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Abstract

In this paper we formulate a general definition of am-
biguity function, based in the Kullback-Leibler directed
divergence between probability densities. The ambigu-
ity function here defined summarizes all the geometric
aspects of the problem, measuring the difficulty in dis-
tinguishing between two different source locations. We
show that by considering a particular model the classical
RADAR ambiguity function is obtained. We illustrate
the use of the new definition applying it to several prob-
lems, showing that it is a usefull tool for the analysis of
passive location systems.

1. Introduction

There is an increasing interest in the study of the detec-
tion and location of targets in inhomogeneous mediums.
In particular, in the context of SONAR applications, the
ocean’s complex multipath structure has been considered
by many authors.

. Besides the design of signal processing algorithms that
can effectively deal with the peculiarities of multipath
propagation, it is important to establish limits on the
performance attainable in this situation. Two distinct
kinds of performance analysis are usually considered:
local and global. In [5], we did a local performance
analysis, determining the Cramér-Rao Bound for the lo-
cation of sources propagating over multipath channels.
Here, we assess the problem of characterizing the ex-
pected global performance of localization mechanisms
when there is lack of knowledge concerning the source
signal. In the context of location problems, global per-
formance analysis traditionally involves the computation
of the ambiguity function. This function has been de-
fined only for very simple models and is not adequate to
the global analysis of source location in inhomogeneous
mediums. Moreover, it assumes that the signal corre-
lation function is known, which is not the case when
- studying passive systems.
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We propose, in section 2, a general definition of ambi-
guity, based on the Kullback-Leibler directed divergence
between probability densities [3]. This function summa-
rizes, from the user’s point of view, the geometry of the
problem, measuring the difficulty in distinguishing any
two points in the parameter space. Section 3 consid-
ers the particular case of normal densities. In section
4, we show how the classical definition is obtained from
the generalized definition given here. Finally, section 5
considers the case of stationary observations, giving an
expression in terms of the spectral densities of the in-
volved processes, and applies it to the case of estimation
of the location of a wideband stationary source propa-
gating over a multipath channel, with observations ina
single sensor.

2. Ambiguity Function

Consider a family G, of density functions, indexed by a
parameter o € A:

o £ {p(zla), a€A}.

The Kullback-Leibler number (also called Kullback di-
rected divergence or cross-entropy) between two mem-
bers of G, is [3]:

I(ay, a3) £ Eq, {ln i%:%i%} .

This functional was introduced by Kullback [3] in the
framework of information theory. Although it has some
distance-like properties, it is not, in fact, a distance. As
it can be easily seen, it is not symmetric and it does not
satisfy, in general, the triangular inequality. However,
I(0y, a2) > 0, with equality iff &y = 2. Note that

I(ay,a3) = Eq, {lnp(zle1) = In p(z|az)},

i.e., I(-,-) is the mean value of the difference between the
values of the log-likelihood function for two pointsin the
parameter space, for observations z, conditioned on one
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and following [6], with a discrete time representation,
the observation vector is modelled as an N-dimensional
complex Gaussian vector,

p(rlf) ~ N (O, v£(B) F(O)T + 1) (6)

where we assumed that the observation noise is white,
and the power parameters o and v are known and f(6)
is, for each & a kmmm N-dimensional vector. It is fur-
ther assumed that [[f(8)||> = N, i.e., the received signal
energy is independent of 4.
Using elementary facts from linear algebra,

RO = 2 (1= s ros @ )

where: I denotes the identity matrix of order N, and
[R(6)} = 02K (12 + %’,—;ﬁ) Using eq. (5),
¥ [

I8y, 85) = zm ~ [f(B)" £(01)P] . (7)

Since (Schwartz’s inequality) 0 < [£(82)7 f(81)I° < N2,
we can determine Iyax = N*v?/20%(¢? + N7v), from
which and (1) we get

Ay, 0) = g f @O @)
which is the classical definition of ambiguity.

Note that the model that leads to the classical defini-
tion of ambiguity belongs to the first class of estimation
problems mentioned in section 2, i.e., there is no uncer-
tainty regarding the signal parameters, in this case, the
Rayleight coefficient +, and, for each 8, the vector f(6).

Consider now that v is not known. We denote, from
now on, the covariance matrix of the observed field by
R(@,v). Simple calculations lead to:

(68,) = U_@Mﬁ

and,

L(61,6;) = 1F(82)" £(0:)17)

’+ ﬁlf(glef(ﬁx)F]
a? + Ny f

;[ 7 (W -

Note that this expression is always smaller than the
Kullback-Leibler number for known «, given by eq. (7),
i.e., the ambiguity is always larger in this case.

