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Abstract

This paper addresses the problem of simul-
taneous detection of outliers and localization
of multiple sources. This is motivated by
the performance degradation observed when
quadratic beamformers operate under those
conditions. Our approach relies on maximum
likelihood methods where outliers are modeled
as a space/time impulsive noise process with
unknown statistics. The maximization algo-
rithm follows a strategy based on sequencial
estimation and detection schemes, and it is ini-
tialized by an [; beamformer, yielding efficient
detection of spikes and accurate estimates of
their statistics. This enables the design of a
model based beamformer for bearing estima-
tion. The paper presents the derivation of the
algorithm and discusses its efficiency using the
results obtained from computer simulations.

1 Introduction

In this work, we consider the problem of localiz-
ing multiple independent sources when outliers are
present, namely, due to the existence of failling sensors
or to the occurrence of spikes. In these situations, the
performance of beamformers based on the Gaussian
noise assumption is seriously degraded, [2]. Our ap-
proach consists on the maximization of the likelihood
of the observations set, where the outliers are modeled
as impulsive noise. This is described by a high variance
Gaussian random variable with samples governed by a
space/time Bernoulli sequence. Obviously, the maxi-
mization of the likelihood function involves an optimal
estimation of that space/time sequence, thus provid-
ing knowledge about the sensors and the time instants
at which the impulses have occurred. However, the
computational complexity of this approach increases
exponentially with the number of array sensors and
time samples, precluding its practical application. To
combat the drawbacks of the direct solution, differ-
ent detection algorithms have been used, [5, 4]. Our
method relies on the robustness of the {; beamformer

in the presence of spiky noise, [1]. In fact, the {; beam-
former has the capability of self adjusting its gains in
order to attenuate severely the effects of input out-
liers, thus yielding output residues that evidence the
presence of spiky impulses. After robust detection of
these space/time events, the statistics of the impulsive
noise field are estimated, enabling the design of an op-
timal impulse detector and of a maximum likelihood
beamformer for bearing estimation. These are used it-
eratively to improve the initial estimates provided by
the [y beamformer. The simulation results show that
very few iterations are needed to achieve accurate es-
timates of both the impulsive noise statistics and the
bearing angles.

The paper is organized as follows. In section 2, we
formulate the problem and we introduce the likelihood
function of the data set. The initialization step, based
on the I; beamformer, is also presented and discussed.
In section 3, we describe the iterative algorithm, fo-
cusing on both the optimal impulse detector and the
model based beamformer. Finally, in section 4, we
report and discuss the results obtained by computer
simulations, and we present the main conclusions of
this work.

2 Problem Formulation

Let
z(k) = a(6)z(k) + w(k) + s(k) 1)

be the complex envelope of the (N x 1) vector of array
measurements at time instant k, where z(-) and w(:)
are the complex envelopes of the desired signal and
of the background noise, respectively. The latter is
the superposition of unknown directional interferences
with a complex Gaussian white noise field with zero
mean and known covariance matrix Ry = oZI. The
covariance matrix of the total background noise field
is then

Ry = R; + 021, (2)

where R; is the covariance matrix of the interfering
wave fields. The complex (N x 1) steering vector a(§)
is specified by the arrival angle 8. In (1), s(-) is the
impulsive noise vector field, which is assumed to be
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independent of w(-). At each sensor, the impulsive
noise sample is defined by the product of three jointly
independent random variables (r.v.): a time indexed
Bernoulli r.v. b(-), a space/time indexed Bernoulli r.v.
d,(+), and a complex valued space/time indexed zero
mean Gaussian r.v. u,(-) with variance ¢2. In general,
the power of the impulsive noise field is stronger than
that of the background white noise, i.e., 02 > 3.
Formally, we write

s(k) = b(k) D(k)u(k), 3)

where D(k) = diag{d,(k)]. The samples of the
space/time sequence s, (k) are assumed independent,
and the probability of the space/time events is pypd
where p, = Pr[b(k) = 1] and pg = Pr[d, (k) = 1].

