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Abstract—In many sensor networks applications, sensors collect corre-
lated measurements of a physical field, e.g., temperature field in a building
or in a data center. However, the locations of the sensors are usually
inconsistent with the application requirements. In this paper, we consider
the problem of estimating the field at arbitrary positions of interest, where
there are possibly no sensors, from the irregularly placed sensors. We
map this sensor network on a graph, and, by introducing the concepts of
interconnection matrices, system digraphs, and cut point sets, we can pose
sensor network tradeoffs and derive real-time field estimation algorithms.
The results of temperature field estimation, obtained from simulations
and real world experiments, show that the methodology presented in
this paper can successfully predict the field values at arbitrary locations,
including others than the ones with sensors.

I. INTRODUCTION
Sensor networks are often used in the applications where field

values governed by continuous, distributed dynamics need to be
monitored and controlled. e.g., temperature monitoring and con-
trolling in buildings to provide comfort for occupants [1] or to
minimize the cost of cooling in data centers with large numbers
of computers [2]. Spatial and temporal irregularities in the physical
data and the physical device array are usually inconsistent with the
application requirements. For example, the sensors are placed at
irregular positions, while the application usually requires tracking
the field values at other locations.
In this paper, we consider the problem of estimating values at

points other than the sensor locations in correlated dynamic fields,
whose underlying physics can be modeled by lumped-parameter
models. To be able to do this, we assume that the field is spatially
and temporally correlated. A second important feature of our work is
that we assume that the field of interest is well described by a partial
difference equation (PDE) that captures the underlying physics. This
is an appropriate model, for example, to describe heat transfers
in a building or temperature distributions on a micro-electronic
chip, since temperature dynamics are governed by partial differential
equations (PDEs) that characterize the thermal effects of convection,
conduction, and radiation [3], [4]. We do not directly consider the
PDE model, but rather lumped parameter dynamic models derived
from it, such as RC networks used in heat transfer studies [5],
[6]. These lumped parameter dynamic models can be derived from
discretizations of the PDE model under certain operating regimes.

II. PROBLEM STATEMENT

With reference to Figure 1, we consider the problem of estimating
the values of the physical field in a region at specific locations
of interest R = {r1, . . . , rn} based on measurements at sensor
locations S = {s1, . . . , sm}. The locations of interest R will be
in general different from the sensor locations S. Furthermore, we
want to estimate these field values based on a subset S0 of the sensor
measurements, where S0 ⊂ S. For simplicity, we assume initially
that the sensor measurements are synchronous and periodic in time,
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occurring at t0, t1, . . . with sampling period tk+1 − tk = Ts. This
means that we ignore the temporal irregularities and focus on dealing
with the spatial irregularities.
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Fig. 1. Estimation in correlated distributed field.

We assume that the evolution of the field can be modeled at
various levels of complexity. In these different models, we refer to
the various unknown constants as parameters, denoted by a vector θ.
The most detailed first-principles (fp) model of the distributed system
dynamics is denoted byMfp. We approximateMfp by various finite-
dimensional (lumped-parameter) models. For the class of problems
considered in this paper, we use a detailed lumped-parameter model
Mde that captures the relationship between the measured field values
at locations S and the field values at the locations of interest, that is,
at locations R. We then formulate appropriate estimation problems
for the finite dimensional lumped-parameter model Mde.
We assume that the physical field is modeled by a detailed lumped-

parameter model Mde described by1:

ẋ = A(θ)x+B(θ)u, y = Cx+w (1)

where: x ∈ Rp is the state; u ∈ Rq is the input; the components
of the output y ∈ Rm correspond to available measurements in the
sensor network application; w is the measurement noise; θ ∈ Rk

is the vector of unknown parameters; and A,B,C are matrices of
dimensions p × p, p × q, and m × p, respectively. The state x
collects the field values at all locations discretizing the space of
interest; these include the sensors S and the locations of interest R.
In general, however, the state collects many more locations than just
these, as required by the discretization of the partial differential (or
difference) equation describing the phenomena of interest; in other
words, the dimensionality of the state is determined by a Nyquist

