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Abstract

Using a recently proposed definition, we characterize
the ambiguity function of the multipath underwater
acoustic channel for passive localization. Namely, we
study the impact of two factors not considered by pre-
vious definitions: (i) uncertainty about the signal spec-
trum and (ii) existence of multiple paths between the
source and the receiver. The importance of accurate
channel modeling is addressed by comparing the am-
biguity surfaces of methods that: (i) use a complete
model of the channel; (i) rely only on the informa-
tion contained in the spatial structure of the incoming
wavefield. It is shown that the difference in global be-
haviour can be explained by a virtual array, whose ge-
ometry is determined by the set of temporal inter-path
delays.

1 Introduction

Tracking and location systems are being used with in-
creasingly complex models of their environment, such
as multiple radiating sources and multipath channels.
However, the fast development of signal processing al-
gorithms for these non-trivial situations has not been
followed by a corresponding development of global
analysis tools. The classical ambiguity of Woodward
[8] implicitly admits a set of restrictive assumptions
such as perfect knowledge of the statistical descrip-
tion of the observed data for each possible value of
the parameters of interest and single source scenar-
ios. Generalizations of Woodward’s ambiguity have
been presented [7, 2] that allow for the consideration
of more general channel models and stochastic narrow-
band sources. However, the two fundamental limita-
tions referred to above are still present. Forcing the
use of the classical definition in more complex scenar-
ios, as for instance passive systems, leads to unrealistic
estimates of global performance since the uncertainty

about the source signal is not taken into account.

Recently [5, 6, 3], we proposed a new definition of
ambiguity function, that is applicable to a wide variety
of location problems, in particular, it can be used to
analyze the global performance of passive location sys-
tems in the presence of an arbitrary number of stochas-
tic sources of unknown spectral characteristics, and
in channels exhibiting a complex multipath structure.
Based on the Kullback Leibler directed divergence [1],
this new measure is motivated by a geometric interpre-
tation of optimal estimators. It recovers Woodward’s
ambiguity [3] when applied to the active narrowband
RADAR problem. For stochastic stationary signals,
the ambiguity measure is related to the Itakura-Saito
distortion measure, thus allowing the ambiguity anal-
ysis to be done directly in terms of the spectral density
of the observations.

In this paper, we use the new measure introduced
in [5, 3, 6] to study the ambiguity structure of the
multipath underwater acoustic channel. In doing so,
we study the effect of dropping two hypotheses un-
derlying Woodward’s definition: (i) knowledge of the
source spectrum; (i) constant received power. Drop-
ping hypothesis (i) is essential when studying passive
systems; condition (i) is incompatible with modeling
of the multipath structure of the underwater acoustic
channel.

We compare the global performance of systems that
use a complete modeling of the channel (both in its
temporal and spatial domains) to methods that rely
only on the information contained on the spatial struc-
ture of the incoming wavefield (the curvature and ori-
entation of the individual wavefronts). We conclude
that the information about the source location coded
in the set of inter-path delays can considerably improve
the global performance. Under certain conditions, this
improvement can be interpreted in terms of a virtual
array, whose sensors correspond to the multipath ar-
rivals, in a way similar to what has been found when
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studying the local performance (Cramer-Rao bound)
of passive location systems [4].

The paper is organized as follows: In section 2 we
present the ambiguity function for location of sources
of unknown spectrum in multipath channels. Section
2.1 considers a complete spatial/temporal model, and
section 2.2 a purely spatial model. In section 3 we
compare the global limit performances of both model-
ing approaches.

2 Ambiguity Function

Consider that the observations’ power spectrum is de-
scribed by

Re(w) = S(w)he (w)he(w)? + o?(w)Ik

where we assume that the observation noise is spatially
incoherent, with known power density o0?(w). In the
previous equation, S(w) is the unknown source spec-
tral density and hg(w) is the resultant vector, that de-
scribes the coherent combination of the steering vec-
tors corresponding to the P replicas received.

