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armor wires  were inspected for kinks or other deformations; 
none were found. The conductors were uncabled. Each con- 
ductor’s shielding tape was  removed and inspected for cracks 
and knuckling; none were found. The insulation shields were 
examined for deformation or abrasion; there was no abrasion 
and only slight local deformation from shielding tapes due to 
load cycling. Insulation shielding was stripped from  the insula- 
tion and actually showed improved bonding over untested 
core. This was probably due to the heat effect. There was no 
area to be found with lack of adhesion, confirming what the 
partial discharge test had indicated. Insulation was examined 
for signs of treeing, cavities,  voids, and separations; none were 
found. The bond between the insulation and extruded con- 
ductor shield  .was examined, and no signs of separation were 
found. The copper strands comprising the  conductor were 
perfectly formed with no evidence of kinks. 

Finally, the two temporary splices  were dissected and 
inspected. The semiconducting insulation shielding tapes were 
found to be not completely in contact with the insulation. 
Cavities  were  revealed between the EPR insulation and the 
shielding tapes, and a residue  was found on the insulation 
surface where ionization had occurred. No electrical trees were 
found. These findings were the result of temporary splice 
procedures. The  presence  of these cavities  served-however 

unintentionally-to show that EPR insulation can withstand 
long periods of ionization without voltage breakdown. 

Just prior to removing the cable test specimen from the 
apparatus, photographs of  the cable bends were taken to permit 
bend radii to be determined. From these photos,  it was found 
that  the cable had been bent as tightly as a 3.29-ft radius, ex- 
ceeding the  4-ft minimum recommended cable bend radius. 

VII. CONCLUSIONS 
It would, of course, be  valuable to repeat this test and to 

extend the parameters. The apparatus could be modified for 
increased or variable  angles  of flexing, with perhaps the addi- 
tion of torsional moments. This test program  was terminated 
after seven weeks to provide the results of physical examina- 
tion to our customer prior to the solicitation of the first full 
scale system, At face value, the equivalent operating life  of 
36.7 years is in excess of expected system life. However, it 
must be taken  into account that we are extrapolating from one 
test  on  a single short sample, a sample which, in fact, had not 
yet failed and did not show  evidence of incipient failure. This 
makes it difficult to project a reliable expected service life on 
the order of the 30-year life desired. Additional testing using 
the equipment herein described or with possible refinements is 
a  matter  for economic consideration. 

Passive Systems Theory with Narrow-Band and Linear 
Constraints: Part 11-Temporal Diversity 
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Abstract-This  paper is part of a series of three papers  studying pas- 
sive tracking  problems arising in navigation and  positioning  applica- 
tions. The basic question  here  lies with the  determination of the posi- 
tion  and  dynamics of a  point  source being tracked  by  an  omnidirec- 
tional  observer,  through  demodulation of the Doppler  effect  induced 
on  the  radiated signals by the relative motions. A simple  model,  fitting 
a  finite  parameter  nonlinear  estimation  context, is developed, the re- 
ceiver designed, and its mean-square  error  performance  studied. It is 
shown that, besides the speed and angle estimation,  simultaneous  global 
range passive tracking  is possible. The signal model  precludes range ac- 
quisition  from  synchronous  measurement of the  absolute  phase  refer- 
ence: the global range estimation is attained  by processing the higher 
order  temporal  modulations (varying Doppler). Quantifying  the  statis- 
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tical and  geometric  performance  tradeoffs,  the  work  presents simple ex- 
pressions and graphical displays  that can  be used as design tools in prac- 
tical passive tracking problems. A subsequent  paper considers the  space/ 
time  coupling issues, generalizing the  study  to  the  context where  a 
moving source is tracked  by  a  directional array. 

E 
I. INTRODUCTION 

VERYBODY has experienced the Doppler phenomenon. 
The  whistling of an approaching train is heard at  a 

higher note  than  the whistling of an outgoing train. This fre- 
quency shift is the Doppler effect,  important in a number of 
applications. Doppler radars [ 11 estimate from it  the radial 
speed of moving platforms. In  synthetic  aperture radars ( S A R )  
[2] , it fdcuses the radiated beam on the azimuth dimension. 
In radio astronomy [3], it resolves radio sources. In super 
synthetic techniques [4] , advantage is taken of the  earth 
motion itself to generate very long baseline (VLB) arrays. 
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Hagfors and Campbell [5] discuss a VLB interferometer  that 
probes the Moon or Venus surface by processing the unequal 
Doppler shifts caused by the different speeds of the planet's 
valleys and mountains, as seen along the line of sight of the 
earth radar. Doppler related examples are stdl found in many 
other fields, eg., oceanography [6], meteorology [7], and 
light diffusion interferometry [8]. 

This paper, together with Parts I  [9] and I11 [ lo] ,  studies 
passive practical procedures based on  the Doppler phenome- 
non. Contrasting with active systems, passive ones (e.g.,  passive 
sonars) process  signals radiated by sources other  than  the 
receiver. To be brief, the passive Doppler problems are herein 
cataloged into two dual classes  (see Fig. 1): 1) positioning if 
the source is to be tracked, and 2) navigation  if the source, of 
known position and dynamics, is a navigational  aid  (e.g., a 
beacon or .a satellite). The subsequent discussion concentrates 
on  the positioning context. 