1We express the time evolution of the field by differential rather than
difference equations. This is for notational convenience—it provides for more
compact notation. In practice, we work with difference equations and discrete
time.
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sampling rate type argument. The input u represents, for example, in
the temperature field application, the heat exchanges with the external
world, usually unknown, unless sensors are at strategic locations.
The field described by (1) is correlated. It is well known from

stochastic processes and linear systems that its correlation follows
the Laypounov equation

dΣx,t
dt

= A(θ)Σx,t + Σx,tA(θ)
T +B(θ)QB(θ)T , (2)

where Q is the covariance of u.
To illustrate the field equations, we illustrate the measurement

equation for the simple case where the first m entries in x are
the sensor measurements and the last n entries in x are the field
at the locations of interest. The vector y of sensor measurements
corresponds to a subset of the state variables. Then, C is given by

C =
�
Im 0m×(p−m)

�
, (3)

where Im is the m × m identity matrix, and 0m×(p−m) is a zero
matrix of dimension m × (p −m). More complex sensor network
patterns can be similarly represented.
Problem: Field estimation in sensor networks Our goal is to

derive an algorithm to estimate in real-time the field variables f ∈ Rn

at the locations of interest R from the sensor network measurements
available:

f = Fx, F =
�
0n×(p−n) In

�
(4)

where F is an n× p matrix. The estimation of f is to be based on
the available sensor measurements y. In sensor networks, due to the
constraints on communication and computation, we cannot broadcast
all the sensor measurements y to implement the real-time estimation
of the field at the locations of interest R. Rather, in estimating the
field at a given location in R, we want to determine which ones are
the relevant sensors and use their measurements and only theirs in
the field estimation at that location of interest. In other words, our
task is to partition the sensor network measurements and the system
equations (1) in such a way that the field at each location of interest
is estimated from a selected subset of sensor measurements ys ∈ Rl,
where l ¿ m. To achieve this, we first exploit the field correlation
structure to map on graphical models this sensor network estimation
problem. We then develop graph network algorithms to determine the
set of relevant measurements and to partition the state equation (1)
to achieve the field estimation at each location of interest R using
only local measurements.

III. APPROACH BASED ON GRAPH THEORY
In this section, we rework the sensor network field estimation

problem as an estimation problem on graphs. We introduce three
needed concepts: interconnection matrix, system digraph, and cut
point set. We then derive a theorem and present an algorithm that
partitions the system digraph and allows us to replace the estimation
of the field from global measurements by estimation of the field using
only local (i.e., neighboring) measurements. Finally, we illustrate the
overall approach in detail with real sensor network measurements
collected with Crossbow temperature sensors.

A. Concepts
The relationship among the input, the state, and the output of

a linear dynamical system is well represented by interconnection
matrices and system digraphs, [7]. When the output is a subset of
the state variables, as it is usually the case in sensor networks, the
relationship between the state and the output is trivial; we need
only to consider the relationship between the input and the state.

Because of this, we modify the concepts of interconnection matrices
and system digraphs as follows.

Definition 1 (Interconnection Matrix): For a linear system S
with system equation:

ẋ = Ax+Bu, (5)

where A and B are matrices of dimensions p × p and p × q,
respectively, the interconnection matrix is the binary p × (p + q)
matrix E = (eij) defined as

E =
�
Ā B̄

�
, (6)

where the matrices Ā = (āij) and B̄ = (b̄ij) are

āij =

�
1, aij 6= 0,
0, aij = 0,

b̄ij =

�
1, bij 6= 0,
0, bij = 0.

(7)

The matrices Ā and B̄ are Boolean representations of the original
system matrices A and B. By converting matrix elements to binary
values, the interconnection matrix E captures the structural properties
of the dynamical system, without much concern for the specific
numerical values of the system parameters, [7].
To interpret the system S structural properties, we introduce

digraphs (directed graphs). A digraph is, [8], an ordered pair D =
(V, L), where V is a nonempty finite set of vertices (points, nodes),
and L is a relation in V , that is, L is a set of ordered pairs (vj , vi),
which are the directed edges (lines, arcs) connecting the vertices of
D. Note that, in digraphs, the direction of an edge is important.
We now consider the system digraph for the system S with

interconnection matrix E = (eij). We modify the concept of system
digraphs in [7] as follows.

Definition 2 (System Digraph): The system digraph D = (V,L)
of a system S with interconnection matrix E = (eij) has: (i)
the vertex set V = U ∪ X, where U = {u1, u2, . . . , uq} and
X = {x1, x2, . . . , xp} are nonempty sets of input and state vertices
of D, respectively; and (ii) the edge set L, where the directed edge
(vj, vi) ∈ L if and only if eij = 1. The vertex set V includes
measurable vertices and unmeasurable vertices that are represented
by two different marks, respectively, in the system digraph.