Let Z = {s(k)}, and X = {a(E)}£, be the ob-
servations set and the time samples of the desired sig-
nal, respectively. Define also the sets of space/time
descrete events B = {b(k)}, and D = {D(k)}{,.
According to the model here described, B and D are
random, while X and the unknown parameters 0, p,
pq and o2 are deterministic. For this problem, the un-
conditional loglikelihood function based on the data set
Z, see [3], is given by

L(B,D,X,0,ps,p4,02)

Mi(B,D,X,8,02)

+ Mg(B’D,Pb,Pd)x (4)
where
K
Mi= — Y IndetR(k)
k}zl
- Y llatk) - a(®)z(k) sy ()
k=1

depends explicitly on the local realizations of the in-
volved space/time processes, and
M, = dlnps+ [bN —d)In(l - pa)
+ blnpy+ [K —b]In(1 — ps) (6)
depends on global parameters. In (5),
R(k) = b(k)D(k)o2 + Ry (7)

is the time variant covariance matrix of the total noise

field and, in (6),

K N
b= b(k) and d= > du(k) (8)
k=1 =

K
k=1n=1

are the number of array samples disturbed by spiky
impulses and the total number of realizations of the
impulsive noise field, respectively. Notice that (5) and
(6) do not correspond to a perfect decoupling of (4)
into local and global variables. In fact, b and d de-
pend on the particular realizations of the Bernoulli

sequences to be estimated. Nevertheless, the compu-
tational complexity of this estimation problem can be
effectively attenuated if that decoupling is considered.
This is the strategy followed for the solution presented
in the paper.

2.1 Robust Initialization

To initialize the estimation/detection algorithm that
maximizes (4), we use the /; beamformer. For a given
6, the output of the I; beamformer is

af ()G~ (k)z(k)
af (0)G-1(k)a(0)’ ©)

where G(k) = diag[|lrn(klk — 1)[), ra(klk — 1) =
2n(k) — an(8)2),(k|lk — 1) and z;,(k|k — 1) is the
predicted estimate of z(k). Here, we assume that
1, (klk — 1) = &;,(k — 1). We can see that, whenever
large impulses occur, the corresponding observations
in (9) are strongly attenuated. As a consequence, the
estimate &, (k,8) is almost free of noisy spikes. The
estimate of the arrival angle 6y is initialized by the
value of # that maximizes the sample covariance of
#;,(k,0). Notice that, unless they are well separated,
the [; beamformer will not resolve all the sources that
are present. In this initialization step, if more than
one source is detected, the residues are modified ac-
cordingly. In any case, (7) is assumed to be free of the
effect of directional interferences, i.e., R; = 0.

To detect the spiky impulses, which is equivalent to
estimate the Bernoulli sequences, we maximize (5) for
each time instant k& = 1,2,...,K. Since 02 > 03,
we assume that the largest residues are likely those
that evidence the presence of impulses. Under these
assumptions, (5) is simplified to

#,(k,0) =

ME(M(k),0}) = M{“(o,-)+M(k)1n( 7% )

of + o}
M(k
o2 Tom D |ra (k)]

+
o3(og + 03)

; (10)
where M(k) is the number of impulses at time k and
the residues are supposed to be ordered decreasingly.

In (10),

N
E)[2
ME0,) = —Nlnof - ———Znﬂl’é"( ) (1)
is the value of MF(M(k),02) when M(k) = 0. Dif-
ferentiating (10) with respect to o2 and equating to

zero, we can obtain a local estimate of this parameter
which, when used in (10), yields

M(k) (k)2
MEQI(R) = MEQ,) ~In (%%)
M(k) |, 2
+ M(k) <_z"—zﬁ% - 1) . (12)
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The maximization of this function results from a
searching scheme on the possible values of M(k), i.e.,

n =12.. N If M(k) = 0, then b(k) = 0; if
]/\4\(k) # 0, then b(k) = 1 and d,(k) = 1 for n cor-
responding to the largest ﬁ(k) residues. Using the
values of ITJ\(k),k =1,2,...,K,in (5) and maximizing
it with respect to g2, we obtain

i Xat P
d

o2 4ol = , (13)

where
~ K — =3 K -
d=Y M(k) and b= b(k). (14)
k=1 k=1

To complete the initialization step, we need to estimate
the probability parameters that specify the Bernoulli
sequences. This is done maximizing (6) with respect
to py and py:

» = b/K

pa = dJbN. (15)
At this point, previous estimates of the statistics of the
impulsive noise field are available, enabling the design

of an optimal impulse detector and of a model based
beamformer for angle of arrival estimation.

3 Description of the Algorithm

In this section, we present the two basic steps in-
volved in each iteration of the algorithm: the impulsive
noise detector and the angle of arrival estimator.