In  the framework of communication theory,  the Doppler 
phenomenon is a modulation induced on the signal's  phase 
structure by an extended source or receiver.  This source or 
receiver extension, referred to as geometry diversity, may be 
the baseline of  the observing array (spatial diversity), Fig. l(a). 
or it may  be synthetically developed by  the relative motions 
(temporal diversity), Fig. l(b).  In  the first case, the Doppler 
provides information to determine the bearing  angle of the 
source. In  the second case, it is a replica of  the source-receiver's 
relative radial speed. 

In both applications the Doppler is assumed to be a linear 
modulation; i.e., the observed frequency shift is considered 
constant during the observation interval. This constant Doppler 
corresponds to the source moving  radially with respect to the 
receiver  (see the configuration I  of Fig. 2). This hypothesis, 
which underlies the design of radar systems [ l  11 , is justified 
on the grounds of a  short observation interval. In general, the 
Doppler is a nonlinear modulation, as shown by geometry I1 of 
the same figure. 

The present set of papers considers the design of processors 
(and the evaluation of their performance) that  infer, from the 
modulated received  waveforms, the relative geometry; i.e., it 
studies the simultaneous estimation of the sourcelreceiver 
separation and dynamics. The basic novelty here is the deter- 
mination of the global distance separating the source and the 
receiver from the observed Doppler. 

In Part I [9], a fvred source is positioned by an extended 
observer, either spanned spatially by an array of sensors or 
generated synthetically by a moving sensor. This problem 
reduces to the estimation of two parameters, range  and bearing, 
from narrow-band passive signals. Part I1 (this paper) enlarges 
the class of passive tracking problems to include nonstationary 
sources. At this stage, to avoid  masking the fundamental issue 
of  global identifiability with unnecessary complexity, the  study 
is restricted to: 1) deterministic and linear source dynamics, 
2) omnidirectional receivers,  and 3) narrow-band radiated 
signals. The ensuing framework is that of a three-parameter 
nonlinear estimation problem. Part I11 [ 101  foregoes the 
simplifying assumption 2) and studies the general problem of 
tracking moving sources observed by spatially extended re- 
ceivers. Spatial and temporal coupling issues  are  discussed 

(a) 0) 
Fig. 1. Positioning and navigation applications. (a) Positioning 

(spatial diversity). (b) Navigation (temporal diversity). 

& Observer 

t"" 

"E- 
(a) (b) 

Fig. 2. Temporal Doppler variation for  two geometries. (a) Source/ 
observer geometry. (b) Doppler. 

therein. The absence of hypotheses 1)  and 3) is considered in 

The structure of the paper is  as follows. Section I1 
establishes the model, discussing the constraints imposed on 
the problem. Section I11 designs the receiver. Sections N and 
V analyze the receiver structure, while Section VI studies its 
performance and presents Monte Carlo simulation results. 

P21. 

1I.MODEL 

The basic model constraints relate to the geometric aspects 
of the problem, to the relative dynamics, and to the nature of 
the radiated signals and disturbing noises.  Fig. 3 illustrates a 
typical positioning application where  an  observer tracks a 
moving source by processing its radiated signature. The fol- 
lowing assumptions are made. 

Hypothesis I: A Planar  GeornetPy  and a Stationary (Fixed) 
Omnidirectional Avay: The array, with geometric dimension 
L ,  is centered at  the origin of  the reference frame (see Fig. 3). 

Hypothesis 2: The Source  Moves  with a Constant  Unknown 
Speed u Along a Linear  Path: The instantaneous value of  the 
source/receiver separation is parameterized as 

R(t, 1, A )  = {Ro2 + u2t2 - 2 ~ t R o  sin f3}1'2, 

t E  --,- . [ ::I 
In (l), t is the time, and 1 is the location of  the array sensors. 
Equation (1) defines R (t, I ,  A )  in terms of the parameters: the 
range Ro , the speed u, and the angle f3 all given in Fig. 3. These 
parameters are collected in the unknown nonrandom parameter 
vector 

A = [Rou sin e l T  (2) 
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X 

Fig. 3. Stationary array/moving source. 

where T denotes matrix transposition. 
For  a different class of  motions, some functional form other 

than (1) would result. But, provided the hypothesis on  the 
deterministic dynamics is kept,  the separation can  be fitted  by 
a finitely parameterized function. 

Hypothesis 3: The Source Signature s(t, 1) is Narrow  Band: 
A Pure Tone of Known  Rest Frequency f = uc/2n: At the 
array,  a  corrupted delayed version r(t, r)  of s(t,  l )  is  received. 
The propagation delay ~ ( t ,  1, A )  is approximately given by 

where c is the waveform propagation speed  in the medium.* 
The parameter vector A is nonlinearly modulated on  the signal 
structure by this delay. 

