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ABSTRACT

We introduce in this paper a new Bayesian algorithm for joint mul-
tiframe detection and tracking of multiaspect targets that move
randomly in cluttered digital image sequences. Two versions of
the algorithm are derived: a batch Bayes smoother and an on-line
Bayes filter. Performance results with a simulated image sequence
generated from real infrared airborne radar (IRAR) data show an
improvement over the association of a bank of comrelation detec-
tors and a Kalman-Bucy tracker in a scenario with a heavily clut-
tered multiaspect target.

1. INTRODUCTION

We present in this paper a new Bayesian algorithm for in-
tegrated, multiframe detection and tracking of multiaspect
moving targets in sequences of two-dimensional (2D} clut-
tered images that are generated by a remote airborne sen-
sor. Random changes in the aspect of the target of inter-
est may result from rotational motion and/or from changes
in the conditions of observation of the target due e.g. to
variations in the relative target-sensor orientation. Previ-
ous literature on aspect-invariant target detection in sensor
images, see e.g. [1], is concemed mostly with stationary
targets and focuses on designing correlation filters that are
robust to distortions of the target’s template. The literature
on moving target tracking, e.g. [2], is in turn based on a
suboptimal decoupling of the detection and tracking tasks:
a preliminary single frame detection stage (typically a corre-
lation detector) generates initial estimates of the target’s true
position which are subsequently associated to a multiframe
linear tracker, generally a variation of the Kalman-Bucy fil-
ter. In our work, we propose a different approach where
a Bayesian methodology is used to integrate detection and
tracking into a single framework using a recursive spatio-
temporal algorithm that fully incorporates the dynamical
models for target motion and aspect as well as the statistical
model for the spatially correlated clutter background.
Bayesian algorithms based on sequential Monte Carlo
methods have been successfully applied to shape and mo-
tion tracking in digital images, appearing in the computer
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vision literature under the generic name of condensation al-
gorithms [3]. In this paper, we use an alternative modeling
approach to solve the problem of joint Bayesian detection
and tracking in remote sensing images. Instead of defining
the unknown target position on a continuous-valued space,
we take advantage of the sensor’s finite resolution to model
the target’s centroid motion as a two-dimensional hidden
Markov model (HMM) defined on the sensor’s finite reso-
lution grid. Detection and tracking are easily integrated then
by adding a dummy absent target state to the HMM. Simi-
larly, we assume that the target of interest has a finit¢ num-
ber of possible aspect states and use a second HMM defined
on the discrete aspect state space to model the dynamical as-
pect changes from frame to frame. This approach to aspect
change modeling is similar to the work for target classifi-
cation in [4] with the difference that, in [4], the targets of
interest are stationary and the data are the electromagnetic
scattered waveforms of the targets rather than pre-processed
cluttered target images generated by an imaging sensor.

This paper is divided into 6 sections. Section | is this
introduction. Section 2 briefly reviews the observation and
clutter models. In section 3, we present a new Bayes smooth-
er that recursively computes the joint posterior distribution
of the target’s hidden position and aspect state at each frame
conditioned on all past, present, and future frames in a given
data volume. In section 4, we introduce an alternative on-
line Bayes filter that generates sequential estimates of the
target’s hidden position based on the past and present frames
only. In section 5, we compare the tracking performance
of the Bayes smoother and filter to the performance of the
suboptimal association of a bank of correlation filters and
a Kalman-Bucy filter. The performance studies are carried
out using a simulated multiaspect target which is added to a
sequence generated from real clutter infrared airbone radar
(IRAR) data. The clutter model parameters are adaptively
learned from the observed data. Finally, section 6 summa-
rizes the contributions of the paper.

2. OBSERVATION MODEL

The raw sensor measurements at instant » are sampled and
processed to form a digital sensor image represented by the
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L x M matrix
Y, = F(zn,80) + V. {1

In (1), F(z,, s,) is the clutter-free target image which is a
function of the target’s unknown (hidden) centroid position,
zn, and of the target’s unknown (hidden) aspect, s,. The
matrix V,, represents the background clutter.

The centroid position 2z, of a target that is present at

frame n is defined on a finite centroid lattice £ whose sites
are either one pixel in the sensor’s L x M finite resolution
image, or a pixel in the vicinity of the image’s borders, see
[5] for details. To integrate detection and tracking, we aug-
ment the centroid lattice with a dummy absent target state
denoted z, = L4 in this paper. We refer to the unjgn of £
and the absent target state as the extended lattice, £. Simi-
larly, we define the unknown (hidden) aspect at frame n, s,
on a finite discrete aspectsetZ = {0, 1, ...,J — 1} where
each element in Z is an index linking to one of J possible
targel templates. For each 2z, € L, the clutter-free target
image model F in (1) returns an aspect-dependent spatial
distribution of intensities which is centered on the location
Zn. For z, = Ly, function F returns a null image, indicating
that the target is absent from the scene.
Clutter Model We capture the 2D spatial correlation of the
background clutter using a noncausal, spatially homoge-
neous Gauss-Markov random field (GMrf) model [6]. The
clutter returns at frame n, V. (4, j), 1 < i< L, 1 £ j € M,
are described by the 2D finite difference equation

V(s ) = 85 (Vali = L, ) + V(i 4+ 1, 7]
+ B Vali, 7 - 1) +Va(i, 5+ D]+ Uali, 5) @)
where E [V..(i, ) Un(p, 7)] = 028{(i — p, j — r). The as-

sumption of zero-mean clutter implies a pre-processing of
the data that subtracts the mean of the background.