As we commented below (1), the state and input of the system S
describing the field may include measurable inputs and unmeasurable
inputs, and measurable states and unmeasurable states: the measur-
able inputs and the measurable states correspond to inputs and states
measured by the network sensors. Appropriately, we partition the
input and state vertex sets U and X in the system digraph as follows:
(i) the input vertex set U = Um∪Un, where Um = {um1 , . . . , umi}
is the vertex set of measurable inputs, and Un = {un1 , . . . , unj} is
the vertex set of unmeasurable inputs; and (ii) the state vertex set
X = Xm ∪ Xn, where Xm = {xm1 , . . . , xmi} is the vertex set
of measurable states, and Xn = {xn1 , . . . , xnj} is the vertex set of
unmeasurable states. This grouping of the input vertex set and of the
state vertex set partitions the digraph vertex set as V = Vm ∪ Vn,
where Vm = Um ∪ Xm is the measurable vertex set and Vn =
Un ∪ Xn is the unmeasurable vertex set. In a system digraph, we
represent measurable and unmeasurable vertices by different marks,
e.g., by circles and squares, respectively.
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We illustrate the concept of interconnection matrices and structure
digraphs when the system matrices in (1) are:

A(θ) =

0 a12 0 0 0 0 0 0 a19
a21 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 a38 0
0 0 0 a44 0 0 0 0 0
0 0 0 0 0 0 a57 0 0
0 0 0 0 0 0 a67 a68 0
0 0 0 a74 a75 a76 0 0 0
0 a82 a83 0 0 a86 0 0 0
a91 0 0 0 0 0 0 0 0


,

B(θ)T =

 0 0 0 0 0 0 0 b81 0
0 0 b32 0 0 0 0 0 0
0 0 0 b43 0 0 0 0 0

 ,
(8)

where the nonzero elements in A(θ) and B(θ) may be con-
stants or functions of unknown parameters θ. The state vector
x = [xm1, . . . , xm6, xn1, xn2, xn3]

T , and the input vector u =
[um1, un1, un2]

T . Then the interconnection matrix E of the system
S can be derived as:

E =

�
Ā B̄
0 0

�
xm1xm2xm3xm4xm5xm6xn1xn2xn3um1un1un2

=

xm1
xm2
xm3
xm4
xm5
xm6
xn1
xn2
xn3
um1
un1
un2



0 1 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


(9)

According to Definition 2, the corresponding structure digraph of
the system S is shown in Figure 2 where circle nodes represent mea-
surable vertices, and square nodes represent unmeasurable vertices.
A directed edge (vi, vj) shows the vertex vj’s dependence on vi. For
example, the edge (un1 , xm3) shows that the update of the state xm3

(partially) depends on the value of the input un1 .
Now we introduce the concept of cut point set in the context of

system digraphs. Assume D = (V,L) is a system digraph, where
V = Vm ∪ Vn, Vm = Um ∪ Xm, and Vn = Un ∪ Xn, as
defined previously. Let Xs be a subset of state vertices (measurable
and/or unmeasurable), i.e., Xs ⊆ X . Usually, the unmeasurable state
vertices in Xs correspond to the field values at locations of interest.
The cut point set Pc for the state vertex set Xs is defined as follows.

Definition 3 (Cut Point Set): In the system digraph D = (V,L),
the cut point set Pc for the state vertex set Xs is a set of measurable
vertices, i.e., Pc ⊆ Vm, for which we can find an extended state
vertex set X 0

s ⊇ Xs such that:
i) For an arbitrary vertex vi ∈ Pc, there exist at least one edge
(vi, vj), where vj ∈ X0

s;
ii) There does not exist any edge (vi, vj), where vi ∈ V ∩ P̄c ∩ X̄ 0

s

and vj ∈ X0
s.

xm6

um1

xm4xm5

xm3xm2

xm1 xn2

xn1

un1

xn3

un2

'1SX

'2SX

Fig. 2. Example of system digraphs.

In the above definition, condition (i) shows that each vertex in the
cut point set Pc has a direct impact on at least one vertex in the
extended vertex set X0

s; condition (ii) shows that the vertices in X 0
s

only depend on the vertices in Pc and X0
s, which implies that the

vertices in X0
s have no relationship with the vertices not in Pc and

X0
s. Note that the vertices in the cut point set Pc are measurable, i.e.,

their values are known, and Pc can contain both state vertices and
input vertices. In other words, Pc ⊆ Vm. Then all the vertices in X 0

s

depend only on themselves and on the known vertices in Pc.
The following issues need to be addressed:
1) The cut point set for Xs may not be unique since we can add
different vertices into Xs to form X 0

s.
2) As a result of item 1, when there is more than one cut point
set for Xs, we can define a maximal/minimal cut point set
whose corresponding extended state vertex set X 0

s has the
maximal/minimal cardinality. Note that the concept of the
maximal/minimal cut point set is defined on the size of X0

s,
rather than the size of the cut point set itself.