Recalling the complex notation of Part I [9] , the received 
signal is 

r(t, 1 )  = Re {F(t, 1 )  exp j u c t }  (4) 

where the complex amplitude 

F(t, 1 )  = q t ,  1, A )  + iqt, I). (5) 

G(t, l )  is a zero mean, spatially and temporally “white” Gaus- 
sian  noise with double spectral height of N o .  The signal com- 
plex envelope is 

with Fn being a normalized signal 

c;.;], T T  I €  [-;, ;I. 
In the preceding equations, as  in Part I [9], E, = PLT = 
energy x length received during the observation interval [-T/2, 
T/2] , P = signal power; h = c/f = wavelength; 6 = b exp j $ ,  
with b Rayleigh and $ uniformly distributed random variables. 
The zero mean  Gaussian random variable 6, with variance 2ub2, 
is independent of the measurement noise ii, (t, r). It accounts 
for model inaccuracies and  for radiated signal  power variations 

1 In the  sequel,  the  notation will often  be simplified  by suppressing 
from  the list of the  function’s arguments some or all of t ,  I ,  and A. 

fading in the transmission medium. Of more significance, how- 
ever, as pointed out in Part I [9] , b’ rules out knowledge  of the 
signal absolute phase. The receiver is incoherent, precluding 
the estimation of the range through simple measurement of 
constant travel time delay, as in synchronized systems [ 131 . 
The problem rests then on  the reconstruction of  the range 
function (i.e., the  three source parameters) solely from the 
temporal phase modulation induced by  the relative dynamics. 

By a Taylor’s  series expansion of (1) 

Since the signal model assumes no knowledge of the absolute 
phase, the  information  about  the source parameters relies upon 
the higher order terms of  the Taylor series expansion of (1) as 
shown in (8). For small observation intervals, (8) can be trun- 
cated at  the linear term:  the observer  measures the source 
down-range velocity component. This is equivalent to the 
usual far-field assumption in wave theory, see Part I [SI, or  to 
trajectory  I of Fig. 2.  It finds practical application in naviga- 
tion,  with radiolocation systems utilizing phase information to 
measure velocity, or when tracing remote platforms such as 
dropsonders, balloons for measuring wind, and drifting buoys 
for collecting oceanographic data.  A receiver  is installed on the 
moving platform and the radio navigation information retrans- 
mitted to the base station. This base station determines the 
platform velocity (down-range) from the recorded incremental 
motion [ 141 . 

By further enlarging the observation interval, the second- 
(radial acceleration) and third-order effects can be measured. 
Since the transformation of coordinates among the three time 
derivatives g o ,  E o ,  ko of the range function and the source 
parameters has a nonzero Jacobian 

a(&,, Eo, R o )  6v5 
a(Ro, v, sin 0 )  Ro4 

-- - ~ 0 8 2  e sin e 

except for broadside (0 = 0), end-fire (6 = -n/2),  or stationary 
target/receiver (u = 0) configurations, one concludes that  up 
to third-order effects are sufficient for local specification of 
the source position and dynamics (implicit function theorem). 
That  the Jacobian is zero for specific geometries may serve  as a 
warning about possible difficulties at these configurations. 

Three final remarks about  the model assumed. First,  the 
angle of Fig. 3 is not measurable from  the observed data. 
This results from the absence of bearing angle discrimination 
at  the observing array. Part I11 [lo] introduces  a directional 
array, studying the coupling arising between the space and 
time aspects. Here, the angle 9 is ignored. Second, as  seen 
from (1) or from (8 ) ,  there is a model indetermination on the 
sign of u or sin 6 .  Therefore, in the sequel, sin 0 > 0. Third, 
the model assumes a fured (stationary) omnidirectional array. 
The results still carry out for moving omnidirectional observers, 
e.g., following a linear deterministic path with constant speed. 
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Fig. 4. Moving omnidirectional array/moving source. 

The relative source parameters, besides R,,  are u and @, defined 
by 

u2 = u12 + u22 + 2u1 u2 cos ($1 - $2) (1 0 4  

(1  Ob) 

where 4, 4 ,  &, and @2 are  given in Fig. 4. For a parallel 
geometry 

u1 = u2} [ u = 2Ul 

91 = @2 @=& = @ 2 .  

In conclusion, the source/receiver dynamics generate a tem- 
poral baseline modulating the signal  phase structure. The sec- 
tion cast the passive tracking problem in the framework of  a 
finite parameter nonlinear estimation problem. Comparing 
with the spatial diversity problem of Part I [9],  the temporal 
diversity model exhibits an additional parameter, namely the 
relative source speed u. Using a positioning terminology, this 
passive tracking application is referred to as a stationary array/ 
moving source with omnidirectional sensor (SAMs,) problem. 

