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Passive Systems Theory with Narrow-Band and 
Linear  Constraints: Part I-Spatial  Diversity 

JOSE M. F. MOURA AND ARTHUR E. BAGGEROER, MEMBER, IEEE 

Abstruct-This paper  studies passive problems  where  the receiver 
extracts  from  the source radiated signature information  concerning 
the  parameters  defining  the relative sourcelreceiver  geometry. 

A model  encompassing the  fundamental global and  local charac- 
teristics for passive Positioning  and navigation is presented. It  con- 
siders  narrow-band signals, imposes linear  constraints  on  the  geometry, 
and  exhibits  explicitly  the  symmetry  between  the space and  time 
aspects.  The analysis concentrates  on  questions of global geometry 
identifiability,  emphasizing  the passive global range acquisition. 

The  maximum-likelihood processor is analyzed by  studying  the 
ambiguity  structure  associated  with  inhomogeneous passive narrow- 
band tracking. Bounds on  the  global and  local  mean-square  error 
performance  are  studied  and  tested via Monte Carlo simulations. 
By considering two limiting  geometries,  a  distant  and  a close observer, 
simple approximate expressions for  the  mean-square  errors  are  pre- 
sented  and  compared to  the  exact  bounds. 

Herein the  study is restricted  to  stationary  geometries  where  the 
source is located  by  an  extended  array  (spatial  diversity).  Subsequent 
papers generalize the  study  to moving sources (temporal  diversity)  and 
to coupled geometries. 

I.  INTRODUCTION 

I N MANY tracking  problems  the observers are of  the passive 
type,  capable  only of receiving waves without  control over 

them. These passive systems are relevant in  a variety  of  fields: 
oceanography  (locating  drifting  buoys) [18], [21] , meteor- 
ology (tracking  radiosondes  or  balloon-borne devices) [9], 
passive sonar  (positioning  submersibles,  commercial fish fmders) 
[l] , nagivation (obtaining  position  fixes, collision avoidance 
systems) [lo] , and so forth. 

Fig. 1 shows typical navigational configurations.  In Fig. 1 
(a) and (c) an omnidirectional  receiverR  determines its position 
relative to an ensemble  of  beacons B 1 ,  -, BN , or relative to a 
moving satellite. In Fig. l(b) and  (d) a fured extended  plat- 
form R,  to  RN or  a moving omnidirectional receiver  uses a 
single beacon as positional  reference.  Geometries (a) and  (b) 
are stationary;  the basic characteristic is the  spatial  separation 
exhibited  by  the  source  or  the receiver. Configurations  (c)  and 
(d) are not fured;  the  spatial  separation observed is syntheti- 
cally generated by  the relative motions. Generally the naviga- 
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Fig. 1. Typical navigational configurations:  (a)  Extended source 
(beacons B1 to BN).  (b)  Extended receiver. (c) Moving source. 
(d) Moving receiver. 
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Fig. 2. Passive tracking global geometry. 

tional  problem is complex,  inducing on the signal a  space/time 
coupled diversity structure. 

Reversing the roles in the  preceding navigation examples,  a 
positioning  application is obtained. In the  latter  it is the  sta- 
tionary  or moving receiver, of known  position  and  dynamics, 
that tracks  a  stationary  or moving source. Given the  dualism, 
the discussion is restricted to positioning  problems. 

In Fig. 2,  the  distance  between  the  source  and  the  linear 
array's  geometric  center has the  parabolic  form  of Fig. 3(a), 
thereby  inducing  the  time variant Doppler  modulation  indi- 
cated  in Fig. 3(b).  Observation of the change in frequency of 
the wave emitted  by  the moving source  enables  measurement 
of its  speed  (Doppler  phenomenon).  But,  at  point To of  the 
stationary  Doppler  modulation (closest point of approach), 
the  line  defined by the array's geometric  center  and  the  source 
is normal to the  path. Many practical  positioning  and naviga- 
tional  techniques use this elementary  observation. 

