver's array length is much smaller than the observed 
source travel. The following two hypotheses  are  made con- 
cerning the geometric  configuration of SAMs: 

XI < X *  = VT/Ro. (1 2b) 

Note that (12a)  corresponds to a distant (spatial) source/ob- 
server configuration,  justifying a linearized Taylor's series anal- 

2 In the detection  context a  different  concept  of  factorability is 
considered [SI, see also [ 6 ]  and [ 7 ] .  Therein,  the receiver separates in 
two operations, one  dependent on  the  geometry  and the  other  on  the 
noise statistics. It has already been  noted (see [ 1, Section VII] ) that the 
signal model (4)-(7) considered here  leads to a receiver where the 
geometry  and  statistical  aspects  are  decoupled. 

= R(t, 0) -sin e,(& 0) (1 3b) 

where e,(t, 0) is the bearing angle at time t with respect to the 
center  of  the reference  frame.  This  linearized structure  in  the 
space variable states  that,  at each  particular instant  of  time, 
the wave field across the receiver's array is planar,  and that, as 
the source moves  along its linear track,  the spatial structure  of 
the received signal changes. Note  that R(t, 0) depends  only  on 
the reduced  dimension  vector 

associated with  the  Stationary Array/Moving Source  with 
omnidirectional sensor (SAMs,) model of Part I1 [2] . In (14), 
as before, [ -1 stands  for vector transposition. 

A.  Ambiguity Structure 

Since, instantaneously,  the wavefronts  are  planar  across the 
array, spatial  diversity  techniques  (array processing with beam 
forming) are used to  match  the bearing angle. As the  source 
sweeps the  horizon,  the receiver updates  the bearing estimate. 
Substituting  (13) in (7)  and (9), it can be  shown [8] that  the 
receiver's structure practically  decouples. The signal autocor- 
relation  becomes approximately 

In (15) $&lo, i f o )  is the signal autocorrelation associated 
with  the SAhlS, problem of Part I1 [2], while 

sin &(t, 0, A ,  x) - "I 2 
( 16a)3 

where 

A sin e,(t, 0, A , 2 )  =sin e,@, 0,A)-sin e,(t, 0,A). (16b) 

Steering the  array, see  Fig. 2, as the source travels through, 
the  function G I ( - )  is kept practically tuned  to 1. The spatial 
bearing is sequentially updated.  To  compute  the  number  of 
updates Nu define the array bearing resolution [9] by the 
bearing  interval over which the (spatial) aperture response does 
not  drop below the 3-dB cutoff, Le., by 

1 
$, sin 8,(tl, 0) -sin e&, 0)) > (1 7 4  
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Fig. 2. Sequential beam steering. 
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Fig. 3. Source dynamics within a resolution cell of the linear array. 

Since is the sinc function  of (16a) and  taking tl = space a, with a  significant reduction  of  the  computational ef- 
fort involved in the ML-receiver. 

When Nu > 1,  the  sequential beam  steering technique of 
< 2*78/(2*/Aw. (17b) Fig. 2  still  leads to  the  decoupled  autocorrelation (1 5). The re- 

ceiver has a cascaded block structure. Its tuning is accomplished 
by  scanning independently  the bearing angle (space diversity) 
and the A .  parameter  vector (time diversity). The range is pas- 
sively estimated by processing the  temporal  modulations, 
while the receiver yields  a  sequence of bearing measurements 

0 in  (17a), the resolution is 

* sin ez = sin ez - sin ' d t 2 *  

The  total bearing  variation across the source travel is approxi- 
mately 

S i n  or (5. 0) - Sin 81 (- 5. 0) 2 COS (e, -@,)x, (1 7c)  instead of a single bearing  estimate. 

so that  the  number of updates is The analysis concentrates  on  the mean-square spread  matrix 
M, given in  Parts I [ l ]  and I1 [2].  It represents the  coefficient 
matrix  of  the  quadratic  form defining the elipsoidal main  lobe 

aspects of the problem  are  reflected on  the  ML-estimation 

3. Mean-Square Performance 

4.5 cos (e, -e,) - x (17d) of (10). This matrix inverse M-l exhibits  how  the  geometric 

mean  square  error  performance. In fact,  for  example,  the 

rors A, by 
where L(')J stands for the largest integer contained in Cramer-bo inequality [4], bounds the covariance of the er- 
In particular, for a parallel geometry ( eJ  = e,), 

Defining the  total  number of A-range cells at I = 0, as with the gain G dependent  on  the signal-energy-to-noise ratio, 
see [ l ]  . 

