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ABSTRACT—BYy applying the Euclidian branch metric
in a Viterbi-like detector when the noise is signal-dependent
and correlated, the receiver falls short of the maximum
likelihood sequence detector (MLSD). We introduce new
signal-dependent correlation-sensitive branch metrics for
Viterbi-like implementations of the MLSD. We also pro-
vide an analytic analysis that calculates the probability of
error of such a detector and compares it to the performance
of the Euclidian detector. The new metric is well suited for
magnetic recording applications where, especially at high
recording densities, the noise is both correlated and signal-
dependent.

1. Introduction

The Viterbi implementation of the maximum likelihood
sequence detector (MLSD) was derived for a finite state
machine source (or equivalently a communications channel
with a finite intersymbol interference length) and memory-
less (usually white) noise [1],[2]. The branch metrics for
this Viterbi-like implementation of the MLSD in a com-
munications channel are then derived to be Euclidian dis-
tances between the received and the expected values in
the received signal space. When the intersymbol interfer-
ence (ISI) length is theoretically infinite, but negligible af-
ter some finite integer length K, it is common practice to
consider the ISI to be practically finite and proceed with
Viterbi detection using the Euclidian metric. Notice that
for this approach to give optimal results, the noise still
needs to be white. If the noise is colored (stationary and
signal-independent), one may whiten the noise first and
then approximate the ISI to a finite length to arrive to
an asymptotically optimal detector, although the Viterbi
trellis may have an impractically large number of states.

In magnetic recording applications, the solution strategy
is typically to fix the number of states in the trellis (or a
tree) to 2% and find a filter [3], [4] that, under some opti-
mality criterion, maximally whitens the noise, while mak-
ing the ISI negligibly small after the length K. However,
the noise filtered in this fashion is not white. Further-
more, at high recording densities the noise (consisting in
large of media noise) is also signal dependent [5], [6], which
means that it cannot be whitened nor can it be made sig-
nal independent by a linear time-invariant filter. In such
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environments, there is no justification (except maybe the
simplicity of implementation) for using the the Euclidian
metric as the branch metric of the Viterbi-like trellis/tree
detector.

In this paper, we address the question of choesing the
optimal branch metric for the Viterbi-like implementation
of the MLSD when the noise is both signal-dependent and
correlated. In Section 2, we show that the Euclidian met-
ric, as well as other previously derived signal-dependent,
metrics [7], [8], are only special cases of the general opti-
mal signal-dependent correlation-sensitive branch metric.
In the latter part of the section, we consider strategies for
implementing the newly derived metric in Viterbi-like ar-
chitectures. In Section 3, we perform a probability of er-
ror analysis that shows how much we gain by using the
correlation-sensitive metric over the Euclidian metric. At
the end of the paper, we show error rate performance re-
sults of applying different metrics in a magnetic recording
channe] where the noise is both signal-dependent and cor-
related.

2. Branch Metrics for MLSD

Let a;, 1 € i € N, be symbols (bits) transmitted
through a communications channel (or written on a mag-
netic recording medium). Let r;, 1 < 4 < N, be sampled
observations of the noisy waveform at the receiving end
of the channel. We assume that the noise is additive and
that the noise samples can be, in the most general case,
both signal-dependent and correlated. The maximum like-
lihood sequence detector (MLSD) chooses that sequence
dy,...,aN over all possible sequences a;,...ay for which
the joint conditional probability density function (pdf)

(1)

is maximized for the observed channel output ry,...,7xN.
In a channel where not only the signal, but also the noise,
is dependent on the transmitted sequence aq,...,ay, the
functional form of (1) may be different for different trans-
mitted symbol sequences. This distinction can be made by
introducing indices to the function in (1), but we do not
do it here to keep the notation as simple as possible.
Application of a Viterbi-like algorithm that implements
MLSD is conditioned on factoring (1). The simplest case
when this is possible is when the noise samples in the chan-
nel are independent random variables [1], [2]. In [9], we
show that a similar factorization is possible under two more
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general conditions. First, the observation r; needs to be
statistically independent of all observations r;yy; if j sat-
isfies j > L, where L is a nonnegative integer. We call
L the correlation length of noise. This formulation is an-
ticausal. One can make an equivalent causal formulation,
see [9] for details. The second condition that needs to be
satisfied is that the intersymbol interference (ISI) length is
finite. In general, let the leading (causal) ISI length be K;
and the trailing (anticausal) ISI length be K;. We define
K = K, + K; +1 as the total ISI length, which we require
to be finite. Under these conditions, the pdf in (1) factors
to (9]