This paper,  and  the  accompanying  Parts I1 [14]  and I11 
[ 151 , are  concerned  with  performance analysis and design of 
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during  the  finite  time  observation  interval are ignored. These 
are of  practical significance only,  for  example,  when  the  total 
array dimensions are much larger than  the  sourcelreceiver 
separation  and  hence  represent higher order  corrections that 
will not be pursued. However the  model does take into account 
transmission losses due to fading,  internal wave phenomenon, 
and  medium  inhomogeneities, by considering, besides an  addi- 
tive measurement  noise,  a  multiplicative  random-type  disturb- 
ance (Rayleigh channel). 

Narrow-band passive tracking  has received considerable 
attention  [7] , [ 111 , [17] . In most of  the  studies  the following 
three  ass&ptions are made. 

SI. Far-jield geometvy: The  wavefronts  are assumed 
planar;  the global and/or local  wavefront  curvature is neglected. 

Fig. 3. Doppler modulation induced on the temporal signal structure. 
(a) Range history. (b) Doppler modulation. 

receivers extracting  from  the signal‘s structure all available 
information  concerning  the  source  position  and  dynamics.  The 
study  concentrates on  the global identifiability of the  param- 
eters,  with emphasis on  the range acquisition.  Part I analyzes 
problems where the  geometry is stationary  (no relative dy- 
namics), e.g.,  as in  triangulation  with an extended  source (navi- 
gation)  or an extended  array  (positioning).  Part I1 [14]  con- 
siders  those  applications where both  the source  and  the observer 
are pointwise, as, for  example,  in  Doppler  location  with  a 
single beacon (navigation) or with an omnidirectional  array 
(positioning).  Finally,  Part 111 [IS] studies  the  situations where 
the signal has a  spatial  and  a  temporal  structure,  concentrating 
on  the  resulting  coupling issues. In [12] this  theory is applied 
to the design  of algorithms achieving global acquisition  and 
tracking  for passive positioning  and navigation problems of 
practical significance. 

11. PRELIMINARY CONSIDERATIONS ON 
PASSIVE  TRACKING 

There  are two modeling issues. The  first involves the signal 
structure;  the  second  concerns  the global geometry  and  the 
relative dynamics. 

The  study is here  restricted to the following. 
1) A class  of random wave forms,  in  which  narrow-band 

signals multiplied by  a Rayleigh-Gaussian random  parameter 
are observed,  imbedded  in  an  additive,  spatially  homogeneous, 
temporally  white Gaussian noise process. 

2) A planar geometry  with  linear  constraints. The receiving 
antenna is either  omnidirectional  or  linear and the source/ 
receiver dynamics are either  stationary(with no relative motions) 
or linear (e.g., source following a  deterministic  constant-speed 
linear path). In [12]  a  more  realistic  model is discussed where 
the  linear  path is disturbed by random  accelerations. 

Under the  preceding  assumptions  the  resulting wave form 
distribution  exhibits  in  time  and space a  “narrow-band”  mod- 
ulated  structure,  and  thus is temporally  nonstationary  and 
spatially  inhomogeneous. 

Although  the ideal tracking  system  would use  all  available 
information  conveyed by  the received wave forms  the analysis 
is concentrated  on  the phase modulations  of  the  narrow-band 
signals. In  particular,  the observed changes in the signal strength 
occurring  either across the  extended receiving antenna  or 

S2. Decoupling: The  spatial  and  temporal processing 
aspects are decoupled. 

S3. Finite parameter context: The relative source/receiver 
dynamics are stationary  or  deterministic. Passive tracking is 
reduced to a f ~ t e  parameter  estimation  problem. 

Under S1-S3 the  problem simplifies to a “bearings only” 
situation, wherein the observable sourcelreceiver  parameter is 
the  bearing angle and/or  the source (radial) velocity. Ranging 
is accomplished  either by an auxiliary active system  or  by ad 
hoc procedures  such as simple triangulation  or  Doppler 
counting. 