111. RECEIVER  STRUCTURE 

Applying maximum-likelihood (ML) techniques [l 11 to the 
estimation problem of Section 11, the receiver is a matched 
filter followed by an envelope detector. It maximizes, see Part 
I [9] , the log ML function defined by 

where E, = average  received energy = 2ob2 E, and L(A) is the 
inner product 

I l 2  = 1 dt /,I2 dl qt, l)P(t, 1, A)  1 (1 3) 
2 

-Ti2  --W2 

between the received  waveform r' and a replica of  the signal F 
evaluated at  the scanning point Ain the A-parameter space Q. 
Substituting the value of the received  signal by (5) in (1 3) 

I Z(A) 12 = I ( qA) ,  q.2) ) + ( G, ?(A) ) 12 . (14) 

In the absence of additive measurement noise, &4) is a scaled 

MATCHED FILTER SQUARE 
WITH PARAMETER ENVELOPE 
VECTOR AI 

1, i c M  = [ I ,  ..., M I  
DETECTOR 

Fig. 5. Coarse  search ML algorithm. 

version of the signal autocorrelation function 

where b ( A )  is the normalized signal (7), evaluated at the actud 
parameter value A. The output  of  the ML receiver is, apart 
from a multiplicative gain, the squared modulus of the auto- 
correlation function 

@(A, A) = I *(A, A) 12. (1 6) 

In analogy with active radar and sonar theory,  function @(A, 
a) is referred to as the generalized ambiguity function (GAF). 

The second term in (14) represents a Gaussian complex ran- 
dom variable with zero mean and variance N o .  At two different 
scanning points of the parameter space a, the noise  samples at 
the  output  of  the matched filter exhibit a cross correlation 
given in terms of *(A, A). 

Since this function has essentially a f ~ t e  extent, as  shown 
below, a coherence or correlation distance can be defined in 
Q: scanning points whose separation is greater than  the  co- 
herence distance lead to uncorrelated noise components  at  the 
output of the ML processor. This justifies a two-step imple- 
mentation  of  the ML algorithm, first due to Woodward [15], 
known in the frequency estimation literature as frequency 
shift keying  (FSK). 

The fust step  substitutes  the continuous by  a discretized 
search where the scanned points are separated by the coherence 
distance. R is divided into M cells, the form of which is to be 
found; in each cell it is assumed that  the parameter vector A 
takes only a fixed value (eg.,  the center of the cell).  With 
so discretized, a crude maximization of  the log ML function is 
performed, computing it  at all grid vertices, and choosing the 
point  at which it is maximum. The receiver performs a "largest 
of" Mary hypothesis decision [ 161 with uncorrelated signals; 
at  this stage it has a three-dimensional bank of matched filters 
followed by square envelope detectors (see Fig. 5). 

The coarse search returns a crude estimate Arnl = Ai for 
which li = max lj (see Fig. 5). In  the second step,  the mecha- 
nism  accomplishes a local maximization of the log ML function 
about &I. 

It remains to ascertain the following points: 1) the finite 
extent  of  the signal autocorrelation function or, to that  effect, 
of the generalized ambiguity function, 2) the form and dimen- 
sions of  the grid  cells in the ML algorithm, and 3) the statistical 
behavior and bounds on the mean-square error performance of 
the ML receiver. The subsequent sections treat separately each 
one of these topics. 

IV.  GENERALIZED AMBIGUITY FUNCTION 
As discussed previously, the receiver's ability to locate the 

source is connected to the  GAF  structure. Due to the analytical 
complexity of the GAF's expression (16)) its  structure is 
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Fig. 6 .  Generalized sinc,2 functions  up  to third-order. 

studied graphically. First, however,  an  approximate study is 
carried out, assuming the thirdader expansion (8) to the 
range function. It serves to derive  simple  expressions that 
easily illustrate the basic GAF structure. 

A, Polynominal Approximation to the Range Function 
Since the source  parameters  may  be  recovered from  the 

Doppler d o ,  the radial acceleration g o ,  and the third-order 
time derivative R o ,  the argument  proceeds  in terms  of these 
coefficients. 

In the sequel, the following definition is  needed. 
Definition: the  sincn2  function  of nth order is given by 

(1 7) 

Taking as origin the actual source location along the io, 
E o ,  and KO axes, the ambiguity function is  piven, respectively, 
by 

sincl (E) = sinc2 (Z) = (sin Z/Z)2 (1 sa> 

~ i n c ~ ~  (E) (related to Fresnel integrals), and 

Notice that 

where Ai (0) is the Airy function  [17] . In the preceding ex- 
pressions Z is a measure  of the deviation  along the axes. 

Fig. 6 compares  these sincn2  functions. All exhibit a main 
lobe  and  secondary ripples. As the order n increases, the main 
lobe is flatter near the origin, while the ripples die out faster. 
The rate of falloff is found by  studying the  asymptotic be- 
havior  as done in (1 8c). All three functions are bounded by 
1 / F .  

(a) 

RAN = 6 X IO5 f t  . e = 150 

' 2 7 5 x 1 0 '  

(b) 

Fig. 7. (a) Three-dimensional  range/velocity ambiguity  structure ( X  = 
1/8). (b)  Contour range/velocity ambiguity  structure ( X  = 1/8). 

Outside the axes, as the scanning point departs  from the 
origin, the GAF's  behavior  can  be  approximated by an  Airy 
function (see [12]) being bounded  by the inverse  of a certain 
power  of the mismatch on  the parameters. This asymptotic 
behavior  is referred to here as the  GAF hyperbolic secondav 
structure. 