flri,...,rNlas, ... an) =
N
_ Hf(ria"'i+1a--~:7'i+L|ai—Kn“-aai+L+K¢) @)
f(rivry - rivpl@iok,, -y @irLtk,)

i=1
The form given in (2) is suitable for applying a Viterbi-
like detection algorithm that is now signal-dependent and
correlation-sensitive. The branch metrics of the branches
connecting the nodes (states) in the trellis/tree are the neg-
ative logarithms of the factors on the right-hand side of
Equation (2). Notice that since each one of these factors is
based on a joint pdf of observations r;,. .., r, the metric
is correlation-sensitive. Also, notice that since each of the
factors in (2) is conditioned on the transmitted sequence
QimKys- -+ 5 QitL+—K, , the metric is signal-dependent.

A. Gaussian Branch Metrics

We next consider the noise to be Gaussian and, after dif-
ferent assumptions on its correlation and signal-dependent
statistics, derive different branch metrics.

Euclidian metric. If the noise is white and signal-
independent, then due to the factorization of uncorrelated
(independent) Gaussian pdfs, the reciprocal of each factor
in (2) is
el 2]
2ro? exp |——=5—1|, (3)
207

where o2 is the white noise variance, and m; is the mean of
the sample observation r;. Taking the logarithm of (3), and
canceling common constant (signal-independent) additive
and multiplicative terms, we obtain the Euclidian distance
metric

M; = N? = (r; —m;)? 4)

as the branch metric for the Viterbi-like implementation of
the MLSD.

Variance dependent metric. If the noise is now Gaus-
sian, whose samples are uncorrelated (independent), but
whose variances o? are possibly dependent on the trans-
mitted signal, due to the factorization of Gaussian pdfs,

the reciprocal of each factor in (2) is

2ot exp [L;TZ‘—)] . (5)

1
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Taking the logarithm of (5) and canceling common constant
(signal-independent) additive and multiplicative terms, we
obtain the signal-dependent correlation-insensitive branch
metric
N? ; — m;)?
M; =logo? + =& =logo? + '—*—(n e J ) (6)

>
g; i

Notice that this same metric was derived in [7], [8] and used
on real data in [10].

Correlation-sensitive metric. In the general case, the
Gaussian noise is both correlated and signal-dependent.
This is especially the case in high density magnetic record-
ing. In that case, the reciprocal of every factor in (2) takes
the general multivariate Gaussian form

(27)E+! det C; exp [N C;'N,] )
(2m)tdete; exp[nfe;'n;]

The (L + 1) x (L + 1) matrix C; is the covariance matrix
of the data samples r;,r;41,...,741, when a sequence of
symbols a;-k,,...,8i+L+k, i written (transmitted). The
matrix ¢; in the denominator of (7) is the Lx L lower princi-

pal submatrix of C; = c } The (L + 1)-dimensional

vector IV, is the vector of differences between the observed
samples r; and their expected values m; when the sequence
of symbols a;_g,,...,0;1+K, is written (transmitted),
ie.,

N;=([(ri=mi) (rit1—mit1) "'(Ti+L—mi+L)]T' (&)

The vector n; collects the last L elements of N;, n;, =
T ey .
[ (rig1 — mit1) (rivr —miyr) | . With this nota-
tion, by taking the logarithm of (7), we get the general
correlation-sensitive metric
det C,’ - —

M; = logm +N{C'N, —nfe;'n,. 9)
Notice that this metric is now both signal-dependent and
correlation-sensitive.

The metric in (9) involves matrices C; of size (L + 1) x
(L + 1). If the correlation length is, say, L = 2, then the
size of the matrices C; is 3 x 3, and we shall refer to this
metric as the the C3 metric. The metric in (6) is then,
with this notation, the C1 metric. We can then refer to
the Buclidian metric as the CO metric to be consistent with
this short-hand notation.

B. Implementation Issues

The metrics in (4), (6) and (9) are all Gaussian branch
metrics. Their use is not limited to the Viterbi algo-
rithm [1],{2}, but can be used in any Viterbi-like suboptimal
detector that operates on a tree/trellis structure. Such al-
gorithms are PRML detection [11],[12], or hybrids between



MLSD and decision feedback equalization (DFE), such as
FDTS/DF [13], MDFE [14] or RAM-RSE [15].