As far as  we know, some  preliminary  analytical  work  taking 
into account  the  (spatial)  curvature  of  the waveforms has  only 
recently  been  reported [4], [SI ; moreover,  inhomogeneous 
waveforms have  received scant  attention  in  other  applied areas. 
An exception is in optics  [8] where quadratic  approximations 
to  the waveform curvature are usual in  Fresnel  diffraction 
studies. Also in seismic profiling,  new  techniques [3], [19] 
explore  the signal’s nonlinear  spatial  structure. Wave theory is 
still  another kea  which  considers  a  mixture  of  plane  and  in- 
homogeneous waves when finding  the  distribution  of  a  field 
scattered by  a rough  surface  [2] . 

Passive narrow-band  tracking when only  S1 is assumed has 
previously been  studied [ 131 . The  motions were modeled by  a 
stochastic  finite-dimensional  dynamic  system. A spatial/time 
integrated  approach, with planar  wavefront  structure, was 
developed based on  first-order  approximations to the  infmite- 
dimensional  filter. Analysis substantiated  by  Monte Carlo 
simulations showed that  the filter  tracked  only  the  local 
dynamics  and  lacked global range observability. This set of 
papers explores the spatially inhomogeneous and/or the 
temporally  nonstationary  character of the waveforms (spatial 
and  temporal  curvature). The absence of the  hypothesis  S1 is 
an underlying  characteristic  of  the study. 

With the  point  source  emitting S(t), the signal at a sensor 
with  spatial  coordinate I ,  and a t  time t i s  

where T(t, I> is the  travel  time  delay.  For  a  homogeneous 
medium 
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where R(t, I) is the source/sensor separation  and c the medium 
propagation velocity. 

In  the present paper the geometry is  stationary.  The signal 
exhibits a spatial diversity structure 

i.e., the delay is independent of the  time variable. In  Part I1 
[14] the signal for processing presents a temporal diversity 
structure, i.e., 

7(t ,  1 )  = 7( t ) .  (4) 

Finally, Part I11 [15] considers more general geometries, 
where space and time coupling arise. 

111. STATIONARY SOURCE MODEL 

Fig.  4(a) illustrates the parametrization  for a planar geom- 
etry where a stationary  point source is being tracked by a linear 
array oriented along the 1 axis. Fig. 4(b) shows the problem 
where a moving omnidirectional sensor (e.g., a short  or non- 
linear array) with  known speed u locates a stationary source. 
These  passive tracking geometries, being space and  time dual 
versions  of the same problem, are discussed in  the  context of 
the first one. In the sequel they are simply referred to as syn- 
thetic observer/stationary source (SOSS) problems. 

The distance from the source to the  array element at loca- 
tion l is  given by  the range function 

L L  T T  

is the  parameter vector defining the relative geometry; it is 
modeled as unknown and  nonrandom. In (6)  T denotes matrix 
transposition. 

The source radiates narrow-band signals, which are received 
across the observing antenna as 

G(t, I )  is a zero  mean, spatially and  temporally “white,” 
Gaussian  noise with double spectral height of No.  The signal 
complex envelope is 

q t ,  1, A )  = &6Tn(t, I, A )  (9) 

with Tn(t,  I, A )  being a normalized signal 

STATIONARY 
SOURCE 

LINEAR PATH 

(b) 

Fig. 4. Planar geometry for a stationary source:  (a) Stationary array. 
(b) Moving omnidirectional array. 

- 1 
s,(t, 1, A )  = - exp 

C T  

E, = PLT = total energy received during the observation in- 
terval [-T/2,   T/2] , by an array of  geometric dimension L ;  P = 
signal power; h = c/f = 2nc/w, = wavelength; f = carrier fre- 
quency; c = medium waveform speed propagation. b‘ = 
b exp  j$, with b Rayleigh and @ uniformly  distributed  random 
variables. 

The zero  mean Gaussian random variable b’, with variance 
E I b‘ I = 2ob independent of the measurement noise G(t, Z), 
accounts  for  model inaccuracies, e.g., radiated signal power 
variations about some nominal value, fading in  the transmission 
medium,  etc. More importantly,  the presence of in (9) repre- 
sents a structural  model  constraint:  the  lack of knowledge of 
the signal absolute phase (incoherent receiver). It precludes the 
estimation  of  the travel time  delay,  which measures the range 
in synchronized systems [6] . The paper studies  then alternative 
procedures for range acquisition exploring the signal nonlinear 
phase structure. 