For each value of ¥, the following bound on I(-,-Jcan
be: found:

lN
Inax(1) = = ‘fx

and we get. the following condifional measure of ambi-
guity T
L H 2
é
08 b= Iy X(’Y) [Nazlf( 2)" f(61)]
- In No? + 41£(8:)" £8P ]
No? + N2y

A study of this function reveals that its maxima in the
parameter space occur in the same points as the max-
ima of the classical ambiguity function. However, the
relative heights of the maxima are not the same, as it is
obvious from the previous equation. Note also that while
in the previous case the ambiguity was independent of
the. signal-to-noise ratio, this is not true in this more
general situation. In fact, for very high signal-to-noise
ratios, the influence of the second term is negligible, and
the two expressions predict. the same behaviour. In the
low signal-to-noise ratio limit, the second term domi-
nates over the first.

A more radical change is obtained when, instead of
known complex envelop f(#) we know only that f(f) e
My, where My is a known proper P(§) dimensional
subspace of ICV. This is the relevant model for the case
of location of multiple perfectly correlated narrowband

sources.
Assume that My = Sp{a;(8)}7,

R(8,s) = %I + A(8)ss™ A(0)7

where s € ICP*, is an unknown vector, and A(8) is the
matrix that gathers the basis vectors a;(¢). In this case,

o oy Y[ ot + s AT (0,)A(02)s2
ot} = [0 S G
AH(QLIA(GI )581 A”@g)R(el ‘sd,A(ﬂz)&z

a? a%ﬁ + s3] (92)14(32}82)

The vector §,(f3) that minimizes this expression satisfies
A2)r(02) = Tae,, [AG)s1),

where I[x,, denotes the orthogonal projection operator
into My, . Deﬁne

¥2(6:,62) £ [Mps,, [AQG)s] %

» L€y

Then,
N a? + v%(6,,6 ' F{A(@ s’
I,(81,65) = ‘£ az_;_HA(glj;j ol"
(91,32)]

o2

In this case, since 0 < v2(01,62) < [J4(8,)s], we can

find the bound
LG

Iyrax (1), = 3
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of those points. The value of I(-,-) depends, naturally,
on the size of the observation interval. Here, we con-
sider only the assymptotic case of very long observation
interval.

Heuristically, I(a1,az) is a measure of the resem-
blance, or closseness, of the two models described by
p(z]er) and p(zlaz). The values of a3 that yield small
values of I{a;, a3) indicate possible erroneous estimates
of & when the true value of the parameter is o;. It can
be shown, (3], that the Kullback-Leibler number is the
exponent of the minimum error probability of the binary
decision of @, against o, when aj is the true value of
the parameter and the error probability under « is held
constant.

Based on these arguments, we define ambiguity be-
tween two points (a1, @) in the parameter space as

a Inax(ar) — I{a, @2)
Aler,a2) = Inax(ar) )

where Inrax (1) denotes an upper bound on the value
of I(ay, &xz) over az € A. Since I(-,-) is not symmetric,

- A(e1, @2) willl not be, in general, a symmetric function
of its two arguments.

In the context of source location with unknown source
signals, the density of the observations is parametrized
by two distinct sets of parameters: those that describe
the source location (§ € ©) and those describing the
source signal, or its statistics (v € T'). Let « denote the
complete set of parameters:

a=[8,7)], feO,vyel.

Define the following sub-families of Gq:

67 2 {p(zl6,7),6 €0}, %2 {p(alf,v), v T}

Note that in the case of known source signal, the data is
modeled by G, where 7 is the actual value of the source
parameters.

Let 7(f;) determine the member of G4 closest to

p(z[61,7):
1((61,7), (62, 72)) = I((61,7), (82, %(62))),

and define

14(61,82) & I((81,m), (62, 7(82)))-

We define ambiguity between two points in the space of
the parameter of interest, ©, conditioned on the value
of the unwanted parameter v, in the following way:

12€T

A1, 62), 2 IMAX&i;iLZoSShaZ)’ @)

where Ips4x(6)y is a bound on the value of I

Invax(8)y 2 1,(8,82).

This definition reflects the central issue that distin-
guishes the situation of known and unknown signal,
namely, the necessity of estimating the signal param-
eters in order to estimate the source location.

Since I,(81,82) < I((81,7),(62,7)), we conclude that
the presence of unwanted parameters can only increase
the ambiguity, as it should be expected.