B. General Case 
The  generalized  ambiguity function, given by (16), is 

studied graphically for the SAMS, context. The  source actual 
parameters are assumed  fmed: 

sin 15" 

Figs. 7 and 8 show  three-dimensional and  contour  plots  of  the 
GAF  on  the  coordinate planes  (see also Fig. 6 in Part I [9]). 
The figures illustrate intuitively the behavior of the ML pro- 
cessor as that of a peaking circuit. Looking at  them, one ven-- 
tures that,  at least for a low  noise profile, the ML estimate is 
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8 = I5O 
V =  30 f t / c e c  
TIME = 500 sec 

2 .25  x IO-' 

@) 
Fig. 8. (a) Three-dimensional velocity/angle  ambiguity  structure (X = 

lj8). (b) Contour  velocitp/angle  ambiguity  structure (X = 1/8). 

near the actual source location;  how near will be quantified by 
the error analysis of Section Vi. Note in  Fig. 8 the shearing of 
GAF, much like  what happens in Chirp (linear frequency 
modulated) continuous active  waveform  radars  (see [ 1 11 ). For 
these figures, the modulating index defmed by the geometric 
parameter 

is 1 /8. Plots for  other values of X are in [ 121 . 
These  graphs confirm the approximate analysis conclusions 

of the previous paragraph: 1) the  GAF presents a main lobe 
centered at  the source position at t = 0 (midpoint of  the 
observation interval),and 2) negligible subsidiary peaks ignored 
in the subsequent error analysis. 

The  contour  plots exhibit the main lobe equal height con- 
tours as approximate ellipses,  suggesting that  the three-dimen- 
sional ones are roughly ellipsoids. This is confirmed by looking 
at the equal height contours  of  the  GAF main lobe on planes 

t Asine  

Fig .  9. Maii lobe ellipsoidal structure. 

parallel to the coordinate axes  planes. Fig. 9 shows one of 
these ellipsoids. The configuration is referred to as the main 
lobe ellipsoidal structure. It plays an  important role in perfor- 
mance studies, since it determines the form and dimension of 
the elementary cells of  the ML grid. 

The rate of falloff of the  GAF secondary structure is studied 
in [12] by resorting to the  method  of  stationary phase, e.g., 
[ 181 . The study therein substantiates the hyperbolic decaying 
conclusion of  the approximate analysis. 
. In short, both the approliimate and the graphical studies 

show that GAF is peaked, exhibiting: 1) a main lobe ellipsoidal 
structure, and 2) a hyperbolic secondary negligible structure 
with the GAF decaying with the inverse of a certain power of 
the parameter errors on !2. 

The GAF's peaked structure establishes the model global 
identifiability; it is possible to estimate globally and simultane- 
ously all of the source parameters from the sensor measure- 
ments. 

V. QUADRATIC  EXPANSION OF THE  GENERALIZED 
AMBIGUITY  FUNCTION 

The foregoing  analysis indicates that  on the parameter space 
i2 the significant GAF is restricted to a vicinity of the actual 
source location. As in Part I [9] , the ambiguity function is 
then approximated by  the quadratic expansion 

where AA = A   - A ,  and 

is the mean-square spread matrix. The finite extent of GAF is 
measured by the ellipsoid 

Q(M) P MTMM s 1 . (2 1 c) 

The spread matrix M is evaluated analytically in [12]. Given, 
however, its unappealing complexity, local, asymptotic, and 
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graphical  analyses  are pursued. Since the concern rests on  the (rectangular type ambiguity function in the pRolsin e subspace, 
inverse M-1, cross correlations, and det M which give on L! the see Part I [9]). 
orientation, dimensions, and volume of  the main lobe ellipsoid The determinant of M progresses from 
(and so of the grid  cells of the ML estimation algorithm), 
attention is restricted to these quantities. 2n R , ~  4 sin2 e  COS^ ex12 

that X = uT/2Ro < 1, Taylor’s  series expansions2 lead to 
Assuming a  short observation interval (local analysis), i.e., det M = (7) - 

u2 33 x 53 x 7 (24) 

u2 1 u 1 I .  

I 

t 
Fig. 10 shows, as a  function of the geometric parameter X 

or its inverse Y = 1/X, the  three diagonal dements  of M-1, 
normalized by the modulation index 0 = h/2n. The source 
parameters are  given  in (19). Each graph displays the.local 
(X < 1) and  asymptotic (X 3- 1) tangents, as well as the 
corresponding analytical expressions. The  convex cup behavior 
of MR,-l and M e 0 - l  in  Fig. lO(a) and. (b) is due to the 
phenomena analyzed in Part I [9] : for small X ,  the lobe is  well 
spread over L! with consequent small second-order derivatives 
of the GAF at  the source location;  for large X ,  the main lobe 
approaches a rectangular type window in the range/bearing 
subspace. For each geometry, then, there is an optimum 
observation time (i.e., an optimum value  of X) above which 
the  joint estimation of Ro and sin 0 is’deteriorated. In most 
applications, however, this geometry saturation occurs for 
unrealistically large  values of X .  