3.1 Optimum Impulse Detector

Here, the objective is to detect Gaussian impulses
with known variance and probability of occurrence in
independent white Gaussian noise, given the residues
ra(k),=1,2,..., N. Making p = p; pq, the minimum
probability of error impulse detector is specified by the
optimal threshold

S CHLNE AT
ol o P

The estimates of the Bernoulli sequences are updated
according to the following rule:

make d(k) =1 if |ra(k)> > 7,
make d(k) =0 if |ra(k)? < 7,
Using the results obtained with this optimal detector,

we can compute new estimates of the parameters that
specify the impulsive noise field. These are given by

(13), (14) and (15), where M(k) = S-N_ d,(k), and
b(k) = 0 if M(k) =0 or b(k) = 1 if M (k) # 0.

(16)
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3.2 Optimum Beamformer

The design of the optimum beamformer for bearing
estimation relies on the estimates of the Bernoulli se-
quences B and D obtained with the optimum detector
described in the previous subsection. We notice that
only the second term of the right hand side of (5) de-
pends on both # and X. Differentiating this function
with respect to z(k) and equating to zero, we obtain

a (0)R~* (k)a(k)

O TG RT ka0

(17)

which is equivalent to

afl () R; ! (k)z (k)

2k 0) = O R (0)a(d)’

(18)

where, according to (1) and (7),

R.(k) = a()Sa”(8) + Ry (k) + b(k)D(k)o?
a(8)Sa¥ (6) + R(k) (19)

is the covariance matrix of the observations. In this
formula we can divise a time variant term, due to the
presence of the impulsive noise, and an invariant term

R, = a(§)Sa (6) + R, (k), (20)

where S is the signal power. The former term can be
computed usin/g the estimates given by the optimum
detector and 62, and the latter is estimated by the
sample covariance matrix of the observations vector
taken in the time instants when impulses do not occur,
ie.,

B=—10 3 ak)(h). (21)

K-b k:i)(k):D

To find the angles of arrival, we scan for the values of
¢ that maximize the power of the beamformer output
(18):

K
P(6) = |l &(k,6) |7, (22)
k=1
where .
R.(k) = B + b(k) D(k)o2 (23)
is used for R, (k).

The detection and estimation schemes described in
this section are used iteratively until some prespeci-
fied condition, involving the estimated parameters, is
reached.



4 Simulations and Discussion

‘In the computer simulations here reported, we con-
sidered one directional waveform, with power S = 1,
impinging from broadside, i.e., # = 0°, an uniform and
linear array of N = 15 sensors. Tables 1 and 2 show the
results obtained for two distinct experiments, where
K = 50 time samples were used. The first experiment
evidences the adequacy of the I; beamformer for ini-
tialization purposes. In fact, the results obtained at
the end of the 1st iteration, specially the bearing esti-
mate (§ = —1° was obtained with the MVDR beam-
former), are quite similar to the actual values of the
parameters of interest. Those estimates are clearly im-
proved in the 2nd iteration, where the optimum detec-
tor and the optimum beamformer were used. Figures
1 and 2 show the detection errors of the space/time
indexed Bernoulli sequences obtained in each iteration
of this experiment, evidencing the small number of er-
rors provided by the !; beamformer (Fig.1) and the
capability of the optimum detector (Fig.2) to correct
them. For an expected value of 30 space/time occur-
rences of noisy impulses, 10% of detection errors were
achieved in this run of the experiment. These results
are confirmed by the second experiment. In this case,
worst impulsive noise conditions were imposed. Nev-
ertheless, accurate results were obtained with only two
iterations. Notice that, in this experiment, the biased
estimate of the bearing angle provided by the !} beam-
former (0 = —3° was obtained with the MVDR beam-
former) was corrected by the optimum beamformer.

param. || o o2 pe | pa| 6

values 5 106 2 2710°
1st it. o [927T4T 12 28] 0°
2nd 1t. e | 91101 .18 ] .21 [ 0°

Table 1: 1st experiment.
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Figure 1: Detection errors - 1lst iteration.

These simulations confirm the efficiency of the al-
gorithm proposed in the paper in relation to both (i)
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param. || o3 e p | pa [
values 1 100 | .8 6 0°
1st 1t. . . ° o | —1°
2nd it. o | 10476 | 9 [ .54 0°

Table 2: 2nd experiment.

computational complexity and (ii) quality of the re-
sulting estimates. The former is a consequence of the
initialization provided by the I; approach, and the lat-
ter relies on the optimality of the impulse detector.
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