Cut point sets are key in our approach. For a given vertex set Xc,
which usually includes all the states to estimate, its cut point set Pc
is the set of measurable vertices that impact the states in Xs, i.e.,
the states in Xs only depend on the vertices in Pc; other vertices
(sensors) not in Pc can be ignored. We introduce this concept so that
for a given task we use only the measurements from the subset of
sensors that are strictly necessary, thus reducing the communication
burden and the computational load required for estimating the field
in the vertices in Xs.
When there are multiple states to estimate, we have two choices:

we either find a single “large” cut point set for all the states of
interest; or, we find “small” cut point sets, one for each state of
interest. The latter approach distributes the estimation, since each
state is estimated based on the information from neighboring sensors,
and the estimation can be implemented locally.
We explain cut point sets with reference to the system di-

graph in Figure 2. Let the unmeasurable state vertex set Xs =
{xn1 , xm6}. One of the cut point sets for Xs is Pc1 =
{xm2 , xm3 , xm4 , xm5 , um1}, with the corresponding extended ver-
tex set X0

s1 = {xn1 , xn2 , xm6} encircled by the dotted line
in Figure 2. The other cut point set for Xs is Pc2 =
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{xm1 , xm3 , xm4 , xm5 , um1}, with the corresponding extended ver-
tex set X0

s1 = {xn1 , xn2 , xm2 , xm6} encircled by the dashed line
in Figure 2. Since Pc1 and Pc2 are the only two cut point sets for
Xs and X0

s1 ⊂ X0
s2, Pc1 and Pc2 are the minimal and maximal cut

point sets for Xs.
We now present an algorithm for finding the minimal cut point set

for a given state vertex set. Assume that a system digraphD = (V,L)
corresponds to an interconnection matrix E = {eij} of dimension
p × (p + q), i.e., the state x ∈ Rp and the input u ∈ Rq . Let the
state vertex set X = {x1, . . . , xp} and the input vertex set U =
{u1, . . . , uq}. The universal vertex set V = X ∪ U . The task is to
find the minimal cut point set Pmin for the given state vertex set
Xs = {xs1 , . . . , xsm}. Let ∅ be the empty set. This is accomplished
by the following algorithm.

Algorithm 1 (Searching for the minimal cut point set):
1. Initialization Let Pmin = ∅, X0

s = Xs, Xt = ∅, and
Xst = Xs.
2. Let Pt be the set of all the vertices in X̄0

s that are
associated with at least one directed edge pointing to the vertices
in Xst. If Pt = ∅, go to Step 6.
3. For each vertex in Pt: if it is a measurable (state or input)

vertex, add it to Pmin; if it is an unmeasurable state vertex, add
it to X0

s and Xt; if it is an unmeasurable input vertex, go to
Step 6.
4. If Xt = ∅, go to the Step 5; otherwise, let Xt = ∅, Xst =

Xt, and go back to Step 2.
5. End. Pmin is the minimal cut point set for the given state

vertex set Xs, and X0
s is the extended state vertex set.

6. End. There is no cut point set for Xs.

We next prove that the resulting cut point set Pmin is the minimal
cut point set for Xs.

Proof: Let Xs be the given state vertex set, Pmin the resulting
cut point set from Algorithm 1, and X0

s the corresponding extended
state vertex set. According to Algorithm 1, only unmeasurable state
vertices could be added into X0

s. Therefore, X̃ 0
s = X 0

s ∩ X̄s is a
set of unmeasurable state vertices, and the vertices in Xs depend on
the vertices in X̃0

s. For each vertex in X̃0
s, there exists at least one

path starting from this vertex to vertices in Xs, and all the vertices
included in these paths (except the ending vertices) are unmeasurable
state vertices.
We prove by contradiction that Pmin is the minimal cut point set

for Xs. Assume that there exists a cut point set smaller than Pmin,
denoted by Pmm, and its corresponding extended state vertex set is
Xmm ⊂ X 0

s. Since the vertices in Xs only depend on the vertices
in Pmm, and Pmm is a set of measurable vertices, X̃0

s must be a
subset of Xmm, i.e., X̃0

s ⊂ Xmm. In other words, the vertices in
X̃0
s must be included in the paths starting from the vertices in Pmm

to the vertices in Xs. Since Xs ⊂ Xmm and X̃0
s ⊂ Xmm, we know

Xs∪X̃0
s ⊆ Xmm, i.e.,X 0

s ⊆ Xmm. This conflicts with the assumption
of Xmm ⊂ X0

s. Therefore, there does not exist any cut point set
smaller than Pmin, i.e., Pmin is the minimal cut point set for Xs. ¤