When implementing the Euclidian metric, the noise
statistics (variances and covariance matrices) are assumed
to be signal independent, and therefore do not need to be
known in the metric computations. To implement the met-
rics in (6) and (9), on the other hand, we need to know these
statistics. Since they are not known a priori, they need to
be estimated from the noisy signal observations at the re-
ceiver end. We think that adaptive estimation techniques
are best suited for magnetic recording applications. This is
because the signal is time-varying since its characteristics
(transition separations, bit cell time, normalized density,
etc.) vary from track to track. Since the noise is signal de-
pendent, its statistics are time-varying as well. The adap-
tive estimation of these noise statistics is beyond the scope
of this paper. For an example of a recursive statistics esti-
mation method based on past detector decisions, we refer
the reader to [9]

3. Performance Analysis

Define H; and Hy as the hypotheses that the written se-
quences are af, ...,a% and al,...,al, respectively. Allow
a3 # aj to happen only for j € [i,i + M — 1], i.e., the two
sequences of symbols differ on a segment of M > 1 symbols.
We consider the hypothesis Hg to be the correct one and
find the probability of choosing H, for both the correlation-
sensitive and the Euclidian metrics. If the distance between
these two paths in the trellis/tree corresponds to the mini-
mum distance error event then the probability of bit errors
is bounded by bounds that are proportional to the proba-
bility of this error event [1], [2].

According to (2), the hypothesis H; will be chosen over
the hypothesis Hy if

i+ Kj+M—1 f(

Lo . p p
r],rjﬂ,...,rJ+L|aj_Kl,...,aj+L+Kt)

f(’l"j+1,. vy

(10)

. P
rJ+L!aj~K1 EER =aj+L+K,)

j=i—-K(—-L
is greater for p = 1 than for p = 0. Since a? # a} can
happen only for j € [i,i + M — 1], the product in (10) con-
tains only M + L + K| + K; terms. If we multiply (10)
by f(ri+M+Kn LR :Ti+M+K1+L|af+Ma ey af+M+K,+K,+L)’
which is the same for p = 0 and p = 1 since o = a} for
j 2 i+ M, we get a joint pdf fgg, (z|Hp), where r is
a vector collecting samples 75— g, 1, -+, TitM+K+L and p
denotes the hypothesis 1 or 0. The hypothesis test is then

H,

TrH, (2| Hy) Z friH, (x| Ho) -
Hy

(11)

Under the Gaussian assumption, when H, holds, r is
normally distributed with mean m,, and covariance X,
p € {0,1}. In general ( Lo # X; and my # m,) the
likelihood test in (11) is the general Gaussian test that has
been exhaustively studied, see e.g. [16]. Here we do not
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study the general case, but simplify the problem to get

quick analytic results to show how much we gain by using

the correlation-sensitive metric over the Euclidian metric.
Let ¥y = ¥, = X. Then the test in (11) is

H
. 1 - -
(m ~mo) 'S 2 5 [mi B 7my ~m3 T me] - (12)
Hy

The probability of error (probability that H; is chosen over
Hy) when using the correlation-sensitive metric is

mg)” B (m; — my)
V2@, - mo)T =1 (my - my)

where erfc (x) = fo e=dt. On the other hand, if we
use the Euclidian metrlc, the test is

PC(E) = %(m-I _ E] (13)

1
§ erfc

H,
1
(m ~mo)'r 2 5 [mfmy ~mime].  (14)
Hy

and the probability of error when applying the Euclidian
metric to correlated noise is

1

1 (my —mg)” (m, — my)
\/2 mo)T = (m; — my)

To study the improvement of (13) over (15), we construct
a simple PR4 example. In PR4, the ISI length is K = 2
(K; =0, Ky = 1). Let the noise correlation length be L =
1. For a PR4 system, the minimum number of consecutive
places where two sequences can differ is M = 2. Let the 2x

o? p2 ] for all
p o
branches and for all i, where |p| < o2. The joint covariance
matrix is then £ = o2 - T(q), where T(g) is a symmetric
Toeplitz matrix whose first row is [1,¢,¢%,¢%,¢* ¢°] and
q = p/o? is the correlation coefficient.

Let 02 be the noise power needed to produce an error rate
P(e) when using the correlation-sensitive metric. The cor-
responding noise covariance matrix in (13) is ¥, = ¢2-T(q).
Similarly, let 02 be the noise power needed to produce
the same error rate P(e), but using the Euclidian met-
ric. The corresponding covariance matrix in (15) is then
¥ = 02 - T(g). Since these two noise powers (o? and

o?) produce the same probability of error P(e) for their
respective tests, we can equate (13) to (15) {note that the
covariance matrices are now X, # X.), and solve to get

o:(q)? _ AmTT(9) ' AmAmM T T(¢)Am
ae(@)? (AmT Am)?

where Am = m, —m,. Notice that the ratio in (16) is not
dependent on P(e). We define the gain in dB as

00(4)2]
Oe (Q)2 ’

P.(e) = eﬂfc (15)

2 conditional covariance matrix be C; =

,  (16)

G(g) = 101ogo [ a7)
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Fig. 1. SNR gains achieved by using the correlation-sensitive over the
Euclidian metric as a function of the correlation coefficient q.