In Fig. 1O(c) the inverse velocity spread M,-l is monotoni- 
cally decreasing, evolving from the local to the asymptotic 
tangents. This behavior  can be anticipated from Fig. 11: as 
the observation interval increases, the source goes from abeam 
(stationary Doppler) to down-range (Doppler approaching its 
maximum, the speed v). 

Fig. 12 shows, also as a function of X ,  the cross correlations 

between the errors on  the estimates for  the several parameters. 
For small X the errors are  highly correlated. As X increases, 
pRO,V and pv,  e decrease monotonically, while PR, ,&e 
decreases first (reflecting reduction in correlation as higher 
order effects are measured) to increase again for large X 

2 The correct  evaluation of these  expressions  requires that terms 
pp  to   the 6th order be retained in the Taylor’s  series developments of 
the elements of the 3 X 3 matrix hi. Part of the formidable  manipula- 
tions involved  in the inversion of the resulting analytic  matrices were 
carried out  with  the use of MACSYMA, a  symbol  manipulating  system, 
at Project MAC, Massachusetts Institute of Technology, Cambridge. 

for  a  short observation interval (X < l),   to 

detM-(--) 2n ~ , 4  n 1 1 1 

u2 2 12 C O S ~  Y 

for a long observation interval (Y Q 1). 
The analytical expressions (22)-(25), as well as Figs. 10 and 

12, may be  used in each particular application, to dimension 
the grid  cells of  the ML algorithm, providing an  easy check on 
the expected computational effort and on  the error perfor- 
mance as will  be  seen in the  next  section. They were  used in 
[12] as @re-)  design tools  for radar and sonar passive proces- 
sors in  navigation and positioning problems. 

Before proceeding, equivalent results are presented for 
situations when one of the three source parameters is  assumed 
known a priori, This may be the case because either the para- 
meter has been determined by some other means, or  it repre- 
sents a higher  degree of complexity,  or simply its incorporation 
in the estimation model makes no physical  sense (e.g., source 
speed in the stationary source problem of Part I  [9]). Since 
the range/angle estimation was studied in Part I [9], the 
analysis considers here the Ro/v and v/sin 6 joint estimation 
problem, being restricted to the short observation interval 
situation. 

A.  Rangelvelocity  Estimation  -Application to Navigation 
The bearing  angle  is  assumed known. This might occur in 

some navigational applications, or when tracking satellites 
transmitting narrow-band signals. The  latter is illustrated in 
Fig. 13. The array on Earth observes the satellite passing 
abeam. The duration of the observations is determined by the 
strength of  the emitted signal and the receiving array gain. The 
observations are  assumed symmetric about  the raising  angle 
(closest approach) determined,  for example, from the position 
and the  orientation of the stationary observer. In essence, the 
moving source follows a path that is prescribed or known a 
priori, the only unknowns being the source/receiver separation 
and the relative speed. The parameter vector is now A = 
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X 

(b) 

SAMS, 

Fig. 10. . (a) Range meanquare spread versus X. (b) Angle mean-square spread versus X. (c) Speed mean-square spread versus X. 

[ROu] T ,  and the local  expressions  are 27~ e, Ro2 sin2 8 cos4 8 
det M R ~ . ~  (y) --+- 135 x 6 .  

The degree  of  coupling  is  specified by the cross correlation 

The results for  this problem  parallel those for  the range/angle 
estimation of Part I [9] upon rescaling the involved quantities. 
As happened there,  the range  is  focused from the chirp (second- 
order)  effects, while the source  velocity  is  measured from  the 
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Fig. 1 1 .  Source/observer geometry developing from abeam to down- 
range. 
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Fig. 12. Cross correlation versus X .  
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Fig. 13. Satellite tracking geometry. 

linear modulations on  the signal structure.  The velocity spread 
increases monotonically as the geometry  approaches  broadside. 
This  is intuitively clear: for broadside  geometries the linear 
effects are  minimum,  and the velocity has to be measured 
from  zero  Doppler effects. 

B. Velocity/Angle Estimates 

Here the range  is  known by means, for  example, of active 
measurement.  The  analysis  brings up one  of the major diffi- 
culties underlining the SAMS, estimation  problem: the high 
correlation between the  error on  the velocity and  angle esti- 
mates.  The  parameter  vector is A = [ u  sin e l T  and the local 
expressions 

Note that  the velocity and the angle  mean-square spreads, 
given by the diagonal  elements  of M-l, depend on  the  4th 
order  of X - l ,  as  compared with  the previous  application  (or 
with  the problem in Part I [9] ), where they were a  function of 
X - 2 .  The  main  lobe  is oriented along the down-range  velocity 
component us = u sin 8. The  cross correlation between the 
parameter errors is p V , & e  = - 1 + &(OF, which  underlines 
the  strong coupling  between the errors on  the velocity and 
angle estimates. 