By a continuity argument it can be shown, see [SI, that, (' 7f) for sufficiently short baseline arrays 

4(A, Z )  = $o(Ao, Zoo) ~ i n c  (18)  where m = -MaieZM;lm, Mo is the mean-square  spread ma- 
trix associated with  the SAMS, model of Part I1 [2] 

Le., it factors as the  product of the signal autocorrelation 
functions associated respectively with  the SAMS, configura- (&4eJ $) - 3 ( ~ / ~ ~ ) 2  

Source (SOSS) problem of Part I.  This says that, when the 
angle spanned  by the source travel is within the receiver's and m is of  no  concern  to  the  present analysis, see [8] for 
aperture  beamwidth (Fig. 3)  the S A M s  signal autocorrelation  further details. Equation  (19)represents M-l for SAMS, when, 
decouples in its spatial  and temporal aspects. To this spaceltime  due  to  the overall geometry,  the signal wavefront is instants- 
decoupling  there  corresponds a factorization over the  parameter neously planar across the array. Range focussing, as well  as 

2 -1 

tion  of Part I1 and with  the  Synthetic Observer/Stationary x J j O  (1 9c) 
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A. Ambiguity Structure 
Using (21) as  an approximation to the range, the signal 

R(t .$)  autocorrelation  function can  be rewritten as 

where I),(-, a) and (*, -) are  the signal autocorrelations 
associated with SOSS and SAMs, of Parts I and I1 

I I 
I I * A, = [Ro sin e,] 

L 
2 

- -  L T 0 T 
2 2 
- -- T !  

(a) (b) and J I t  exhibits  the  coupled  nature of the processor.  This term 
involves the  double integration in time and space of a highly 

In [8], by  exploiting  the harmonic nature of the  integrand, 
Fig. 4. SpaWtemporal cross cowling (X, = Xt).. (a) Geometry. nonlinear function, its expression  being quite complex. 

(b) Range function. 

V. COUPLED  SPATIAL/TEMPORAL SAMs STRUCTURE 

This section  studies  the  problem where the  spatial/temporal 
structures are coupled.  The  source travels in the near field of 
the  array, being observed by  the receiver for a  sufficiently 
large time interval.  Significant (spatial) curvature  and higher 
order  (temporal)  modulation  effects are available, see Fig. 4, 
to yield the  estimation  of  the  four source  parameters. The 
range function  R(t, Z) exhibits a significant variation at each in- 
stant across the linear array, and at  each  array point across the 
source  travel, as Fig. 4 illustrates for a  broadside (e, = O)/closest 
approach (0, = 0) geometry. 

negligible subsidiary peaks. The  quantitative analysis of  this 
main lobe is pursued on  Section V-E. 

Due to  its relevance and  simplicity, the ambiguity function 
expression  along  the range parameter R o  is considered. By de- 
fining a change of variables, the  double  integration can  be re- 
duced  to a single one, leading to 

with 

To  obtain an intuitive  understanding of the coupling issues, 
the analysis is pursued  when 

X1=L/2Ro<l  - exp [ i(AK)u2] do 

These conditions  justify a  higher order  truncated Taylor’s 
series study in both space and  time variables about  the geom- 
etry  center t = 0, I = 0. 

where 

L L1, x,, = - cos el  = - 
The range function can be written as X 0  RO 

R(t, 1, A )  + R(0, 0, A )  R t  + R, + Rlt (2 1 a) UT x =- c o s e t = -  Lt, 
tc  2Ro RO 

where R t ,  R ,  stand  for  truncated Taylor’s series expansions  of 
R(t, 0, A )  and R(0,  I ,  A ) ,  respectively. In (21a) R l t  is the 
cross coupling term whose lowest order  approximation is Xzt, = 2(&, + X t C )  (23e) 

Equation  (23b) shows the  spatial/temporal  coupled signal 
Due to  the  incoherent phase model (Rayleigh channel), the  autocorrelation along the radial parameter subspace. I t  i n -  
term Ro = R(0, 0, A )  in (21a) may be incorporated in the un- volves a single integration. Apart  a  normalizing factor,  it 
known signal absolute phase reference.  Since it plays no role corresponds to  the signal autocorrelation  for a  particular one - 
on the phase estimation problem it is ignored in the sequel. dimensional  problem: the source is at  broadside condition, 
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Fig. 5. Equivalent  one-dimensional  problem. (a) EquivaIent SOSS 
problem. (b) Triangular shading. 

the equivalent total linear  array extent is, see  Fig.  5(a), 

L~~~ = L  COS e, + VT COS e, (239) 

and  the array  shading is not uniform but triangular, as illus- 
trated in Fig. 5(b).4 When, with the  exception  of R o ,  all the 
source  parameters,  are known, (23g)  shows that  the acquisi- 
tion  at endfire (6, = n/2)  of a  source moving radially (6 ,  = n/2) 
leads to difficulties. 

B. Mean-Square  Performance 
The mean-square error performance analysis is carried out 

by resorting to Taylor series developments.  Restrictin, 0 atten- 
tion  to  the lowest order  terms of the diagonal elements of 
M-l , one can see [8] 

32 - 5 1 + (4/5)y2 
MR,-' (M-')l1 = (2) - xc14 1 + (4/5)y2 + y4 

defines the realtion between  the  temporal  and spatial  effective 
baselines, as seen from  the oblique angle e t  and bearing Oz. 