Based on Algorithm 1, we can derive another algorithm to find all
the cut point sets for Xs. Let Pmin be the minimal cut point set for
Xs with corresponding extended state vertex set X0

s.

Algorithm 2 (Searching for all cut point sets):
1. Initialization Let Pc = Pmin.
2. Represent Pc by {v1, . . . , vk}. For 1 6 i 6 k, let Xsi =

X0
s ∪{vi}, and search for the minimal cut point set Pci for Xsi

by Algorithm 1: if Pci exists, save it as a new cut point set for
the original state vertex set Xs.
3. For each new cut point set Pci, let Pc = Pci and repeat

Step 2. Do this recursively, until we cannot find any new cut
point set for Xs.
4. End.

If we cannot find a new cut point set for Xs by Algorithm 2, the
Pmin is the only cut point set for Xs; otherwise, among those new
cut point sets, the one whose corresponding extended state vertex set
Xsi has the largest cardinality is called the maximal cut point set
Pmax.

B. Theorem
With the concepts of interconnection matrix E, system digraph

D = (V,L), and cut point sets, we introduce the main result of our
approach given in the following theorem.

Theorem 1: In the system digraph D = (V, L) of a system S,
given a state vertex set Xs, assume that we find a cut point set Pc
for Xs and the corresponding extended state vertex set X 0

s. We then
can establish a new system S0, based on the system S, whose inputs
are the vertices in Pc, whose states are the vertices in X0

s, and whose
system matrices A0 and B0 can be derived directly from the system
matrices A and B of the original system S. The states of the new
system S0 correspond to a subset of the states in S, and have the
exactly same time series values as those of the corresponding states
in S under the same initial conditions and inputs.

Proof: For convenience, the vectors corresponding to the vertex
sets U , X, Xs, X0

s, and Pc are represented in bold lowercase font
as u, x, xs, x0s, and pc, respectively.
In the original system S, let the state vector be x =

[x1 x2 . . . xn]
T , the input vector be u = [u1 u2 . . . um]

T , and
the system matrices be A = {aij} and B = {bij} with dimensions
n × n and n × m, respectively. The state equation in matrix form
corresponds to the group of linear equations:

ẋi =
n[
j=1

aijxj +
m[
j=1

bijuj , i = 1, 2, . . . , n. (10)

Assume that we find a cut point set, denoted by pc =
[xc1 xc2 . . . xcp uc(p+1) uc(p+2) . . . ucq ]

T , for a given state ver-
tex set xs = [xs1 xs2 . . . xsk ]

T and the corresponding extended
vertex point set x0s = [xs1 xs2 . . . xsl ]

T , where l ≥ k, q ≥ p,
xsi ∈ x, xci ∈ x, and uci ∈ u. Note that the indices of elements
in pc, xs, and x0s have the same values as the indices of the
corresponding elements in x and u. For example, if xc2 in XC

corresponds to x6 in x, then c2 = 6.
According to the definition of the cut point set pc and the resulting

extended state vertex set x0s, if we only select from equation (10) the
linear equations corresponding to the states in x0s and ignore the zero
items, we get a new group of linear equations:

ẋsi =
l[

j=1

asisjxsj +

p[
j=1

bsicjxcj +

q[
j=p+1

bsicjucj , (11)

i = 1, 2, . . . , l, i.e., the update of the states in x0s only depends on
the elements in x0s and pc. If we write equation (11) in matrix form,
we get the system equation of a new system S0:

ẋ0 = A0x0 +B0u0, (12)

where the input u0 = pc, the state x0 = x0s, and the system matrices
A0 = {a0ij} and B0 = {b0ij} are given as:
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a0ij = asisj , where 1 ≤ i, j ≤ l,
and b0ij = bsicj , where 1 ≤ i ≤ l and 1 ≤ j ≤ q.
For the new system S0, since the linear equations in equation (12)

are exactly the same as the corresponding linear equations in equa-
tion (10), and the elements of the input u0 have the same time series
values as the corresponding state elements and/or input elements in
the original system S, the elements in the state x0 have the same
time series values as the corresponding state elements in the original
system S. ¤