VI. ERROR  PERFORMANCE ANALYSIS 

The meansquare  error performance  of the two-step ML 
algorithm is discussed. The total mean-square error of  the 
component A j  of the parameter  vector A is  decomposed into 
two terms.  The fnst, referred to as the global mean-square 
error u,,.~, results from decision errors E ,  or diversions, on  the 
first step. The second,  the local mean-square error ulocj2, de- 
pends on  the flatness ofthe main lobe.  For  a detailed discussion 
of these errors in a similar context, see  Part I [9] , or [l 11 . 
A .  Global Errors 

J 

Section IV established the peaked structure  of  the GAF. To 
pursue the error performance analysis of  the ML receiver, the 
GAF is  reduced to its ellipsoidal main lobe, being  considered 
zero  outside it. This justifies that  the first step of the ML 
algorithm  be  modeled  as  an  M-ary hypotheses decision  problem 
with  orthogonal  signals  over a Rayleigh  channel. To  determine 
the total number M of hypotheses,  the grid  has to be dimen- 
sioned. The  main lobe ellipsoid is taken as the elementary  cell. 
Its volume is, apart from a  constant, measured by  det M. Then 

where k is a normalizing constant  and V ,  is the volume  of the 
a priori region  of interest in the parameter  space. 

For  large  energy signal-to-noise ratio (SNR) and large num- 
ber M of grid cells, the probability  of error Pr ( E )  and  the 
conditional  mean-square error for  the M-ary hypotheses 
decision  problem  considered  can be easily  determined  (see 
[9] -[ 1 1, pp. 302-3071 , [ 151 ) leading to 

with 

Pr ( E )  z In M - - + y (E,./No) ( a 1  
where y is the Euler constant  and A,,Aj is the a priori uncer- 
taintyofparameterAj,j=  1,2,3. 

B. Local Errors 

The  main  lobe  of the GAF has been conveniently  described 
in  Section V by  the ellipsoid (21c). This  second-order descrip- 
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tion  of  the GAF justifies [ 111 that  the local mean-square error 
be estimated from the Cramer-Rao bounds. For this type of 
problem (see [9] or [ 11 ] ), the Cramer-Rao inequality is 

A, P E[(A,l-A,)(Am~-A,)*]  >J-’ (304  

where the Fisher information matrix 

with 

Expressions (29) and (30) stress once again the importance 
of hi. Substituting  the expressions given in Section V, one 
obtains analytical formula for the errors (see [12]). Here, 
graphical studies are pursued. 

Fig. 14 shows as a  function of X the  total mean-square 
error 

utotj 2 = E(AjE2) = E(Aj- A -  Jml )2 = adj’ + u”,.. (31) 

as well  as its global and local components for  the following 
two a priori regions of interest: 

I AMRO =Ro, -Ro,  = 6 X 105 ft 
CL= A M V =  u M - v ,  = 3  ft/s 

AM6 = 8~ -8, = 5’ 

The source is located at  the values  given by (19) and the 
remaining parameters assumed  are 

SNR = 0 dB 

h = 5 0 f t   L = 2 5 O f t  u b 2 = O . 5 .  

For small X, the local component dominates (Pr ( E )  is  very 
small). After a transition region where both components are of 
the same order,  it is the global errors that dominate the perfor- 
mance. Observe that, for the conditions assumed, the transi- 
tional region takes place first for  the range parameter, at values 
of X bounded to occur in many applications of practical 
interest. 

The effect of reducing the a priori region of interest is two- 
fold (see  (29a)): a change  in  Pr ( E ) ,  purely reflected in  Fig. 14 
(c),  and a change  in the (I priori uncertainty of  the parameters. 

For X <  1, Fig. 15 showsthe dependence of the Cramer-Rao 
bounds on  the actual source angle 0. The value of SNR = -3 
dB. The range standard deviation uR0 displays a convex cup 
behavior, with  a maximum range performance occurring at 8 % 

35‘, value that can be predicted [12]  by  the local analysis. 
This performance deteriorates monotonically as the geometry 
approaches either “broadside” (large errors in the velocity 

\ I  
\ \  

I I 
IdZ IO‘ IO0 10 lo’ 

X 

(b) ’ 

X 

Fig. 14. (a) Speed total ML performance versus X. (b) Angle total 
ML performance versus X. (c) Range total ML performance versus X. 

parameter) or “end-fire’’ (reduction of effective array length) 
conditions. With respect to the speed performance, one con- 
cludes as already noted  that u,, increases sharply at “broad- 
side” (vanishing  down-range velocity), decreasing monotoni- 
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Fig. 15. Range Cramer-Rao bound versus bearing. 
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Fig. 16. SAMSo simulation results. 

cally  when the geometry approaches “end-fire” (Doppler 
configuration). 

Fig. 16 compares, for different SNR values, the statistical 
behavior of the ML algorithm, as predicted by  the foregoing 
analysis  and as obtained by Monte  Carlo simulation. The 
assumed parameters are 

29 

The curves show that all statistically computed standard 
deviations are within the  3oconfidence interval I(3o) of the 
theoretically evaluated Cramer-Rao standard deviation. 

