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ABSTRACT

We present an algorithm for the segmentation of multicell fluores-
cence microscopy images. Such images abound and a segmentation
algorithm robust to different experimental conditions as well as cell
types is becoming a necessity. In cellular imaging, among the most
often used segmentation algorithms is seeded watershed. One of its
features is that it tends to oversegment, splitting the cells, as well as
create segmented regions much larger than a true cell. This can be an
advantage (the entire cell is within the region) as well as a disadvan-
tage (a large amount of background noise is included). We present
an algorithm which segments with tight contours by building upon
an active contour algorithm—STACS, by Pluempitiwiriyawe;j et al.
We adapt the algorithm to suit the needs of our data and use another
technique, topology preservation by Han et al., to build our topol-
ogy preserving STACS (TPSTACS). Our algorithm significantly out-
performs the seeded watershed both visually as well as by standard
measures of segmentation quality: recall/precision, area similarity
and area overlap.

1. SEGMENTATION OF
FLUORESCENCE MICROSCOPY IMAGES

Fluorescence microscopy is one of the main ways for biologists to
observe processes in a live cell. As collection of fluorescence mi-
croscopy data sets continues, automated and robust processing meth-
ods are becoming increasingly important. One common task in such
systems is segmentation when acquired images contain more than
one cell. This is a basic (and very hard) problem in image process-
ing. It aims to separate an object of interest from other objects and
the background. Its result is a closed curve around the object of in-
terest called a contour.

An example of automated processing mentioned above is the
system for classification of proteins based on fluorescence microsco-
py images of their subcellular locations (spatial distributions within
the cell) [1]. The data set contained parallel images for a specific
protein, total protein and total DNA. Segmentation was performed
using the seeded watershed algorithm on the total protein channel
using the nuclei as seeds [2], and was modified to exclude partial
cells on the boundaries [1]. In this paper, we use the same data set
and compare the results of our algorithm to those obtained by seeded
watershed (SW) in [1].
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2. BACKGROUND AND PREVIOUS WORK

Seeded Watershed Segmentation. In the watershed algorithm, the
intensity of the image is interpreted as elevation in a landscape. The
algorithm splits the image into regions similar to the drainage re-
gions of this landscape, so that points are assigned to the same re-
gion if they drain to the same point. To create the watersheds, a
gradient magnitude image is built, in which, water will start to rise
from minima representing areas of low gradient (such as areas inside
the cell or in the background regions), and the watershed borders
will be built at the maxima of the gradient magnitude. Thus, ide-
ally, the borders will be at the edges of cells, assuming those edges
are well defined. However, as this is not the case for fluorescence
microscopy images, the contour (watershed border) keeps evolving
following gradual changes in the gradient, resulting in segmented
regions much larger than the true cell. In the seeded watershed algo-
rithm, instead of letting water rise from every minimum in the im-
age, water rises only from places marked as seeds. Here, the DNA
channel is used to define seed regions, and thus the water rises only
from inside the cells. The algorithm is modified so that partial cells
at the edges of the images are discarded. The problems with this
algorithm are twofold: (1) Many segmented regions are discarded
due to true cells being segmented into more than one region (splits),
and more than one cell being merged into the same region (merges,
see Fig. 2, second column). (2) The segmented regions are typically
much larger than the true cell (same figure), leading to a fair amount
of background noise outside the cell being included with the cell.
Thus, what we want to achieve is an algorithm which produces tight
contours, without splits or merges.

STACS. Over the past two decades, a new class of algorithms,
called active contours, has been developed, where the contour is
comparable to an elastic string that moves according to two kind of
forces: internal and external. External forces are those derived from
the image to segment (for example, based on edge detection). In-
ternal forces are determined from the intrinsic geometric properties
of the contour, such as its curvature [3]. Active contour algorithms
can further be divided into two subclasses. First developed, para-
metric active contour algorithms use parametrization of the contour
whereas geometric active contour algorithms use a geometric em-
bedding of the contour, such as the level set function.

STACS (Stochastic Active Contour Scheme), belongs to the class
of geometric active contour algorithms, originally developed to seg-
ment heart MR images [3]. It uses minimization of an energy func-
tional as a key concept. As this algorithm is our starting point, we
describe it briefly, starting with the fundamentals of the level set
method which serves as the geometric embedding of the contour.