Intuitively, the new system S0 extracts the exact information about
the states in X0

s and Pc from the original system S, and can be
regarded as an independent subsystem of S. Note that, in the new
system S0, all the inputs are known.
We explain the theorem using again the previous example shown in

equations (1) and (8). Recall the state vertex set Xs = {xn1 , xm6},
the cut point set Pc = {xm2 , xm3 , xm4 , xm5 , um1}, and the
corresponding extended state vertex set X0

s = {xn1 , xn2 , xm6}.
By equations (1) and (8), if we only select the linear equations
corresponding to the states in X0

s, we have:

˙xm6 = a67xn1 + a68xn2
˙xn1 = a74xm4 + a75xm5 + a76xm6

˙xn2 = a82xm2 + a83xm3 + a86xm6 + b81um1 .
(13)

According to Theorem 1, if we write the above equations in matrix
form, we get the state equation of the new system S0:

ẋ0 = A0x0 +B0u0, (14)

where x0 = [xm6 xn1 xn2 ]
T , u0 = [xm2 xm3 xm4 xm5 um1 ]

T ,
and the system matrices

A0 =

 0 a67 a68
a76 0 0
a86 0 0

 ,
B0 =

 0 0 0 0 0
0 0 a74 a75 0
a82 a83 0 0 b81

 . (15)

In the new system S0, all the inputs are known, and there is one
measurable state in the state vector. If we assign the measurable state
in the state vector as output, then the output is also known. We can
then use classical system identification techniques to estimate the
unknown parameters θ.
In our approach to field estimation, we use this theorem twice: first,

with the detailed model lumped-parameter Mde(θ) with unknown
inputs, we use the theorem to obtain a new detailed model M(θ)
with both known inputs and known outputs, so that we can estimate
the unknown parameters θ by system identification; second, for model
reduction, we use it to obtain a reduced model with measurable states
as input. We discuss this next.

C. Approach Description
The flow chart in Figure 3 summarizes our approach. For ease of

the discussion, each block of the flow chart in Figure 3 is assigned
an index i and denoted by Block i, i = 1, . . . , 7. We next describe
the overall approach in 4 steps using the flow chart as a reference.
In our discussion, for convenience, the parameter vectors θ0, θ, and
θr can also be regarded as the sets of parameters.
STEP 1. Modeling (Blocks 1 → 2). Block 1 represents the

real world. We first construct a detailed finite-dimensional, lumped-
parameter model Mde, as shown in Block 2, in terms of the field
variables at sensor locations S and specific locations of interest R,
plus any inputs and additional state variables required to define a
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( )

)( ˆ

ˆ

)( rr

r

)( rr
ˆ

r
ˆ

Detailed physical model with

unknown parameters

modifying

)0(de

U Y

1

2

3

4

5

6

7

8

Fig. 3. Approach flow chart.

detailed model. We currently assume that we are given the detailed
lumped-parameter model Mde and ignore the modeling process that
starts from the first-principles model Mfp of the real system and
results in the lumped-parameter model Mde. Usually the detailed
lumped-parameter modelMde has unknown parameters θ0; we make
this explicit by referring to Mde(θ0).
STEP 2. Parameter Estimation (Blocks 2 → 3 → 4 → 5).

Given experimental data, estimate the unknown parameters θ0 in
the detailed model Mde(θ0) (Block 2). We use system identification
techniques [9] that assume that both the input and the output of the
system are known. We assign to the output of Mde(θ0) available
sensor measurements, i.e., the output Y r is known. With respect to
the input, we consider the two cases where the input Ur is known
or the input Ur is unknown or partly known.
Case 1: input Ur is known.
In this case, the model modification process (Block 2→ 3) can be

ignored. we estimate the parameters θ0 directly by classical system
identification techniques [9], which can be implemented by widely
used tools found for example in MATLAB. We obtain the detailed
modelM(θ̂) with estimated parameters θ̂, as shown in Block 5, where
M =Mde and θ̂ = θ̂0.
Case 2: input Ur is unknown or partly known.
Some of the inputs may be difficult to measure directly, which