The resultant vector can be decomposed as

ho(w) =

where the K x P matrix D(6) describes the spatial
structure of the individual replicas, depending only on
the inter-sensor delays for each received path, and 6(6)
is a P dimensional vector that depends only on their
temporal alignment.

D(6)b(8)

2.1 Complete Model

When a complete model of the channel is used, the
resultant vector is perfectly known for each 6, i.e., both
the matrix D(f) and the vector b(f) in the previous
equation are known functions of the source location 6.

In this case, application of the definition of ambigu-
ity introduced in [3, 6] yields the following expression
for the ambiguity between scanning location 8, and a
source at the true location 8 radiating a signal with
spectrum So(w), see [6]:

spajti SNR(
60,0):7°/ 5™ = )
1 1+ SNR(u).A(Hg,G)fSC)
- n ® dw
[ SNR(w)dw 1+ SNR(w)

where SNR(w) is the ratio of received signal to noise
power,
2 So()llhe, (W)II*

SNR(w) & SR L

(2

and A(Go,ﬂ)(c) is the analogue of the classical ambi-
guity funct.lon i.e., the square of the cosine of the an-
gle between the resultant vectors for the two values of
source location.

|hao(w)™ ho(w)[*
llhe (w)||% [ hog ()II?”
Note that this function can be written using

the orthogonal projection operator onto the (one-
dimensional) space spanned by the vector hg(w):

A(Oo,ﬂ)(") a

LX)

A(60,0)§) =
(6o, )s (koo (W)II®

2.2 Spatial Modeling

When the spatial model is used, b(#) is modeled as an
unknown deterministic vector, (w), and the spectral
density of the observations has the following form:

Ro(w) = o2(w)I + S(w)D(B)b(w)b(w)™ D(6)H

Simultaneous ignorance of S(w) and b(w) implies that
only the product \/S(w)b(w) can be determined, i.e.,
the only restriction on the noiseless component of
Re(w) is that it has rank one, meaning that all the
replicas are perfectly correlated. This increased un-
certainty leads to [6] the following expression for am-
biguity

002 = [ Tormis [0, 0 @
1 l+SNR(w).A(00, 8){
TSNR(@) 1+ SNR(w) dw (4)

where SNR(w) is defined by eq. (2), and

@ 2 "Hu(o)D(eo)bo H

Al O’ = = D(@o)bol?

)

and II3yg) denotes the orthogonal projection operator
into the subspace H(f), generated by the P steering
vectors (columns of the matrix D(8)) that correspond
to the scanning location 6.

Note that in this case the one dimensional vec-
tor hg(w) is replaced by the P-dimensional subspace
spanned by the individual steering vectors. This fact
is an immediate consequence of having a larger num-
ber of degrees of freedom on the model that is being
fitted to the observations.
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3 Impact of Temporal Model-
ing

In the previous section, eq. (1) and eq. (3) differ only

on the substitution of A(6y,6)(*) by A(6o,6)'D. Since

1 1+SNRw)A

A- SNR(w) 1+ SNR(w)

is a monotonic increasing function of .4, we can con-
clude that comparison of the ambiguity of the two
models, A(fo,6)**/*™ and A(6p,8)°", can be done on

the basis of the values of A(fp,8)' and A(68,,6)?.
From their definitions, and since

hg(w) € H(8) = T3y — Mp, () > 0
we conclude that
A(00,0) > A(8o, )@
implying
A(09,6) > A(6o, 0)""'"™
i.e., ambiguity is larger when the temporal delays (be-

tween paths) are not modeled.

We study now the ambiguity of the two models as-
suming the following spatial resolution conditions:
(i) All the paths corresponding to each source local-
ization (fp and ) are well resolved by the array:

D(0)" D(8) ~ D(60)7 D(6o) ~ K1

(ii) There are r pairs of paths that fall inside the res-
olution limit of antenna, such that (see Figure 1):

D(BO)HD(G) ~ K E e,'o(k)egzk)
k

where e; denotes a vector whose only component dif-
ferent from zero is the i-th.

spurce atfo
urce at ¢
source at 6

source at 8

/

Figure 1: Wavefront geometry.

