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ABSTRACT

This paper presents an integrated image registration algo-
rithm to correct the motion induced by patient breathing
for dynamic renal perfusion MR images. Registration of
kidneys through the MR image sequence is a challenging
task due to rapidly changing image contrast over the course
of contrast enhancement. Our algorithm achieves temporal
image registration in a multi-step fashion. We first roughly
register the images by detecting large-scale motion, and then
refine the registration results by integrating region informa-
tion and local gradient information with auxiliary image
segmentation results. We have tested the proposed algo-
rithm on several real patients and obtained excellent regis-
tration results.

1. INTRODUCTION

Magnetic resonance imaging (MRI) has been used for the
assessment of renal perfusion in an accurate and safe man-
ner. In renal perfusion MRI, the abdomen is scanned repeat-
edly and rapidly following a bolus injection1 of a contrast
agent. The kinematics of the contrast agent is reflected in
the intensity changes of the obtained time series of MR im-
ages. Analysis of the dynamic behavior of the signal inten-
sity can provide valuable functional information. Perfusion
MR image sequence often suffers from motion induced by
breathing during acquisition. To ensure the correspondence
of anatomical structures in different time frames, registra-
tion of time-series images is necessary. This is a challenging
task because the appearance of the kidney changes rapidly
over the course of contrast enhancement and therefore it is
not possible to use common approach of block matching
looking for best match in intensities across frames. In addi-
tion, different renal tissue types do not enhance uniformly,
which results in a rapidly changing image contrast.

To the best of our knowledge, there has been limited
work on the registration of dynamic renal perfusion MR im-
ages. An image processing system has been proposed to
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1Bolus injection is the injection of a drug (or drugs) in high quantity at
once, the opposite of gradual administration.

correct organ displacements using model-based segmenta-
tion [1]. Recent published work includes a phase difference
movement detection method [2] and a semi-automatic con-
tour registration method [3]. These methods all start with a
manually drawn kidney contour in one time frame. That ini-
tial contour is used to obtain a mask or a model, and then it
is propagated to other images in the sequence. In this paper
we propose an integrated image registration algorithm that
only requires the user to crop a rectangular region of inter-
est (ROI) containing a kidney. In our approach, large-scale
motion is identified by maximizing an edge-based consis-
tency metric that is invariant to rapidly changing contrast;
the registration results are then refined by integrating region
information and edge information with auxiliary image seg-
mentation results. Our experimental results show that by
exploiting the invariance of the consistency metric this al-
gorithm can successfully identify the translational motion
of the kidney across the image sequence.

The remaining of the paper is organized as follows. In
section 2, we present our integrated image registration algo-
rithm. Section 3 describes the data and presents our experi-
mental results. We conclude the paper in section 4 .

2. METHOD

This section describes an integrated image registration algo-
rithm. The most important consideration in the proposed ap-
proach is the use of the interdependence between segmenta-
tion and registration. Our observation is that registration and
segmentation are mutually beneficial. Segmentation helps
registration in that informative features in the images can
be identified based on segmentation results. These features
are required by a large class of image registration methods
prior to the registration process. On the other hand, suc-
cessful registration enables the use of the entire sequence of
images in the segmentation.

We use a multi-step approach in which segmentation
and registration are interleaved. Figure 1 shows a block di-
agram of the proposed scheme. The user is only required to
crop a ROI containing one kidney in a single high-contrast
image. First, we roughly register the selected ROI across
the image sequence. Then, we obtain the contours that de-
lineate the boundaries of renal cortex, by segmenting the
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Fig. 1. The block diagram of the proposed algorithm

subtraction image between the high-contrast image and a
pre-contrast image. Next, we propagate these contours to
other images in the sequence with integer pixel shifts. Fi-
nally, the entire image sequence is used to segment different
anatomical structures.

2.1. Rough Registration
To formulate the registration problem, we start with two as-
sumptions. First, we assume that the kidney is a rigid body,
and thus, its shape does not change during the perfusion
process. Second, we assume that the motion is only transla-
tional while ignoring possible scaling and rotation induced
by out-of-plane motion. This is a reasonable assumption
because translation is the dominant motion. Given a rectan-
gular ROI in one frame, the goal of this module is to find
the best match in other time frames by shifting the bound-
ing box of the selected ROI with integer pixel offsets. In
our approach, rough registration is accomplished by tem-
plate matching.

For template matching, it is important to extract the right
features to build the template. Generally two channels of
information are used, the intensity and the local gradient.
In this case, the intensity changes rapidly and we do not
know exactly what intensity level the template should as-
sume. Here, what we really need are image features invari-
ant to rapid intensity and contrast changes. Although the
relative intensities between tissues vary with time, we ob-
serve that the orientation of the edges along tissue bound-
aries are always parallel across the image sequence. So we
chose the template defined by the image gradient.