3. BAYES SMOOTHER

Let y,, be an equivalent long vector representation of the
nth sensor frame, Y., and let YI¥ = {yo, ¥1, ..., ¥~}
be a collection of N + 1 observed frames. Introduce the

matrices &,,, gn and S,, such that
an(i: J) = P(zn = i: Sn = j: Y(?) (3)
Bt ) = (Yl zm=148m=7) @
5.(0,7) = plyn| za=14,8.=]) (5)

forie £ and j € Z. We derive in the sequel an algorithm
for the recursive computation of P{z, = i, s, = j | Y&)
using the matrices defined in (3)-(5). We make the follow-
ing assumptions in the derivation:

¢ The sequence of clutter frames {V}, k£ > 0, is inde-
pendent indentically distributed (i.1.d.) and also statistically

independent of the sequences of target centroid positions,
{24}, and target aspect states, {sx}, k£ > 0.

« The sequences {2} and {sx} k > 0, are mutually in-
dependent first-order discrete Markov processes described
respectively by the transition probability matrices T and
T such that

5 =
Ta{lr)y =

(i,jye Lx L,
{I,r)eIxT.

Plzp =i{ za-1=7)
Plsy,=1| sp-1=71)
Forward Recursion From the memoryless observation model
in (1) and using the previous assumptions on the sequences

{z}, {s¢} and {V,}, we use Bayes’ law and the Theorem
of Total Probability to write

11ty 7) = P(¥ns1 | 21 =4, Snp1 = F)
x 3 [P(zn+l =ilza =0 Plsppr=J}sp=r)

1
X plzn =18, =1,Y})]

Snr1(i ) T1(i,0) [Z (L, r) TS (r, j)]
¢ r

or, in compact matrix notation,
T
Cpyy =Sn1 © {TIQnTz] (6)

where © denotes pointwise multiplication and the super-
script T stands for the transpose of a matrix. We initialize
the forward recursion (6) with ag(i, 7} = Sp{4,j)P(z0 =
'!:)P(Sg = ]).

Backward Recursion Using again the previous assumptions
on {2}, {sx}, and {V}, it follows from Bayes’ law and
the Theorem of Total Probability that

Bults 1) Z Z [p(Y{:;z Vzpg1 =1 8p01 =71}
1 T
P Vi1 | Zngr =1 8pq01 =71)
Plzppr =12, =1)
P(apy1 =18, = )]
ZTlT(z', f) Z Sar1(8,7)Bnpr (4, 7)Ta(r, 5)
1 T

x X X [

1l

or, in compact matrix notation,

8, =T [Surn®8,,,] 2. %)

The backward recursion in (7) is initialized with @ (7, j} =
Lvie L,Vjed
Optimal Bayes Smoother From the modeling assumptions,

P(zn=ia3n=j|Yli)V)

Cn [P(Y7h1 | 20 = 4,80 = §)

p(zn =1, 8o =7, Yg)]

Cranl(i, 7) Ba(i, ) (8)

Vel )

x

)
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where Gy = 1/p(Y}') is a normalization constant. From
v, WE obtain the marginal posterior distribution for the hid-
den centroid position z,,

Fuli) = Plza=i| Y = Zvn(i, iy.®

Multiframe Target Detection The minimum probability of
error multiframe detector at frame n is the test

Hy
Ful(La) 21— FalLy), (10)
H

where z,, = L is the absent target state, and Hy and H,
denote the hypotheses that the target is respectively absent
from and present at frame .

Multiframe Target Tracking The multiframe maximum a pos-
teriori (MAP) estimate of the target’s centroid position z,, at
frame n is

Zainy1 = argmax T, (1) (11
el

where £ is the centroid lattice, see section 2.

Remark The forward and backward recursions in {6) and
{7) may be interpreted as a generalization of the BCIR al-
gorithm [7] from digital coding theory. The main novelty
in our proposed method is that we do simuffaneous smooth-
ing of two hidden Markov sequences and process the ob-
served 2D sensor images directly using a likelihood func-
tion p(yn | #n, 8 ) that incorporates the 2D models for tar-
get signature’and chitter. Details on the computation of the
likelihood function with a 2D GMrf clutter model are found
in [5].