Let b and bo be the vectors that retain only the
components of b and by correspondent to the approxi-
mately colinear paths:

b= [bity - bin],

bo = [Bior) -+ bigrr) -

Using the two previously presented spatial resolution
conditions, the following approximations hold:

bol|
Ao,ﬂ(d) o~ "—
(60, 6) lol?
|z;grz|’
© ~ L a o g
Ao O =yl = cos' oD

where cos?(bo,b) is the cosine of the angle between
bo and b. We see that for the spatial model, whose
ambiguity is determined by A(Bo,ﬂ)(d), all the energy
received through the unresolved paths contributes to in-
crease ambiguity (||50“2)

The previous discussion shows that ambiguity can
be considerably smaller for the complete modelization,
since the spatially unresolved paths can still be tem-
porally resolved, as long as the value of cosz(zo, i)) is
sufficiently small, or that the bandwidth is sufficiently
large so that the following integral is approximately

/ A(60,6)Vdw = / > ol ] do

Note that the phase of [§o]:[B], is determined by
the temporal delay between the corresponding paths,
showing that the temporal structure of the arrivals can
be used to solve ambiguities present in the purely spa-
tial model. .A(6o,8)'”) can be written in the form

A(80,8)”) = pA(6o,6))
where we defined

N
lbol*1l6N1> =
and A(fo,6)") has the form of A(%9,6)" with the re-

sultant vectors hg,(w) and hg(w) replaced by the vec-
tors bo and b:

Ao, ) = L0
[150l12[1611?
Using these definitions,
_ [ SNR(w)*

A(6o,8)*P/t™ A(6o,6))

" [SNR(w)
1 1+ SNR(w)"
_SNR(w)/ln 1+SNR(@)

where A
SNR(w)" £ pSNR(w),
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and A(fo,0)"" is given by eq. (1) with A(60,0) re-
placed by .A(GO,O)("), i.e., it is the ambiguity for the
array whose resultant vector is defined by the delays
between the spatially unresolved paths.

For the limit case of no spatial resolution, (r = P),
ie.,
D(8)¥D(8) ~ KI => p =1,

and

A8o,0)'P/*™ =~  A(6o,0)™
A(60,0)" ~ 1.

R

We conclude that ambiguity of the complete model is
equal to the virtual array’s ambiguity, while the spatial
model is completely ambiguous.

In the opposite situation, when the antenna spatially
resolves all the paths (r = 0),

A(80,0)©) = A(60,6)Y ~ 0
and
A(Bo, 8)°° =~ A(68,6)"/"™ ~

m / lll (1 -+ SNR(UJ)) d{.d

and the two models have the same ambiguity. The pre-
vious expression coincides with the lower limit of am-
biguity correspondent to ignorance of the source spec-
trum, see discussion in [6], showing that there is no
room for improvement due to the modelization of the
temporal alignment of the received replicas.

As it had been found when studying the local per-
formance, see (4], we conclude that the impact of the
temporal structure shows a marked dependency on
the characteristics of spatial resolution of the antenna.
But, while for the local performance the gains are im-
portant specially when there is a good spatial resolu-
tion, since the size of the virtual antenna depends on
the number of spatially separable rays, from the point
of view of the ambiguity behaviour they are a determi-
nant factor when there is small resolving power of the
array. Since a good resolving power of the array cor-
responds already to a good local performance, we may
conclude that the impact of the temporal modelization
ts specially important from the ambiguity point of view.

The analogy established here between the gain for
the information coded in the set of inter-path delays
and a virtual array is not as direct as the one found in

the local study [4], we can still conclude that a com-
plete modelization of the received wavefield is impor-
tant when distinguishing between points that would be
otherwise ambiguous if only the spatial dependency of
the data was taken into account.

The difference of behaviour of the two modelizations
is clear when the conditions that lead to the small-
est possible value of ambiguity are considered. While
for the temporal/spatial models it is enough to have
D(80)bo L D(6)b, which can be verified by many pairs
of vectors bp, b, the spatial modelization requires the
stronger condition Sp{D(fo)}LSp{D(6)}.
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