In our formulation, the image on which the ROI is man-
ually cropped, is called the reference image. Let (xr

l
, yr

l
) be

the position of the lth pixel inside the ROI. Let θr

l
and Mr

l

stand for respectively the direction and magnitude of the
image gradient at the corresponding pixel in the reference
image; we obtain θr

l
and Mr

l
using a Sobel edge detector.

We have experimentally observed that the final registration
results are basically insensitive to the choice of edge detec-
tor. Let S = {1, 2, . . . , L} denote the set of indices of all
the pixels inside the ROI, our template is represented by a
set of four tuples {(xr

l
, yr

l
, θr

l
,Mr

l
)|l ∈ S}. Let θc(x, y) de-

note the edge orientation and Mc(x, y) the edge magnitude

at pixel (x, y) in the current image; an edge-based consis-
tency metric for each pair of offset (dx, dy) is defined as
follows.

C (dx, dy) =

∑L

l=1
[wl(dx, dy) cos (2∆θl(dx, dy))]

∑L

l=1
wl(dx, dy)

, (1)

with wl(dx, dy) and ∆θl(dx, dy) being the weight and the
angle difference, respectively.

wl(dx, dy) = Mc(x
r

l + dx, yr

l + dy)M r

l (2)
∆θl(dx, dy) = θc(x

r

l + dx, yr

l + dy)− θr

l (3)

This is a weighted sum of cos (2∆θ) over the ROI. The
cosine of the double angle difference between the current
edge orientation and the reference orientation is chosen for
two reasons. First, it is invariant to contrast change, i.e.,
the angle difference between an edge defined by a transition
from dark to bright and by a transition from bright to dark
is ∆θ = π, which results in cos(2π) = cos(0). Second,
it is a nonlinear function whose first order derivative peaks
at ±π/4, which makes its value relatively less sensitive to
disturbances around∆θ = 0, π/2. Furthermore, we use the
product of the edge magnitudes as weight because it is de-
sirable for the ROI to be attracted to strong edges whose ori-
entations are consistent with those of the template. To sum-
marize, using the proposed consistency metric overcomes
problems related to the variation in the image contrast.

Since the location of the kidney is confined to a certain
range, we only need to compute C (dx, dy) within a search-
ing window. The integer shifts (dx∗, dy∗) that maximize C
are determined by exploring all possible solutions (dx, dy)
over the search space. Although this is an exhaustive search,
it is still fast because the search space is limited, usually to
30×10. Figure 2 displays representative images sampled
from a renal perfusion sequence. Results obtained using the
proposed method are superimposed by shifting the bound-
ing box to the best match location in each image. As shown,
the intensity of the kidney increases as the contrast agent
perfuses into the cortex, the medulla, and other structures
of the kidney. Despite the rapidly changing contrast and
the fact that translational motion of the kidney between two
adjacent frames can be considerably large, the algorithm is
able to track the kidney reliably in the complete sequence
of 250 images, with a maximum tracking error less than 2
pixels in both directions. The tracking error arises in im-
ages that lack strong edges because we only use the edge
information in the template. To improve the registration ac-
curacy, we propose to integrate the homogeneity of pixel
intensities with the edge information by incorporating the
knowledge of the contour delineating the kidney boundary.

2.2. Segmentation of the Kidney
The purpose of this component is to identify the boundary
of the kidney. Since the renal cortex is the outer layer of



Fig. 2. Rough registration results of representative images selected from a dynamic renal perfusion MR image sequence

the kidney, we attempt to obtain the kidney boundary by
segmenting the cortex from the roughly registered image
sequence. Figures 3(a)-(c) illustrate three registered ROI
representing respectively pre-contrast, wash-in, and post-
contrast during a perfusion process. Based on each individ-
ual image, it is difficult to distinguish different anatomical
structures due to the lack of contrast along some bound-
ary segments. However, subtracting a pre-contrast image,
see Figure 3(a), from a high-contrast wash-in image, see
Figure 3(b), results in an enhanced image as shown in Fig-
ure 3(d). Thanks to the wash-in of the contrast agent, de-
tecting the boundaries of the renal cortex becomes a less
challenging problem, to which we can apply, for example,
the level set method described in [4]. This is an energy min-
imization based segmentation method. It assumes that the
image is formed by two regions of approximatively piece-
wise constant intensities of distinct values [4]. In our case,
it can be seen easily in Figure 3(d) that the assumption is
valid; the image contains a bright object to be detected and
a dark background.

