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Abstract

In this paper, the problem of detecting a directional
random signal in independent non Gaussian noise is
addressed. In particular, we assume a Gauss-Gauss
mixture model for the total noise field. The ap-
proach that we use consists on the substitution of
the MMSE beamformer included in the optimum
quadratic receiver for the Gaussian signal in inde-
pendent Gaussian noise problem by a beamformer
whose design is based on a least absolute value cri-
terion. The presented analytical study and the re-
ported simulation experiments show the robustness
of the resulting suboptimum receiver in the presence
of the unexpected impulsive noise field.

1. Introduction

It is known that the optimum detector of a Gaussian
signal in independent Gaussian noise uses a suffi-
cient statistic which can be obtained computing the
cross-correlation between the observations process
and the minimum mean square error (MMSE) esti-
mate of the signal to be detected, [1]. In array signal
processing, this estimate is the output of a MMSE
beamformer which, as it is shown in 2], is the best
quadratic (L2 norm) field reconstructor.

In this paper, we study the behavior of the op-
timum array receiver when detecting 1 far field
narrow-band Gaussian signal in independent Gaus-
sian noise and in the presence of outliers, e.g., under-
water burst noise. For this case, the total noise field
is no longer Gaussian, but it can be represented by
a Gauss-Gauss mixture model, [4]. It results from
the superposition of a background Gaussian noise
plus a strong impulsive noise field, also specified as
Gaussian. The latter models equipment misfunction
or ambient noise as, e.g., ice cracks. The presence
of the unexpected impulsive noise field is respon-
sible for the performance degradation of the opti-
mum quadratic detector. In [3], we introduced an
L, beamformer which is shown to be robust to the
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presence of outliers, namely the unexpected impul-
sive noise field. Recognizing this fact, we substitute,
in the optimum array detector, the MMSE beam-
former by the L; beamformer.

[n section 2, we present these two implementa-
tions of the wavefront detector. In section 3, we
compare the performance of the quadratic detector
with that of the L, detector when the unexpected
impulsive noise field is present. In section 4, we de-
scribe several simulations confirming the presented
analytical results. Finally, in section 5 we discuss
the main conclusions of this paper.

2. Implementation of the
wavefront detector

Let z(.) be the vector of complex envelopes of the
narrow-band signals observed on a linear and uni-
form array of N sensors:

z(k+1) = a(f)z{k+ 1) +n{k+1),k=0,1,... (1)

where z(.) is a sequence of zero mean Gaussian com-
plex random variables with covariance o2 and n(.) is
a sequence of zero mean Gaussian complex vectors
with covariance matrix R,, = o3I and statistically
independent of z(.). In (1), a(4) is the Vandermonde
steering vector of the impinging signal. We assume
that the signal complex envelope z{(.) is a first order
Gauss-Markov discrete sequence

sk +1) = folk) +u(k+1),k=0,1,... (2)

with a zero mean initial condition z(0) = z,. The
zero mean input sequence u(.) has a covariance o3
(1= 1f]*)2? and is statistically independent of z,,.
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Optimum quadratic detector.

The optimum quadratic detector for the Gaussian
signal in independent Gaussian noise problem uses
the sufficient statistic
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where K is the number of observed time samples
(snapshots) and %(.) is the MMSE estimate of the
impinging signal z(.), [1]. Using the model described

by (1) and (2}, the MMSE estimate Z(.) is provided
by the Ly-recursive beamformer, [5|:

1. Initialization

By =0 P(O) =1 (4)
2. Prediction
ik + 1) = f2e(k) (5)
Pe(k +1) = |f]° Pe(k) + o3 (6)
3. Residues and Kalman gain
rle+1) =2(k +1) —a(f)zx(k +1)  (7)
77 Pk + 1)a* (6)
K(k+1) = m (8)
4. Filtering
Brar(k+1) = Be(k+ 1)+ K(k+1)r(k+1) (9)
5. Updating

Posifk+1) ={1- K(k+ 1)a(f)] P(k+1)
+(1-a)olK(k+ 1)K (k+1)
(10)

In equations (8) and (10), a is a regularizing pa-
rameter adjusting the confidence placed on the prior
knowledge, here represented by the state equation
(2), versus the reliance on the observations (1). P
denotes the output error covariance matrix.