IV. AMBIGUITY STRUCTURE 

Under the model assumptions of Section 111, the  optimum 
receiver is a maximum-likelihood (ML) processor, e.g. [20], 
chapter X ;  it maximizes a monotonic  function of the ML func- 
tion on the parameter space Cl 
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where 

E, = average  received energy = (20b2)E, 

and 

L(A) = / , I 2  dt\L’z dl q t ,  Z)X*(t, 1, A ) .  
- T / 2  - L / 2  

With an inner  product  notation 

Z(A) = R ?(A)). 
L ( 2 )  is a Gaussian random variable, with  statistics 

EE(A) = (?(A), ?(A)) 

E{ [ m l )  -E%41)I  [ m z )  - a 4 2 ) 1  *I 
= G(A1),T(A2)) 
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L 

Fig. 5. Ambiguity Fresnel structure, 

where A is the actual  source  vector,  and A l ,   A 2  are scanning 
parameter values. 

A practical  procedure  in two steps maximizes (1 1) over the 
continuous  parameter space i2. In  the first stage i2 is made 
discrete  by a grid; the  vertex at which  the ML function is max- 
imum is chosen as a  coarse  estimate. In the second stage a fmer 
search  about  the previous value returns  the  approximate ML 
estimate A m  z. 

Like in active  radar,  the  structure of the signal auto- 
correlation 

*(A, A) 2 Gn(A), &((A)) (17) 

and  its  squared  modulus, the generalized ambiguity  function 

@(A, A) = I *(A, A) 12 (18) 

play an important  role in dimensioning the grid and evaluating 
the algorithm’s mean  square  performance (see (15)  and (16)). 
In (1 7) the  index n indicates that  the signal normalized version 
(1 0) is used. 

In (1 1)-(18) the  statistical  assumptions are reflected in the 
multiplying gain, while the  geometry  affects  the GAJ? struc- 
ture. This factoring is a  result of the signal and noise model 
assumed. 

Basically the following two issues  have to be pursued. 
1) The GAF’s main lobe  structure, i.e., its local description 

on S2 about  the source  location. 
2) The GAF’s secondary  structure, i.e., its relative maxima 

global distribution, size and  rate  of  falloff. These points are 
studied next, using first an approximation to GAF  and  then, 
the general expression (1 8). 

A. Approximate Analysis 
The analysis of  the GAF is carried out by assuming a  poly- 

nomial  approximation to the phase range difference  defined  in 

(1 6 )  (1 9). For  a  source in the so-called Fresnel  zone,  a  second-order 
expansion  is  appropriate  leading to 

n 

AR(Z, A ,  A) &R(Z, A )  - R(Z, A) = Aili 
i= 0 

where A, = A R o  = R o  - Eo and likewise for  the remaining 
quantities in (19) and (20). For  the  quadratic phase (20), the 
GAF is 

where 

‘I: 
F(2) =d exp i t 2  d t  = Fresnel  exponential  integral. 

Along the A, = A sin 8 axis the  GAF  has  the sinc-squared 
structure1 

@(A, 2) = sinc2 [: A sin 8 :] 
whose second  largest global maximum is reduced to  about 4.5 
percent of the value at  the origin. 

Along the  radial A(cos2 8/Ro) a x i s  it has the  Fresnel 
structure 

1 sinc x = sin xlx. 
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illustrated in Fig. 5, with  second  maximum  equal to 0.132 and 
where Z = [(7r/A)A(cos2 0/Ro)] lI2L/2. Fig. 5 presents also 
local (about Z = 0) and  asymptotic (large Z) quadratic  expan- 
sions approximating  the  Fresnel  ambiguity  structure (23). 
Equivalent  graphical  displays  may be obtained for (21). How- 
ever the  two-dimensional studies are carried out  with  the  exact 
expression  for the GAF. 