Level Set Method. Given a 2D image with coordinates x = (z,y),
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the level-set function ¢(x, t) is positive inside the contour C' (moun-
tain), zero on it (sea level) and negative outside (valley). The contour
C'is embedded at its zero level [4]. To evolve the contour, we evolve
the level set function itself. To represent the templates of the image
pixels that are inside, outside or on the contour, we define masks
using the regularized Heavyside function.

Energy Functional. As a key concept, the segmentation problem is
mapped into an energy functional J(C'(x)) minimization problem,
where C(x) is the contour. The minimum of the functional is found
at a zero of its first variation 6J(C') = 0, from which a PDE is ex-
tracted of the form F'(C) = 0, termed the Euler-Lagrange equation.
This equation is usually solved by introducing an artificial param-
eter ¢ into C'(x,t), and solving 0C/0t = F(C'). In steady state
0C' /9t = 0, leading to the solution of the Euler-Lagrange equation.
If the contour C'is embedded at the zero level of a level set function
¢(x,t), the energy minimization problem is mapped into a PDE, a
specific form of which is given for our modified STACS in (1).

3. MODIFIED STACS

While the original STACS uses four forces: region-based, edge,
shape prior and contour smoothness, in our modified version, we use
only two, an external, region-based force F;- and an internal force F.
which depends on the curvature of the contour. We describe the evo-
lution of the level set function as

QU1 3 F ()W 60, ] + Al DIV, 0], (1)
where A, and A. are scalar coefficients weighing the region-based
force and the curvature force, respectively. We use the information in
the DNA channel to obtain the number of cells in the image, as well
as the initial contours. We use the information in the total protein
channel to drive the segmentation algorithm.

Fig. 1. Example of multicell images for an easy case (top row) and a
difficult one (bottom row). The images depict the DNA channel (left
column) and the total protein marked (right column). The algorithms
are run on the total protein image using the DNA channel to extract
the initial contours.
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External Force. The region-based force relies on the assumption that
the pixels in the objects and the background are drawn from two dif-
ferent statistical models; M, and M>. Thus, a pixel lying inside the
contour C' should be described by the model M, while a pixel out-
side the contour should be described by Mo [3]. For simplicity, we
decided to use only the mean of the two models to drive our force.
Moreover, to make the computation even simpler and faster, we rely
on the assumption that the density of proteins is higher inside the cell
than outside. Thus, we convert our image to a binary one and use the
mean number of white pixels in the image as our measure. For each
pixel on the contour, we estimate the mean number of white pixels
in its neighborhood, inside and outside the contour. The deviation
between the model and these values enable us to define a force to
drive the segmentation. While this measure is coarse and might not
capture fine variations around the cell border, the algorithm still per-
forms well. Refining this and other statistical measures is one of our
goals for future work.

Internal Force. The internal force is a smoothing force based on the
curvature F. of the contour. At each iteration this quantity can be
computed given the level set function [4]
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where ¢z, ¢y, Gax, Pyy, oy are the appropriate partial derivatives
with respect to « and y.

Annealing Schedule. In (1), the coefficients A, and A, evolve in time:
this is called an annealing, or, cooling schedule [3]. Experiments
reveal that the region-based coefficient A\, should decrease with time,
whereas the curvature coefficient A. should remain constant.
Initialization of the Level Set Function. Equation (1) assumes that an
initial level set function is available. To obtain it, we perform an
edge-based segmentation on the DNA channel to develop initial con-
tours. Then we initialize the level set function using the Euclidean
distance transform; Given a binary mask as input, for each pixel
in the plane, we assign the shortest Euclidean distance between the
pixel and the nearest point on a contour as its value. Finally, we
invert the sign of the distance for pixels outside of the contour.
Data Sets. Two patterns (total DNA and total protein) in HeLa cells
were imaged using confocal immunofluorescence microscopy [1].
Serial sections in the z-axis through entire cells were taken with a
step size of 0.1628um and a pixel size of 0.0977um in the x and y
dimensions (1024 x 1024 pixels per section). The total number of
images was 82 for 8 3D volumes.