From this conditional definition of ambiguity, we can
derive global measures of ambiguity, independent of the
particular point v in the space of unwanted parameters:

A6y, 02) = A, {.A(Hl,ez)y}. (3)

where A,{.} is an operator on '. The definition of the
operator A4{:} can be done in different ways, leading
to different global characterizations of ambiguity. For
instance, we can define it to be a mean value operator,
or, alternatively, search for the pairs (6 # 83) where it
takes the maximum value (worst case analysis).

3. Normal densities

In this section, we give the expression of the Kullback-
Leibler number for normal densities. We consider the
problems of parametrized mean and covariance.

In the first one, denote by us the mean value, and by
R the fized covariance matrix. It is easily seen that

1(01,02) = 5 (o, — hesY R o, = o). (4)
The Kullback-Leibler distance is in fact a distance
and we can identify the model manifold with the N-
dimensional Hilbert space with metric defined by the
covariance matrix R.
In the case of normal observations with information
on the covariance, R = Ry, a few lines of algebra show
that the Kullback-Leibler number is :

1(61,0) = % [te(R; Re,) = N =In|R;!Ra, [} (5)

In this case, I(-,-) does not have the properties of a
distance. In fact, as it is easily seen, it is not even sym-
metric.

4. The Classical Definition

The Woodward ambiguity function was introduced in
the context of active RADAR systems, for the problem
of simultaneous estimation of delay and Doppler shift in
a narrowband signal of known complex envelope, trans-
mitted through a Rayleigh channel. Let 6 denote the
vector that gathers the wanted parameters, i.e., the de-
lay 7 and the Doppler shift, w. In complex notation,
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From the expressions given above, we conclude that the
role of the classical ambiguity function is here played by
the projection of A(6,)s into My, .

Note that while in the previous case the location of
the peaks of the ambiguity function was independent of
the unwanted parametfer +, in this case this is not so.
Different directions of the complex vector s will result
in different shapes of the conditional ambiguity function.
In an effort to globally characterize the problem, we can
define a mean ambiguity function, dependent only on
the location parameters:

A0 = — / A(8y,62),ds,
S‘S'P(ixkl) Spe,y

where Sps,y denotes the unit spherical surface in
CP®), and Ss,,,, its area. This approach leads to
the use of the principal angles between the subspaces
My, and My,, as defined in [2]. We do not pursue it
here due to lack of space, referring the interested reader
to 4.

5. Stationary scalar observations

We treat here the case of normal stationary zero-
mean scalar observations, with spectral density function
Sy(w),0 € ©. Our results are based on the work [1].
Under the assumption that the observed series has a
strictly positive spectral density Sp(w), the Kullback -
Leibler number can be written as

oot [ [nSu@)_, Su@],
oo =g [ ety 1 Sy

For the specific case of a stationary wideband source
at location 6, with spectral density S(w) propagating
to a single sensor over a channel with transfer function
Hyg(w), the received signal spectral density is, for white
observation noise,

Se(@) = o? + S@)|Ha(w)’.
For known source signal spectral density, the ambiguity

in the estimation of the location parameter ¢ involves
the following Kullback-Leibler number:

[t S@IE @ |
0% + S(w){Ha, ()|’
o7 + S@)He, @) |
which depends on S(w). Using a variational approach,

we. determine the spetral density function that mini-
mizes Fs,)(-, ) subject to the restriction of fixed source

- I f
Is@(®ba) = |

S |

power, obtaining

©)

PR ol
Shtw) = —

(1Hea@)F - o @)P)

for all the points & where ﬁHp,‘éw)‘[«z # FH;,(Q)FZL and
where: C' is a constant. Note that eq. (9) corresponds
to: having maximum power in the frequencies where the
values of the medium’s power transfer function are more
close to each other, which is an intuitively pleasing re-
sult.
For the case of snknown source spectrum, the relevant
distance is
. I [T[ o+ Sy(w)He, (@)
1(6;,S:,6:,S =-—/ [ln - e
r.51,02,52) = e | o7 +S1(w)He, (W)
0 + 1)l He <w>fg]
-1+ e L duw,
o7 + 52(w) He, (@) |

Imposing no constraints on S{w) other than it being a
non-negative function leads to the following:

Safwr : )| Hoy ()" = S3(@)Ho, (@)1,

which, in turn, implies s, (61,02) = 0. We conclude
thus, that with a single sensor, we must be able to im-
pose conditions on the shape of the spectral density
of the source to be able to estimate the source loca-
tion. The local version of this result had already been
derived using the Cramer-Rao: lower bound expressions,
in [5]. Without no prior knowledge about the source
spectrum, the model is not informative.
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