B. Graphical Analysis 

Fig. 6 presents a three-dimensional  and  a  contour  plot  of 
the  GAF  for  the actual source values A ,  = [0.6 X lo5 ft 
sin 15'1 T, and an array L = Ro/2. Equivalent diagrams for 
distant (small array)  and close  (large array)  observers are in [12] . 
These figures display elliptical patterns for the  main-lobe 
equal-height  contours  and negligible secondary  peaks (less than 
20 percent of the GAF's maximum value). An asymptotic 
analysis, based on the  method of stationary  phase, e.g. [16], is 
pursued in [12] leading to bounds  on  the GAF's rate of falloff 
similar to the  one  shown  in Fig. 5. 

V. MAIN-LOBE QUADRATIC  DESCRIPTION 

The elliptical patterns of  Fig. 6(b) legitimize a  quadratic 
analysis  of the GAF's main  lobe.  Retaining  terms  up to  the 
second  order in the  Taylor's series expansion 

@(A, A, )  = 1 - AAT AA (24) 

where A A   = A  - A, ,  and 

is defined as the  mean-square  spread  matrix. 
The first minimum  of  the  GAF  occurs  approximately  when 

Q(AA) b AATMAA 1 .  (26) 

Equation (26) measures  the extent of  the GAF's main lobe. 
Fig. 

After algebraic computations 

I Z  

r 2.94  x IO" 

0 
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.- 

R A N =  6 x IO4 f t  

V =  30ft/sec 
TIME = 500 sec 

e = 150 

2.25X IO- '  

(b) 

6 .  SOSS ambiguity  structure: (a) Threedimensional  plot. (b) 
Contour  plot. 

with 

and 

(27) In (28) and (29) VA, is the  gradient  column  vector  operator 
with respect to  the parameter  vector A ,  evaluated at  the source 
location A = A , .  Apart  from scaling factors, the  elements of M 
depend exclusively on the bearing  angle and on the  geometric 
parameter X = L/2Ro.  

Although (28) and (29) may be integrated [12] , due to 
their analytical complexity,  the  closed  form  expressions  ob- 

(28) tained are of little practical relevance. Rather, local, asymp- 
totic,  and graphical studies with  respect to X are pursued. 
However,  since in section V the  interest lies on the inverse 
M-l, the  det IM ,and  the cross  correlation p R  . sin 0 ,  the subse- 
quent analysis concentrates on these entities. 

A.  Distant Observer (Local Analysis) (Fresnel Zone) 
(29) For  a distant observer geometry, i.e., when X = L/2Ro < 

1, a Taylor series study  in X is pursned.  Truncation  after  the 
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first  nonzero order term leads to  VI. MEAN-SQUARE PERFORMANCE 

B. Close Observer (Asymptotic  Analysis) 

Neglecting the amplitude attenuation  effects across the  ob- 
serving array,  the asymptotic analysis  is restricted to  the phase 
information. As X + m 

;I 
s t  

and 

2 
- cos ex - cos 28 : 

?X 

T 

(3 

Section IV described a two-stage implementation  of the ML 
receiver, consisting of a crude search followed by a finer one. 
Global acquisition of the source parameters is performed by 
the first step of the algorithm. This section studies  the  errors 
associated with the range and the bearing estimates,  concen- 
trating on a mean-square performance analysis. 

A. Cramer-Rao Bounds 
For  the model described in section 111, a lower bound to 

the mean-square error is  given by the Cramer-Rao inequality 

where J is the Fisher information matrix 

(t cos 8 sin2 ex + cos2 8 cos 28 )bo2 1 (34) 

Under general regularity conditions, satisfied by this param- 
5) eter  estimation  problem 

J =  GM (39) 

- -  
For large synthetic arrays the receiver is highly  sensitive to = Er Er 

the relative geometry. The cross correlation  for 8 # 0, x12 NONO + E , .  
tends  asymptotically to 1 and M becomes singular. Intuitively 
this behavior reflects that, from phase information  and  for  an B. ~ ~ ~ ~ l ~ ~ ~ ~ d ~  
infrnitely large array,  the identifiable parameter is the distance 
Ro cos 0 from  the source to the observer. 

(40) 

Let Ai represent the jth component of the source parameter 
vector A .  The mean-square error on  the  estimate Aiml is 

C. Graphical Representations 
The  exact closed form expressions for  the diagonal elements 

of M-l are presented in Figs. 7 and 8 as functions  of X .  
The nominal conditions assumed  are R o  = 6 X lo4 ft, 8 = 

15". The figures  also display the local and asymptotic  tangent 
equations (30) and (34), respectively. 