Hand-Segmented Images. Along with the DNA and total protein
images, we have hand-segmented (HS) total protein images which
we use as ground truth. As (a) these images are poorly defined, (b)
fluorescent pixels gracefully leak from one region to another, and (c)
there are many instances of large areas of noise, hand segmentation
is often imprecise and varies from person to person. Thus, although
we are comparing our results to HS contours, it might be that the
algorithm actually performs correctly while disagreeing with HS.
Results: Modified STACS. The results of this algorithm are given
in Fig. 2, third column, for an easier (top) and a harder case (bot-
tom). As these are intermediate results, we evaluate them visually
only. (Objective measures of segmentation quality will be given
in the next section.) We observe that the algorithm automatically
produced continuous smooth contours that appear to match well the
hand-segmented contours (first column). However, we do encounter
problems; when cells are close together or linked by an area of noise,
merges occur (for both easy and difficult cases). This happens be-
cause geometric active contours handle change in topology, that is,




contours merging and splitting, gracefully. Since we know the num-
ber of cells (given by the number of nuclei in the DNA channel), we
want to impose the constant number of contours on our algorithm
(termed “topology preservation”).

4. TOPOLOGY PRESERVING STACS

To do this, we follow the approach in [5], where the notion of topol-
ogy preserving level set method is introduced. A change in topology
consists of contours which either merge or split, and thus produce a
different final number of contours from the starting one. In the stan-
dard level set method, changes in topology are handled gracefully.
In our case, this is not desirable, as the initial contours are based on
the nuclei of the cells. Therefore, this correct topology should be
preserved through the evolution of the level set function.

Algorithm 1 [TPSTACS] Input: I, a DNA image, I, a total pro-
tein image, dt, time step, scalar it, number of iterations, scalar A.,
weight of the curvature force Fe, S, scheme of evolution for the
coefficient of the region-based force F.. Output: ¢, the final level
set function.

TPSTACS(I4, Ip, dt, it, Ac, Sr)
initialize level set function ¢(0) based on edge detection in 14 and
Euclidean distance transform
compute all the values of A, based on S,
convert [}, to a binary image by thresholding
for t = 1to it do
for all points on the contour do
compute F, F., F. = RHS of (1)
end for
extend the values to the whole domain, get F,
Pump = () + dtFe
for all points where the sign of ¢(t) is changing do
if nonsimple point then
prevent change of sign of ¢: ¢ump = € - sign(¢(¢))
end if
end for
P(t+1) = dump
end for
return ¢

Since they are dealing with the discretized version of the evolv-
ing level-set function, Han et al. [5] made the following assumptions:
(a) The zero level of the level set changes slowly enough so that it
passes between neighboring grid points at most once (this requires
an appropriate time step). (b) The connectivity of the foreground
and background is specified to be 8 and 4, respectively. These are
referred to as steps of digital embedding [5]. Under these assump-
tions, a change in topology can occur only at points where the sign
of the level set function is changing. Moreover, at these points, the
change in topology will occur if the point is so-called nonsimple.
The simple point criterion is based on the idea of digital topology
and topological number (for details, see [5]). The approach is to
monitor the change of sign of the level set function and apply the
simple point criterion. If the point is not simple, we just prevent the
change of sign of the level set function. Imagine, for example, a
number “8” traced out as a binary image on a discrete grid. Imagine
also that the intersection of the loops is a single point. If that point
were scheduled to change and be moved into the background, the
topology would clearly change and instead of “8” we would be left
with two “0”’s, indicating this is a nonsimple point.
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Results: TPSTACS. We ran our algorithm on the above set of im-
ages and set the cooling parameters to A\, = 50 at the start and
Ar = 10 at the end of the run, A\c = 1. This means that the region-
based term dominates in the beginning, growing the contours to
roughly divide the pixels based on their statistical models, while the
curvature term remains constant and grows in importance towards
the end, smoothing the contour.

Measures of Performance. To assess the performance of our al-
gorithm, we use area overlap, area similarity and recall/precision.
As these are standard in the literature, we give only a brief descrip-
tion. We compare SW and TPSTACS to the hand-segmented images
(HS), as well as DNA images.

Area Overlap (AQO) detects how much of each cell overlaps with
HS (or DNA). This measure will count the splits although the result-
ing contour might be discarded. For example, if a cell is split in
half between two contours, the AO will count 50% once though the
segmentation result is not usable. Similarly, if two cells are merged
into one contour, one of them will be counted as 100% once, though
again, the segmentation result is not usable. This measure will be
lenient towards algorithms producing loose contours, such as SW.