VII. CONCLUSION 
The paper considered the tracking by  an omnidirectional 

passive observer of a point moving source radiating narrow-band 
signals.  Assuming deterministic dynamics, the relative geometry 
was parameterized, the simple model developed fitting  a three- 
parameter nonlinear estimation framework. The ML receiver 
was  designed  and its structure and associated errors were 
analyzed with emphasis  laid  on the passive global  range  observ- 
ability as obtained from the higher order phase modulations 
induced on  the signal structure  by  the temporal problem diver- 
sity. Global and local meansquare error bounds were pre- 
sented, with graphical displays exploring the effects of the 
geometry on the mean-square error performance. Considering 
short and long observation intervals, approximate expressions 
were derived, having been shown how they compare with the 
exact bounds. 

Depending solely on the geometry, the two-step practical 
implementation of  the ML receiver exhibited two distinct per- 
formance behaviors: on a local geometry, the mean-square per- 
formance is  well approximated by  the local bounds determined 
by  the sharpness and dimensions of  the ambiguity structure 
main lobe;  on  a global geometry the performance is given by 
the global bounds measuring the large inaccuracies induced on 
the average by the decision  errorS occurring on the crude 
search. The analysis was tested via Monte Carlo simulation 
studies, the experimental results being within the  3oconfidence 
interval of  the theoretical ones. The theory and expressions 
presented here can  be applied, as in [12] , to dimension re- 
ceivers that passively acquire the global geometry in navigation 
and positioning applications. Part I11 [ 101 generalizes the 
passive SAMs, model to include directional arrays tracking 
moving sources. 

ACKNOWLEDGMENT 

The author  thanks Prof. A. B. Baggeroer from the Massa- 
chusetts Institute of Technology and Dr. K .  Senne from 
Lincoln Laboratory for  the many stimulating discussions held 
throughout  the course of this research. He also  acknowledges 
the  effort  of  the anonymous reviewer whose careful suggested 
editorial corrections improved the readability of  the paper. 

REFERENCES 
A. W. Rihaczek, Principles of High-Resolution  Radar. New 
York: McCraw-Hill, 1969. 
R. 0. Harger, Synthetic  Aperture  Radar  Systems  Theory and De- 
sign. New York: Academic Press, 1970. 
A. E. E. Rogers, “Very long baseline-interferometry with large 
effective bandwidth for phasedelay measurements,” Radio  Sei., 

E. B. Fomalont, “Earth rotation aperture synthesis,” Proc. 
IEEE, vol. 61,pp. 1211-1218,Sept. 1973. 
T. Hagfors  and D. B.  Campbell, “Mapping of planetary surfaces 
by radar,”Proc. IEEE, vol. 61,  pp. 1219-1225,  Sept.  1973. 
R. C. Spindel and R .  P. Porter, “Precision tracking systems for 
sonobuoys,” in Proc. IEEE In t  Con5 on Engineering in the 
Ocean Environment, Ocean 74, vol. 11. 
iEEE Trans. Geosci.  Electron.  (Special Issue on Data Collection 

V O ~ .   5 ,  pp. 1239-1248,  1970. 



30 IEEE JOURNAL OFOCEANIC ENGINEERING, VOL. OE-4, NO. 1, JANUARY 1979 

from Multiple Earth Platforms), vol. GE-13, Jan. 1975. 
[ 8 ]  C. P.  Wang, “Laser anemometry,” Amer.  Sci., vol. 5, no. 3, pp. 

289-298, May-June 1977. 
[ 9 ]  J. M. F. Moura and A. B. Baggeroer,  “Passive systems  theory 

with  narrow-band  and linear constraints:  Part I-Spatial  diver- 
sity,”ZEEE J. Oceanic Eng.,  vol. OE-3, Jan. 1978. 

[ 101 J. M. F. Moura,  “Passive systems  theory  with  narrow-band  and 
linear constraints:  Part 111-SpatiaUtemporal  diversity,” to be - . -  

published. 
[ 111 H. L. Van  Trees, Detection,  Estimation and Modulation  Theory. 

Part ZIZ. New York: Wiley, 1971. 
[12] J. M. F. Moura,  “Passive systems  theory  with  applications to 

positioning  and navigation,” Res. Lab. of.Electr., Massachusetts 
Inst. Technol., Cambridge, Rep. No. 490, Apr. 1976. 

. .  
. .  
. i _  . . 

. i  . _ .  

[13] L. S .  M o o n  and M. J. Hinich, “A method  for locating  targets 
using  range only,” IEEE Trans. Znform. Theory, vol. IT-22, pp. 

[ 141 E. E. Westerfield, “Determination  of  position of a  drifting buoy 
by means of the Navy  navigation satellite system,” inProc. IEEE 
Con$ Eng. Ocean Environment, pp. 443446,1972.  

[ 151 P. M. Woodward, Probability and Information  Theoly,  with A p  
plications to Radar. New  York:  McGraw-Hill, 1955. 

[ 161 H. L. Van Trees, Detection,  Estimation, and Modulation  Theory: 
Part I. New York: Wile)., 1968. 

[17] M. Abramowitz  and I. A. Stegun, Handbook o f  Mathematical 
Functions. New York: Dover, 1965. 

[18] A. Papoulis, Systems  and Transforms with  Applications in Op- 
tics. New York: McCraw-Hill, 1967. 

217-225, Mar. 1976. 

I 

. _  
. .  

. . .  

, _  

.. . 

. .  