Observe the  quadratic (convex cup) behavior  of the range 
and bearing mean-square spreads. It reflects two  different 
phenomena: the main-lobe flatness and shearing. For small X 
(distant observer) the main lobe is spread out  at  the origin 
(source location) corresponding to large uncorrelated inverses 
of the second-order derivatives  of the GAF. As X increases the 
main lobe gets sharper,  but a shearing effect occurs leading to 
a cross correlation which decreases monotonically to -1. As a 
consequence, the spread  functions (diagonal elements of M-l) 
attain a minimum at a certain value  of X (dependent on the 
relative geometry) and  then increase monotonically. 

where the global and local mean-square error  components are 

In (42) and (43) $ is the event that a decision error  or diver- 
sion occurs, i.e., that  the first step  of  the algorithm returns  the 
wrong grid vertex; E" is the complement o f t ;  and Pr (E) is the 
probability  of  the event E.  

The  computation of the various quantities  in (41) to (43) 
depends on the design and dimension of the grid discretizing 
the parameter space.  Assuming that  the grid cells are the 
ellipses determined by (26) ,  from  the negligible  side-lobe 
structure of the ambiguity function,  it follows that  the coarse 



MOURA  AND  BAGGEROER:  PASSIVE  SYSTEMS THEORY 11 

I o6 

I o5 

N- 

IO' . 
A . - 

0 

F 
- a  
'F 

IO? 

IO 
i 

IO '  

lo-' IO0 IO IO2 
X 

Fig. 7. Inverse  range  mean-square spread versus X = L / 2   R o .  

search step is equivalent to a multiple-hypothesis decision- 
testing problem with M orthogonal signals transmitted over a 
Rayleigh channel. 

The a ppiori unknown source location is restricted to a 
rectangular region !2, and 

2 
n = x [ A ~ , .  A ~ , ]  = [R~,,  R ~ ~ I  xisin e m ,  sin e,]. 

j =  1 (44) 

For large-energy  signal-to-noise ratio and large number M of 
grid  cells, the probability of error is 

and  the  conditional mean-square error 

where AIMAj = A j ,  - A j m  and y is the Euler constant. In (45) 
M is given by 

IO0 IO IOP 
X 

Fig. 8. Inverse bearing mean-square spread versus X = L/2 Ro. 

where V ,  is the volume of a, computed from  (44). 
Finally E(Aj2 I tc) is approximated by the Cramer-Rao 

inequality (37). 
Substituting (30) and (31), or (34) and (35) in (42)-(47), 

and these in (41) lead to analytical expressions for  the mean- 
square errors  for  the  distant  and close  observer geometries, 
respectively. 

C. Graphical Analysis 
Figs. 9 and 10 illustrate the range and bearing total mean- 

square performance as functions of the geometric parameter 
X. The geometrical and statistical conditions assumed are as 
follows: 

R ,  = 6 x 104 ft 

e = 15' 

SNR = signal-to-noise ratio = 0 dB 

AaIR, = 6 X lo5 f t  

AM = 5' 

h = 50 ft. 

The a priori range uncertainty A,wRo is ten times the  actual 
range R o ;  however, it follows from Fig. 9 that  the MLalgorithm 
can focus globally the range parameter,  i.e., it achieves oR0 < 

For X I  s the  standard deviation for  the range- 
estimation  error is about 7.5 percent of R,, while for X 2  s 
10-1  (a ten times larger array), it is reduced to only 5 percent 
of Ro.  This results from the  fact  that  for smaller X, the local 
errors  dominate the global ones, while for larger X ,  it is the 
contrary; as X increases the  total  errors  depart from  the 

ROf 
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IO' IO0 IO 

X 

Fig. 9. Total range  mean-square error versus X = L / 2  Ro.  

16" I I 

10.' IO0  IO IO2 

X 

Fig. 10. Total bearing  mean-square error versus X = L / 2  Ro. 