makes it difficult to use classical system identification techniques to
estimate the unknown parameter vector θ0 in Mde(θ0). We modify
the original system S corresponding to Mde(θ0) (Block 2), in
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particular, the assignment of system inputs and outputs, by Theorem 1
to obtain a new system S0 that corresponds to a new detailed
lumped-parameter model M(θ) (Block 3), where θ ⊆ θ0. The new
model M(θ) includes all the field locations of interest and has both
known input and known output, so that we can use classical system
identification techniques to estimate the unknown parameters θ, as
shown in Blocks 4 and 5.
Referring to equation (4), the field variables f we want to estimate

are actually a subset of unknown/unmeasurable states in the state
vector x. To apply Theorem 1, in the corresponding system digraph
for the original system S, we need to find the cut point set Pc
for a state vertex set Xs, where Xs includes all the state vertices
corresponding to the field variables in f and at least one measurable
state vertex. Since Xs ⊆ X0

s, the corresponding extended state
vertex set X0

s includes at least one measurable state vertex. By
Theorem 1, we assign Pc as input, the corresponding extended state
vertex set X0

s as state, the measurable state vertices in X0
s as output

to obtain a new system S0, denoted by model M(θ). Since the
input and output of the new system are known, we use classical
system identification techniques to estimate θ. Based on the resulting
modelM ˆ(θ) (Block 5), with estimated parameters θ̂, we estimate the
unmeasurable state vertices in Xs, i.e., the field variables in f .
It may appear that a maximal cut point set for Xs is preferable

since more measurable vertices can be used to estimate the unknown
model parameters. However, a larger cut point set may introduce
more unknown parameters in the resulting new system. The tradeoff
between the two factors will be the subject of further study.
STEP 3. Model Reduction (Blocks 5 → 6 → 7 → 8). The

detailed model M(θ̂) (Block 5) that resulted in Step 2 may be
computationally too intensive to be useful in practice to estimate
the real-time field values at the locations of interest due to power
constraints and limited communication bandwidth in sensor networks.
We consider now reduced-order models to the detailed model. We

use this term with a meaning different from the usual one. In the
literature, reduced-order models have the same number of inputs and
outputs as the original (full-order) model. Our goal is different: it
is to estimate the field values at the locations of interest using the
smallest subset of sensors needed. We seek to establish a simpler
lumped-parameter model than the detailed model M(θ̂). We refer to
this simpler model as the reduced model Mr . With respect to the
availability of the cut point set for the state variables we want to
estimate, we consider the following two cases.
Case 1: we can find a cut point set.
We use again Theorem 1 to reduce the model. Let Xs = f and

assume that we are able to find the minimal cut point set Pc for
Xs. Choose Pc to be the input, the corresponding extended state
vertex set X0

s to be the state, and Xs to be the output. According to
Theorem 1, the system equation for the new reduced model Mr(θ̂r)
(Block 8) can be derived directly from the detailed model M(θ̂),
where θ̂r ⊂ θ̂. The important fact to note is that the reduced-order
model Mr that we derive, although much simpler than the detailed
model M(θ̂), is an exact model to compute the field values at the
locations of interest. In this case, Blocks 6 and 7 should be ignored,
and the reduced model Mr(θr) (Block 6) can be directly used for
Step 4 (field estimation).
Case 2: we cannot find a cut point set.
In this case, it may not be possible to obtain the exact reduced

model. We establish a reduced model Mr(θr) (Block 5) with
unknown parameters θr whose inputs are some specified sensor
measurements, and whose outputs are the field variables at the
locations of interest, i.e., f . Since we can estimate f from the

detailed modelM(θ̂), we are able to use classic system identification
techniques to estimate the unknown parameters θr in the reduced
modelMr(θr), as shown in Block 7. In this case, the resulting model
Mr(θ̂r) (Block 8) is an approximate reduced model for M(θ̂).
STEP 4. Field Estimation (Block 8). Given the measurements of

a small subset of sensors, estimate the field variables at the locations
of interest, i.e., f . The reduced model Mr(θ̂r) derived in Step 3
can be used to obtain the real-time estimation of the field values
in f . However, since, in most cases, the system dynamics change
gradually, the parameter values of the reduced model should be
updated regularly to reflect these changes. Therefore, Steps 2 and 3
are repeated regularly, with the update interval depending on system
properties.
DISCUSSION In our approach described above, only the final step