L, detector

The L, detector is obtained substituting the
MMSE signal estimate in (3) by the output of the
L,-adaptive beamformer, {5|:

1. Initialization
£, =0

P(0) =1 (11)

'(.}* denotes complex transpose
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2. Prediction
zi(k+ 1) = f2(k) (12)
Pelk +1) = |f*Pe(k) + o (13)
3. Residues and adaptive gain
rk+1) = z(k + 1) —a(8)3x(k + 1) (14)
W(k+1) = diag[|r.(k+1)]]  (15)

Pk + 1)a* ()W " (k ~ 1)

K{k+1)= :
e oot Pl + 1) 2, fralk + 1))
(16)
4. Filtering
Eepi{k+1) = ik(k+l)+K(/€+1)r(]c+1) (17)
5. Updating

Pk+1(k + 1) = Il - K(/C+ l)a G)IQP]C(IC‘F 1)
+otK(k+ 1)K+ (k+1)
(18)

As with the Lo-recursive beamformer, the param-
eter o is prespecified and accounts for the smooth-
ing of the solution %(.). Here P is the output er-
ror covariance matrix conditioned on the predicted
residues r. Notice that, contrarily to what happens
with the L,- recursive beamformer, the adaptive
gain K(.) of the L,-adaptive beamformer explicitly
depends on the inverses of the absolute values of the
predicted residues. This is an interesting property
that is explored when solving the detection problem
for the impulsive noise environment. In fact, those
sensors where strong and unexpected noisy impulses
occur are adaptively discarded from processing.

3. Performance analysis: burst
noise

[n the presence of unexpected impulsive noise, the
actual input of both beamformers is

zin{k+ 1) = 2(k + 1) + s(k+1),k=0,1,... (19)

where z(.) represents the observations modeled by
(1) and s(.) denotes the impulsive noise field. The
elements ¢,(.) of the vector s(.) are modeled by
identically distributed and statistically independent
complex random variables with probability density
function (pdf)?

plsn (k)

2§(.) denotes a Dirac impulse

sN(0,0%) + (1 - =)é(sn (k) (20)




where o2 is the variance of the Gaussian impulses,
¢ < 1is a generally unknown real parameter, and N
denotes the normal pdf. Then, taking into account
(1) and (19), and using (20), we obtain the pdf of
the samples of the total noise field n.(.) = n(.)+s(.):

p(ne. (k)

which describes the Gauss-Gauss mixture model.
From {20}, we have

E{sn(k)} =0

:N(O, U2+U%)+(1'5)N(Ov Ut%)v (21)

(22)

and

E{s, (k)50 (1)} = €028 0m b0 (23)

For simplicity of the analysis, assume that the regu-

larizing parameter is & = 0. Then, the output errors
of the L, and L, beamformers are

T et (8)lra () ra () + 5u()]
oy, = = i #
N () )
and “(6) [n() + ()]
5(![,3 = N . v (25)

respectively. Notice that, under the assumed con-
ditions, both beamformers are unbiased. The error
power at the output of the L;- recursive beamformer
is

o2 a?
P,=-2+e—. 6
L N +e& N (26)
If e0® > 02, then
o2
P, ~ ¥ (27)

This means that the output of the optimum
quadratic detector becomes completely masked by
the impulsive noise. For the L,-adaptive beam-
former, we notice that the condition e0? > o3 is
equivalent to assume that the probability of occur-
rence of strong impulses is very high. This implies
strong values of the predicted residues and (24) can
be approximated by

vz (Bl ()7 nal)
Ln-pla(T

where L is the number of sensors where strong im-
pulses are present. Hence, the error power condi-
tioned on the residues is approximated by

”«2) ZN—L irn(-)l'z )
(Saezlrm()IY)?