Cramer-Rao  bounds  and  approach the global  mean-square 
error  components,  with  a  logarithm-type  decaying. 

Being independent of the statistical background,  the be- 
havior  observed is the sole reflexion  of  the  geometry  on  the 
performance. In fact the following is true: 

1) The  increase in X sharpens  the  main lobe; maintaining 
the Q priori uncertainty, it enlarges the  total  number of grid 
cells augmenting Pr (t). 

2) A change in SNR affects only the scaling of the  ordinate 
axis, or, equivalently,  just  implies a parallel translation of the 
curves. This pattern  of variation is characteristic of  the Rayleigh 
model assumed and of the two-step  algorithm.  In practice, as 
it happens  with active radar, the problem is circumvented  by 
resorting to multiple  independent  observations (e.g., finite 
coherence  time);  the  estimation  procedure  described is then 
efficient in the SNR sense. 

-40 -30 -20 -10 0 IO 

SNR(dB1 

Fig. 11. Range Monte Carlo simulation results. 

I 

SNR(dB1 

Fig. 12. Bearing Monte Carlo simulation results. 

The  stationary  observerlstationary  source passive-tracking 
problem was simulated  in a digital computer,  for  a  configura- 
tion where 

R o  = 6 X lo3 

e =oo 
h = 50 ft 

O b 2  = 1 

X = .331 

T =  1 s 

and the inter-spacing  between the array  elements was AL = 

For several SNR values,  Figs. 11 and 12  study  the conver- 
gence between the theoretical performance  and the results of 
Monte Carlo simulations.  They  exhibit  a  threshold  phenom- 
enon, since for  SNR > -30 dB the statistical results are within 
the  three-variance  confidence interval I (30) of the Cramer- 
Rao bounds, while the  point SNR = -34 dB is about one 
order of magnitude  apart  from  the Cramer-Rao bound. 

hl2. 

VII. CONCLUSION 

A model  has  been  presented  encompassing  the global and 
locd characteristics of the passive-tracking  problem. It exhibits 
global observability for both  the range and  the bearing. The 
parameters are demodulated  from  the  wavefront  curvature, 
e.g.,  as sensed by a spatially extended  observer.  Underlying all 
the  work  presented is the absence of the far-field (planar wave- 
front) assumption. 



MOURA AND BAGGEROER: PASSIVE SYSTEMS THEORY 13 

The ambiguity structure  and  the  theoretical  and practical 
limitations  on  the mean-square performance have been ana- 
lyzed.  For a distant observer geometry (Fresnel zone) the 
estimation errors are practically uncoupled; the statistical 
mean-square performance follows closely the values predicted 
by  the Cramer-Rao bounds.  The bearing estimation depends 
on the linear effects (e.g., linear delay  across the array or 
observed Doppler), while the range focusing is  achieved from 
the second-order modulations (spherical curvature or  chirp 
modulation). As the geometry changes from broadside (0 = 0”) 
to endfire (0 = n/2), the range performance deteriorates due 
to the reduction of the effective array length. For larger  values 
of X, the  two-step  implementation  of the ML receiver exhibits 
threshold effects,  with  the global errors dominating the mean- 
square error  performance. 

The work was not restricted to high  SNR’s, and remains 
valid  even for large a priori uncertainty. However, the Monte 
Carlo simulations suggested a lower bound on the SNR, 
around -30 dB, below which the analysis  is  significantly 
misleading,  Le., the bounds are not  tight. 

The model assumed a highly coherent signal disturbed by 
incoherent noise components. Nevertheless, the results re- 
flecting the geometry on  the mean-square performance and the 
receiver structure are still  valid for  more general  signal models 
[ 121 . This is true whenever the statistical and  the geometrical 
effects  factor as in (1 1). 

In Part I1 [14] an omnidirectional observer acquires a 
source moving  along a deterministic path.  The range, speed, 
and bearing defining the source/receiver geometry are measured 
by exploring the  temporal diversity induced  on the received 
signals. In Part I11 [ 151 configurations are considered, where a 
spatially extended observer tracks a moving source. The paper 
concentrates  on  the  study  of  the resulting space/time  coupled 
processing. 
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