4. BAYES FILTER

The multiframe detector/tracker of section 3 is a batch algo-
rithm that uses forward and backward recursions to compute
the joint posterior distribution of the hidden variables at in-
stant nn conditioned on all past, present and future frames
in the data volume. In this section, we derive an alternative
on-line algorithm that is based on the recursive computation
of the joint posterior filtering distribution

fn|n(113)=P(zn:ts Sn:JlYg) (12)

conditioned only on present and past data. Note however
that

p(zn = i: Sn = j1 Y(?)
p(Yg)
From (13), we conclude that, barring a normalization con-

stant, the recursion for the computation of f,,, ceincides
with the forward recursion of the Bayes smoother, i.e.,

fal(8,7) = = Cnona(4,5) . (13)

Enitjnt1 = Knp18np1 © [Tif, T ] (14)

where K11 = 1/p(¥ny1 | Y§) is computed such that
frt1ns1(4,7) is summable to 1. From f,,, we compute
the marginal filtering distribution

Fain(@} =3 fapli, 5)- (15)
)

The multiframe detection and tracking steps are now iden-
tical to the detector and estimator in (10) and (11), but re-
placing 7, with fp),.

Remark: Parameter Estimation In practical situations, the
clutter and target model parameters must be leamed frem
the data. The GMrf model for real clutter can be easily es-
timated from test data using a single-frame, on-line version
of the approximate maximum likelihood (AML) estimator
introduced in [6]. No training data is required. The HMM
parameters for motion and aspect can be in turn estimated
from a large collection of training data using a variation of
the expectation-maximization (EM) algorithm [8].

3. PERFORMANCE RESULTS

We study next the tracking performance of the proposed
clutter adaptive Bayes smoother and filter with a multiaspect
target that is observed in a simulated image sequence gen-
erated from real clutter infrared airborne radar (IRAR) data.
The IRAR intensity imagery is from the MIT Lincoln Labo-
ratory’s Portage database and was obtained from the Center
for Imaging Sciences at Johns Hopkins University. To sim-
ulate the target, we took an artificial template representing
a military vehicle and generated a library of linear transfor-
mations of that template using composite operations of ro-
tation, scaling and shearing. We then added the artificial
target to the background sequence with a simuiated cen-
troid translation model that consists of two time-invariant
horizontal and vertical drifts equal to 2 pixels/frame per-
turbed by a 2D first-order random walk where the probabil-
ity of flucteation of one pixel in both dimensions was set
at 20 %. The template state was initialized with a random
unknown aspect state in the template library and then ran-
domly changed over time according to a first-order Markov
chain. The target pixel intensity was set according to a de-
sired low level of contrast between the template and the
background. Figures 1 (a) and (b) show two simulated fra-
mes, respectively at instants n = 0 and n = 6 with peak
target-to-clutter ratio (PTCR) equal to 6.3 dB. The simu-
lated target starts from an urknown initial position in the
sensor image and is subsequently tracked over 19 frames
using (1) the on-line Bayes filter; (2) the association of a
bank of correlation filters (each matched to one of the target
aspect views) and a linear Kalman-Bucy filter (KBf); and
(3) the batch Bayes smoother. The standard deviations of
the position estimation errors in the vertical and horizontal
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Fig. 1. Cluttered target sequence, PTCR=6.3 dB: (a) first
frame, (b} seventh frame with random target translation, ro-
tation, scaling, and shearing.
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Fig. 2. Standard deviation of the localization errot in num-
ber of pixels, PTCR = 3 dB: (a) vertical coordinate, (b) hor-
izontal coordinate; Bayes filter (solid), Bayes smoother(+),
Kalman Filter{(J).

coordinates as a function of the number of frames are plot-
ted in figures 2(a) and (b) respectively, with PTCR lowered
to 3 dB. The standard deviations are measured in number of
pixels and were obtained from 43 Monte Carlo runs. The
clutter parameters at each frame were adaptively estimated
using the AML algorithm [6].

We note from the plots in figure 2 that the correlation fil-
ter/KBf association performs poorly compared to the Bayes
trackers, exhibiting a longer target acquisition time in both
coordinates and a relatively high final position estimation
error in the vertical dimension. The on-line Bayes filter
bas a high initial error, but, as more frames are processed,
the algorithm quickly acquires the target and reaches a low
steady-state localization error. Finally, the batch Bayes smo-
other takes advantage of both past and future information
in the data volume to attenuate the large initial errors of
the Bayes filter, thus achieving near-perfect tracking for this
particular level of peak target-to-clutter ratio.

6. CONCLUSIONS

We introduced in this paper a new HMM-based Bayesian
methodology for clutter adaptive, joint multiframe detec-
tion and tracking of randomly moving multiaspect targets
in sequences of 2D digital images. The performance of the
Bayes algorithm was investigated with simulated image se-
quences generated from real clutter IRAR data. The on-line
detector/tracker based on Bayesian filtering exhibits a large
initial localization error, but quickly acquires the target as
more frames are processed, converging to a low steady-state
estimation error. The batch version of the detector/tracker
based on Bayesian smoothing improves the tracking perfor-
mance by using future data information to attenuate the fil-
ter’s high initial errors. Both the Bayes filter and the Bayes
smoother outperform the association of a bank of correla-
tion detectors with a linear Kalman-Bucy filter.
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