Equations (24a),  (24b), and (24c) show  that these inverse 
diagonal elements are of fourth  order in X, and X,. They 
represent an improvement of order  two over the  decoupled 
problem  performance of  Section IV. In that  section,  the cor- 
responding  results are the SAMs, ones, whose first  nonzero 
term is of order (see Part 11). It is concluded  that  the 
spatial/temporal cross coupling improves,  in  a nontrivial way, 
the joint estimation of all source parameters, reducing the 
overall order  of  the  problem. Intuitively  speaking, with  the de- 
coupled  problem (see Section IV and  Part 11), at  least  third- 
order  temporal  effects are required for  the  estimation  problem 
to be nonsingular. The cross coupling, on the  other  hand, 
reduces to second the least order  effects  that have to be 
measured. 

To provide an interpretation for the above results,  a com- 
parison between them  and the  ones  in  Parts I and I1 is made. 
Three  particular  geometric  configurations are considered. 
Since (24d)  equals  the corresponding  expression for  the de- 
coupled problem,  the discussion concentrates on the range and 
speed inverse mean-square  spread. 

1)  Spatial  Baseline Much Larger  than  Temporal  Baseline: If 

then 

Ro2 cos2  6,X12Xt2 ' (2 5 c) 

For this  geometry the range parameter is estimated from the 
spatial  curvature effects observed across the array. 

32 x 5 cos2 8 ,  1 + 5y2 + 74 

cos2 81Xl2Xt2 5 + 4 p  + 5y4 (24b) 

Msinet--l = (lq-1)33 = Mu-' (24c) 2) Comparable  Spatial  and  Temporal  Baselines: If 

/ h \ 2  1 3 

=(;)2g. 
In the preceding equations 

X , ,  UT COS e, 
x,, L cos el  y = -  = 

y =  1 (26a) 

normalizing with respect to  (25b)  and (25c), one  obtains 

which shows that  the cross coupling reduces the range stan- 
dard  deviation to  approximately 80 percent. Similarly 

4 Notice that (23b) generalizes the usual one-dimensional distribu- 

the case where the line source (equivalent in the SAMs problem to the 3)  Temporal  Baseline Much Larger  than  Spatial  Baseline: If 
tlon of the (Fresnel zone) diffracted field for a  plane wave  in optics, to 

temporal baseline) and the receiving aperture (spatial baseline) are not 
parallel ( e I  # e t ) ,  and  there is a wide angle (el # 0) and oblique inci- 
dence (e, # O), see for example [ lo].  73.1 (27a) 
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normalizing  now with respect to the corresponding SAMS, 
result 

where X t s  = X t  sin e t  = VT/2Ro sin 0,. For  the speed u, nor- 
malizing with respect to (25c), 

Expression (27b)  states  that, for closest approach  type 
geometries (e ,  = O.), for which the range SAMS, performance 
decreased sharply, see Part I1 [2],  the coupled structure  at- 
tains significantly smaller range mean-square  errors. 

The  parameter  error cross  correlations, as computed  from 
the  elements  of /W1, are algebraically complex expressions. 
The reader is referred to [X] where Taylor’s series develop- 
ments and graphical displays are presented for several situa- 
tions. As examples  of  the expressions to  be  found,  one has, for 
a parallel  geometry (cos e t  = cos 0,) and  when X t 2  = 0.1 that 
the cross correlation  between  the range and speed  parameters 
is 

PRO,”  (2 + 100X12 1250X14)/(2 t- 125Xr2 

+ 1450X14 + 2500X16).  (28a) 

For a parallel and symmetric ( X ,  = X , )  geometry  a Taylor’s 
expansion leads to 

Pu,s inet  + [ sin2 + 28 
+ 891 sin d l 4  

-465 cos2 O r  sin2 el X z 2 .  1 (28b) 

The preceding  relations  illustrate the high correlations  that 
may exist  between  parameter  errors. On the  other  hand, 
(28a)  shows that  the time/space  coupling may reduce the 
rangelspeed correlation. 

VI. CONCLUSION 

This  paper  has  considered  positioning/navigation  applica- 
tions when both spatial and temporal diversity are present. 
After a  brief  description of  the model  and receiver, two main 
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classes of problems were pursued. The first was characterized 
by the dominance of  the  temporal over the spatial baseline. It 
was shown that  this  dominance lead to a decoupled processing 
structure:  the  MLreceiver  constructs a  sequence of bearing 
angle estimates  by processing the  spatial  delays, while the re- 
maining parameters are estimated  from the  temporal  modula- 
tions. The SAMs receiver reduced to a bearings updating 
scheme  (beam former) followed  by the SAMS, processor of 
Part I1 [2].  The required number of beam  steering updates is 
given by (17). The second class assumed a  balanced geometry, 
leading to a coupled receiving structure.  The  crosscoupling 
term was isolated,  its  effects analyzed for several limiting 
geometries. It was concluded  that  the cross coupling  repre- 
sented a  nontrivial improvement,  with a decrease of  two on 
the order of the overall problem.  The  geometry  effects on the 
mean-square  performance were assessed, by  presenting  in- 
tuitively  satisfying  analytical  expressions for  the inverse of 
the mean-square spead matrix M. In [ 111, [ 121 several appli- 
cations  to positioning  and navigation problems  of  the  present 
theory are considered. 
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