in the flow chart of Figure 3 refers to real-time computation. The
“system identification” operations in Blocks 4 and 7 are performed
off-line, applying standard algorithms to data collected from the
sensor network. Both operations of model modification and model
reduction, i.e., searching for cut point sets, are also performed off-
line. After we obtain the resulting reduced model, we use it to
implement on-line estimation.
A basic assumption in our approach is that a linear lumped-

parameter model is appropriate to describe the spatial and/or temporal
dynamics of the random field. This is common practice and extends
easily to handle nonlinear fields by applying dynamic linearization,
where we linearize around nominal operating points. This can be
implemented in practice by a multi-model switch technique.
We have assumed that the sensor locations are known. However,

in practice, precise location of the sensors is not required since
the model estimation is achieved with the actual real data; in other
words, the model that is estimated accounts for the actual physical
interactions among the field measurements, regardless of the actual
positions of the sensors being known or not to the modeler.
As we discussed under Definition 3 in page 3, we may find

multiple cut point sets for a given state vertex set, i.e., we may obtain
multiple reduced models with different scales. The tradeoff between
estimation accuracy and model complexity is then an important issue
in practice. Usually, a larger model leads to more accurate estimation,
since it utilizes more information from the sensors. On the other
hand, a larger model requires more computational power and more
communication among sensors. How to select the optimal reduced
model for a given task is an important issue in our future research.

IV. EXPERIMENTS
We present experimental results to validate the methodology for

field estimation presented in this paper. We carried out an experiment
using a subdivision (left side of the dashed line) of the Carnegie
Mellon University Intelligent Workplace (IW). We placed multiple
Crossbow temperature sensors at locations S = {s1, ..., s9} and
chose a single location r where the temperature is to be estimated,
as shown in Figure 4. The wireless sensors communicate through the
802.11 wireless network protocol.
We construct a detailed lumped-parameter model. This model can

be described by an RC thermal model Mde(θ0) that includes all
the sensor locations S = {s1, ..., s9} and the desired location r
and whose input corresponds to the ambient temperature and the
temperature on the remaining of the IW building (right side of the
dashed line in Figure 4). This model has parameters with known
values (obtained from handbook data) and parameters with unknown
values, i.e., θ0 (due to the lack of information about the heat transfer
characteristics of free air in this room). We assume that there is no
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sensor placed outside the building and in the right part of the building,
therefore, the input of Mde(θ0) is unknown. Since RC model can
be represented by state-space equations, in the corresponding systen
digraph, we can use Theorem 1 to establish a modified lumped-
parameter model M(θ), where θ ⊂ θ0, whose known input includes
sensor measurements at the sensor locations {s1, ..., s7}, whose state
includes temperatures at location {s8, s9, r} and whose known output
corresponds to sensor measurements at locations {s8, s9}.
We collected temperature measurements at the sensor locations

S. We use then measurements to estimate the unknown parameters
θ in the model M using system identification techniques. We now
find a small subset of sensors S0 = {s2, s3, s6, s8, s9} to estimate
the temperature at the desired location r and establish a reduced
lumped-parameter model Mr. Based on Theorem 1, the reduced
model Mr can be derived by finding a minimal cut point set for
{r} in the system digraph corresponding to the model M . Finally,
given measurements of the sensors in S0, we estimate the real-time
temperature at the location r based on the modelMr. Reference [10]
contains the details of this experiment. Figure 5 shows the results on
estimating the temperature at the location r based on the reduced
modelMr . The agreement displayed in the figure between the actual
readings (solid line) and their prediction (dotted line) across the 4000
samples (except for occasional wild variations in the real measure-
ment time series that are attributed to malfunctioning of the sensors
between readings 2600 and 2800) shows that our methodology can
successfully predict the temperature field at locations other than the
ones where we have physically placed our sensors.

s1

s2

s3

s4

s8

r

s9

s5

s6

s7

Fig. 4. Floor layout of the IW building.

V. CONCLUSION

In this paper, we introduce the problem of field estimation in sensor
networks. We define three concepts: interconnection matrices, system
diagraphs and cut point sets. These help us map the problem of
correlated field estimation onto a graph. We present a theorem that
shows that the field at arbitrary locations can be estimated directly
from local sensors. We develop algorithms that can determine for
each location of interest which local sensors to use to estimate the
field. Finally, we present an experiment with real data using Crossbow
temperature wireless sensors to show that the proposed graph-based
approach can successfully estimate the real-time field values at
locations where there are no sensors. We are currently performing a
much larger experiment and studying the applicability of the method
described in the paper to study the temperature distribution in a room
housing a large farm of servers.
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