The segmentation results obtained using the level set
method are overlayed on the subtraction image, see Fig-
ure 3(d). Here the dotted contours are the initial curves,
while the solid contours are the resulting curves. Although
this is an approximate segmentation of the renal cortex, the
outer boundary of the kidney is well delineated. Utilization
of other images in the sequence, for instance, a post-contrast
image shown in Figure 3(c), leads to a more accurate seg-
mentation of the renal cortex. Figure 3(e) shows the final
segmentation results by overlaying the contours on an orig-
inal image from the sequence, while Figure 3(f) displays
the mask for renal cortex. These results indicate that we are
able to identify the kidney boundary accurately and obtain
a mask for the cortex.

2.3. Fine Registration

The segmentation results obtained in the previous step make
it possible to refine the template by ignoring irrelevant edge
information, and at the same time, by incorporating regional
homogeneity of pixel intensities.

Recall that the old template described in Section 2.1 is
represented by {(xr

l
, yr

l
, θr

l
,Mr

l
)|l ∈ S}. Let S1 ⊂ S de-

note the set of indices corresponding to either edge pixels

lying on the kidney boundary or their nearest neighbors un-
der a second order neighborhood system. The edge-based
consistency metric for the current image is then reduced to

Ce (dx, dy)=

∑

l∈S1
[wl(dx, dy) cos (2∆θl(dx, dy))]

∑

l∈S1
wl(dx, dy)

(4)

Let S2 ⊂ S denote the set ofN pixels that belong to the cor-
tex mask. Letmc(dx, dy) =

1

N

∑

l∈S2
I(xr

l
+ dx, yr

l
+ dy)

represent the average pixel intensity over the cortex mask in
the current image for offset (dx, dy). We define a region-
based consistency metric that penalizes intensity inhomo-
geneity as:

Cr(dx, dy)=
1− k2(dx, dy)

1 + k2(dx, dy)
;

k(dx, dy) =

√

1

N

∑

l∈S2
[I(xr

l
+ dx, yr

l
+ dy)−mc(dx, dy)]2

mc(dx, dy)

Note that k is analogous to the tangent of an angle, which
makes Cr the cosine of the double angle like Ce. We com-
bine the above two metrics as a weighted sum to obtain
C ′ (dx, dy) = λcCe (dx, dy) + (1− λc)Cr (dx, dy), where
0 ≤ λc ≤ 1, and the value of λc is linearly proportional to
the average gradient magnitude in the current image. Thus,
edge information is dominant in images with strong edges.
In contrast, region information plays a more important role
in images without strong edges. Similar to section 2.1, the
integer shifts can be determined by maximizingC ′ (dx, dy).

Figures 4(a)-(c) compare the results obtained before (thin
contours) and after (thick contours) applying the fine regis-
tration algorithm. For some images, as in Figure 4(a), the
thick contour is identical to the thin contour; For other im-
ages, the thick contours delineate the kidney boundary more
accurately, as in Figures 4(b)-(c).

3. RESULTS

We tested our algorithm on 5 real patient perfusion data sets.
Each data set contains 4 slices. The images were acquired
on Siemens Sonata MR scanners following bolus injection
of Gd-DTPA contrast agent. The image matrix was 256 ×
256 pixels. The number of frames in each image sequence
ranges from 150 to 350.
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Fig. 3. Segmentation results of roughly registered images.

To illustrate the performance of the proposed algorithm,
we present the results for a real patient in Figures 5(a)-
(c). The algorithm was performed separately for the left
and right kidneys. As shown, it has successfully identified
the boundaries (solid contours) of both kidneys in all the
images acquired before, during, and after contrast enhance-
ment. The results are more expressive with a video, which
is available from www.ece.cmu.edu/∼yings/Results.html.

For all the data sets in our study, we observe that the
integer pixel shifts obtained using the proposed algorithm
are highly consistent with the actual shifts. We have also
validated the registration results quantitatively for one se-
quence of 150 images, by comparing the resulting integer
pixel shifts with a “gold standard,” i.e., pixel shifts obtained
manually. An error size of at most one pixel is obtained for
over 95% of the images.

4. CONCLUSION

We have presented an integrated registration algorithm for
dynamic renal perfusion MR images. The algorithm inte-
grates region information and edge information with auxil-
iary image segmentation results. The strength of the algo-
rithm is in the utilization of image features that are invariant
to a rapidly changing contrast. We have obtained excellent
results with several real patient data sets. The algorithm de-
veloped in this paper for tracking translational integer pixel
motion of the kidney is the preprocessing step of a sub-
pixel registration method presented in [5]. In [6], we use
these registration results to segment different kidney struc-
tures based on the distinct dynamics of their intensity-time
curve. In our registration framework, the kidney is assumed
to be a rigid body. As future work, we plan to take into ac-
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Fig. 4. Fine registration helps improve the accuracy.

Fig. 5. Results obtained using the proposed integrated reg-
istration algorithm on a real patient MR perfusion sequence
for both kidneys.

count out-of-plane motion by incorporating parameters for
rotation and scaling.
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