Notice that the summations in (29) only account for
the residues in the sensors where impulses did not

(28)

oy, =

L, = (29)
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Figure 1: Broadside source

occur. Then, the dispersion of the absolute values
of the residues is likely small and

2
90

T

(30)
Comparing (30) with (27) we conclude that, on
the contrary to what happens with the Lo-recursive
beamformer, the error power at the output of the
L,-adaptive beamformer is mainly determined by
the variance of the assumed Gaussian noise field.
Hence, the substitution of the quadratic beam-
former by the least absolute value beamformer
makes the sufficient statistic (3) robust to the pres-
ence of the unexpected strong impulsive noise field.
This fact is confirmed by the simulations results that
are reported in the “sllowing section.

4. Simulations

The simulations presented in this section were per-
formed on data synthesized using the model de-
scribed by equations (1) and (2}. A linear and uni-
form array of N = 20 sensors spaced by one half
wavelength was assumed. For both the L, and the
L+ receivers, figures 1 to 4 represent the sufficient
statistic £(4) for § € [-25°,25°] and K = 50 snap-
shots. For the cases where the source is present,
the signal to noise ratio at each sensor is 02 /02 = 2

(3dB).

Case 1: go? and source at § = 0°

The results obtained for this case are depicted in
figure 1 and show that, in the absence of the impul-
sive noise field, both receivers have similar behav-
iors. The resulting () is used as a calibration curve
for the following experiments: assuming a threshold
n = 4dB, we decide that a source is present if the
global maximum of £(6) is greater than 7.

Case 2: gg? = 36 and source absent

Here we assume that, in the absence of any source,
the mean power of the unexpected impulsive noise
is 0?2 = 36. As predicted by the analysis developed
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Figure 2: Absent source with impulsive noise

10 AN / \'-2//\\/ b /

6 /TN
. I\ /
4 7
2\
%% 20 a5 10 5 0 15 20 25

Figure 3: Broadside source with impulsive noise

in the previous section, the effect of the impulsive
noise field, masking the output of the L, receiver,
can be verified in figure 2. According to the specified
decision criterion with threshold n = 4, the decisions
provided by the two detectors would be: false alarm
at @ = 3° for the L, receiver, and source absent for
the Ly receiver.

Case 3: g0 = 36 and source at § = 0°

In this case, see figure 3, the decisions would be:
source present at § = —9° for the L, receiver, and
source present at § = 0° for the L, receiver. In spite
of detecting the presence of a source, the L, receiver
misses the source at 02 and has a false alarm at —9°.
On the contrary, the least absolute value receiver
detects the source and simultaneously provides an
unbiased estimate of its direction of arrival.

Case 4: gc® = 18 and source at § = 0°

Here the impulsive noise power is decreased to
so? = 18. However, the outputs of both receivers
are identical to those of the previous case. This
emphasizes the robustness of the L, receiver when
compared with the L receiver.

5. Conclusions

The reported simulations confirm the analytical re-
sults obtained in section 3. We conclude that the
substitution of the MMSE beamformer by the least
absolute beamformer in the optimum quadratic de-
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Figure 4: Broadside source with impulsive noise

tector leads to a suboptimum receiver that adap-
tively detects and attenuates the strong impulsive
noise samples. This fact is responsible for the ro-
bustness of the suboptimum receiver in the presence
of an unexpected strong impulsive noise field.

References

(1] H. L. Van Trees. Detection, Estimation, and Modula-
tion Theory, Part III. John Willey & Sons, 1971.

(2] V. A. N. Barroso and J. M. F. Moura. Optimal Es-
timation and Beamforming, in Underwater Acoustic
Data Processing, Ed. Y. T. Chan, NATO ASI series,
Kluwer Academic Publ., 1989.

V. A. N. Barroso and J. M. F. Moura. Adaptive
Beamforming as an Inverse Problem, in Proc. of
ICASSP89, Glasgow, May 1989.

{4] P. K. Willet and J. B. Thomas. Mizture Models for
Underwater Burst Notse and Their Relationship to
a Simple Bivariate Density Representation, in [EEE
Journal of Oceanic Eng., vol. OE-12, January 1937.

[5] V. A.N. Barroso. Ls and L, Optimum Beamformers
in the Presence of Coherent Sources or Sensor Fail-
ures, PhD dissertation submitted to Instituto Supe-
rior Técnico, September 1989, also Technical Report,
LASIP, ECE, CMU, December 1939.

(3

2806