Area Similarity (AS) [6], for each hand-segmented mask, com-
pares the area of that mask with the area of any SW, TP mask which
overlaps with it and normalizes it by the total area of both masks.
This measure will penalize an algorithm if its contour is not tight,
even though it might contain the entire hand-segmented contour.
Bear in mind that the tightness of the contour is a desirable property
as a nontight contour will introduce a significant amount of back-
ground noise existing outside the cell. According to [6], AS > 70%
indicates excellent agreement of the segmented region with HS.

The recall (R)/precision (P) measures depend on a true positive,
T, a mask designated by the algorithm as a cell and that is one, a
false positive, F' () a mask designated as a cell but which is not, and
a false negative, F(7), a mask not designated as a cell but is. Note
that unlike standard definitions of recall and precision, we do not
have true negatives, T, and thus, it is possible to simultaneously
obtain high R as well as P (see Fig. 3).

SW [%] TPSTACS [%]
Area Similarity (AS) 30.82 80.51
Area Overlap (AO) HS 62.15 82.14
DNA 62.29 99.80
Recall (R) HS (T=70%) 37.88 71.13
DNA (T=95%) 36.75 99.06
Precision (P) HS (T=70%) 39.99 76.82
DNA (T=95%) 36.28 99.06

Table 1. Segmentation results for the seeded watershed algorithm
(SW) and our topology-preserving STACS (TPSTACS). The algo-
rithms were tested against both hand-segmented images (HS) as well
as the DNA ones (DNA). Note that R and P are given for the value
of threshold T' = 70% for HS and T' = 95% for DNA. Other values
of R and P are given in Fig. 3.

Results. Results based on these methods are given in Table 1
as well as Fig. 2. Both algorithms were tested against HS as well as
DNA. All measures have been averaged over all cells and all images.
In terms of recall and precision, which roughly measure the percent-
age of usable contours after segmentation, TPSTACS outperforms
SW by a fair margin. This is because there is extensive splitting
and merging in SW, whereas there are few in TPSTACS, due to our
topology preservation constraint. Note that the measures of recall



Fig. 2. Sample images for an easy case (top row) and a difficult one (bottom row). All images are of total protein with the initial contour
inside the final segmented contour. Cropped regions are shown for detail. First column: Hand-segmented images used as ground truth. Second
column: Results of the modified seeded watershed [1]. Note how in the difficult case (bottom image), there are both splits and merges. Third
column: Results of the modified STACS algorithm. Note how in both cases, the contours merge, creating artificial cells. Fourth column:
Results after 35 iterations of our algorithm with topology preservation added (TPSTACS). The merging of contours is no longer a problem.
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Fig. 3. Recall and precision for SW and TPSTACS, computed
against the hand-segmented images (HS) as well as the DNA ones
(DNA) with values of threshold from 100% decreasing by 5% to
35%. Note that, for orientation, a final, artificial point at T=0% has
been added as a projection of the last point on the curve. The curve
for TPSTACS against DNA reduces essentially to one point as all the
DNA contours are enclosed within the final TPSTACS contours.

and precision are somewhat coarse, as they do not take into account
the fit of the final contour to the hand-segmented one. We thus con-
sider area similarity, to compare the areas of hand-segmented cells
versus those segmented both by SW as well as TPSTACS. The mea-
sure yielded 80.51% for TPSTACS versus 30.82% for SW; this was
expected as TPSTACS produces tight contours as opposed to SW
ones (see Fig. 2, second and fourth columns). Area overlap yielded
82.14% for TPSTACS versus 62.15% for SW (against HS). Looking
at the area overlap against the DNA (as well as recall and precision
against the DNA), we see that essentially, almost 100% of our seg-
mented cells are usable. Therefore, by both objective measures of
quality (recall/precision, area similarity and area overlap) as well as
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subjective (visual inspection), we conclude that TPSTACS outper-
forms SW by a fair margin.

In summary, by using the combination of STACS with topology
preservation, we have built a powerful algorithm for segmentation of
fluorescence microscopy images. Future work includes using the 3D
information built in the volumes, testing the algorithm and tuning the
parameters for other data sets, and improving the above measures.
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