It shows the loss in SNR that can be afforded when using
the correlation-sensitive metric over the Euclidian metric.
Figure 1 shows this gain for a PR4 system, where we as-
sume that the minimum distance error event occurs when
my=[000000Tandm, =010 —10 07, ie,
when a dibit is decided instead of an all-zero pattern. In
this example, depending on the value of the correlation co-
efficient ¢, gains ranging from 0 to 3 dB can be made by
using the correlation-sensitive metric instead of the Euclid-
ian metric.

4. Simulation Results

We study the gains obtained with the correlation-
sensitive metric over the Euclidian metric. Due to lim-
ited space, we confine the comparisons to the EPR4 chan-
nel. To create realistic waveforms, corrupted by media
noise, we used the triangle zig-zag model [17], [18]. The
waveforms were then corrupted by additive white Gaus-
sian noise (AWGN), low-pass filtered, sampled, equalized
to the EPR4 target, and passed through a Viterbi de-
tector. A Lindholm head [19] was used for both writ-
ing and reading. The recording parameters were: rema-
nence M, = 450kA/m, coercivity H. = 160kA/m, media
thickness § = 20nm, media cross-track correlation width
s = 20nm, head-media separation d = 15nm, head field
gradient factor () = .8, head gap length ¢ = .135um, track
width TW = 2um, transition width parameter a = 19nm,
percolation threshold Lp l.4a = 26.6nm, 50%-pulse
width PW50 = .167um.

We tested three branch metrics for the EPR4 algorithm,
the Euclidian metric, the variance dependent metric for
which L=0 and the 2x2 correlation-sensitive metric for
which L=1. We refer to these metrics as the Euclidian,
the C1 and the C2 metric, respectively. We studied the
performance at three normalized densities: 2, 2.5 and 3
bits/PW50, corresponding to symbol separations of 4.4a,
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EPR4 at 4.4 a/symbol (2 symbols/pw50)

107

ERROR RATE

- i H
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12
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Fig. 2. EPR4 detection results at 4.4a/symbol.

3.5a and 2.9a, respectively. The error rates in Figures 2
to 4 are given as a function of the signal to AWGN ratio

2
i

S(AWG)NR = 10log;, Size

2
n

(18)

where A;,, is the isolated pulse amplitude and o2 is the
variance of AWGN. This noise is added to a signal that is
already media noise corrupted, hence we make a distinction
between S(AWG)NR, and the total SNR.

Figures 2 to 4 show that the performance margin between
the Buclidian metric and the C2 metric increase with den-
sity. Figure 5 gives the S(AWG)NRs needed to achieve an
error rate of 10~° when using the EPR4 detector with the
three different metrics for a range of normalized densities
between 2 and 2.5 bits/PW50. We see form Figure 5 that
the C2 metric outperforms the Euclidian metric by 0.4dB at
2 bits/PW50 and by 0.8dB at 2.5 bits/PW50. This mar-
gin is much greater at 3 bits/PW50, but Figure 4 shows
that the error rates are too large for this case to be of a
practical importance. We can also read from Figure 5 that
with an S(ZAWG)NR of 15dB we can operate the Euclidian
detector at 2.2 bits/PW50, while the C2 detector operates
at 2.4 bits/PW50, achieving a 10% gain in linear density.

5. Conclusion

In the presence of signal-dependent correlated noise, the
Viterbi algorithm with Euclidian branch metrics does not
perform maximum likelihood sequence detection (MLSD).
We have shown that, in order to have MLSD performance,
the branch metrics need to be modified such that they in-
clude the effects of signal dependence and correlation. We
gave an explicit expression for the new branch metric for
Gaussian noise statistics. We also provided an analytic
tool for evaluating the probability of error of the MLSD
detector that implements this metric. Through an exam-
ple, we illustrated that the performance margin between
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Fig. 3. EPR4 detection results at 3.5a¢/symbol.

EPR4 at 2.9 a’/symbol (3 symbols/pw50)

ERROR RATE
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Fig. 4. EPR4 detection results at 2.9a/symbol.

the correlation-sensitive metric and the Euclidian metric
increases as the correlation between the noise samplesd
grows. In a magnetic recording channel at high record-
ing densities, the media noise and nonlinearities corrupt
the readback waveform, causing signal-dependent correla-
tion between the noise samples. We have shown that, in
this environment, the new metric provides gains of up to
1dB over the Euclidian detector for the EPR4 channel.
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