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Abstract

In this paper, we present a new algorithm to estimate
the directions of arrival (DOA’s) of multiple narrow
band (NB) sources (possibly completely correlated)
with observations by an array of arbitrary geometry.
As a preprocessor, the new algorithm extends the ap-
plication of NB High Resolution (HR) direction find-
ing schemes beyond the linear uniform array config-
uration, which these methods usually assume when
handling coherent sources. The novelty of the ap-
proach consists in the fact that both on geometrical
considerations and results from optimal estimation
theory are used.

1. Introduction

It is well known that conventional HR algorithms for
multiple source direction finding (as proposed in [1,7])
fail when the sources are perfectly correlated. Sev-
eral authors have proposed extensions to these algo-
rithms that allow for completely correlated (or co-
herent) sources. These consist in the addition of a
preprocessor to the conventional HR algorithm, that
does some kind of “smoothing” of the received wave-
form. We distinguish broadly between Narrow Band
(NB) methods (that use a single frequency component
of the observations) and Wide Band (WB) methods
(that process several frequency components).

One of the most successful NB methods appears
to be the Spatial Smoothing (SS) technique, initially
proposed in [3]. Designed for uniform linear arrays
(ULA’s), it generates a “smoothed” covariance ma-
trix with rank equal to the number of directive com-
ponents in the observations, irrespective of the cor-
relation among them. Alternative algorithms have
appeared, all of which are also fundamentally depen-
dent on the ULA assumption.

The Coherent Signal Subspace Method {CSSM),
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presented in [8], can be applied to an array of arbi-
trary configuration, being based on the nonsingular-
ity of the integrated source spectral density matrix.
Alternative wideband methods have been proposed,
e.g. [2), that assume a particular shape of the source
spectrum. We concentrate on the Coherent Signal
Subspace Method (here shortly denoted by CSSM)
since it is independent of any such assumption.

Non-uniform arrays are frequently encountered in
practice, and it is consequently important to have
methods that can detect and estimate the directions
of arrival independently of the array configuration.
Herein, we present an algorithm to resolve coherent
narrowband replicas, with observations by an array
of arbitrary geometry.

The paper is organized as follows: first, we re-
interpret the CSSM method in the framework of esti-
mation theory. Motivated by this discussion, we pro-
pose, in section 3, a new algorithm, that extends the
basic idea of the CSSM method to the narrow band
case. Finally, we present simulation studies that as-
sess the performance of the proposed technique.

2. The CSSM Method

To motivate our algorithm, we give a brief description
of the CSSM technique [8). Consider the following
model of the (WB) signal received at an array of K
Sensors:

P
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(1)
where r(t) = [ri(t)---rx(t)] is the X dimensional
observation vector; P is the total number of directive
incoming replicas; ax(f,), 7:(6,) are the attenuation
and delay from source p to sensor k; f,(t) is the signal
emitted by the p-th source; wi(t) is the observation

noise of known covariance matrix.
For a sufficiently large observation interval T, the
DFT components of the observation vector r(t) at
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each frequency are:
r(wn) = A(O, wn)s(wn) + w(wp),n=1,...,.N (2)

where r{w,) is the K —dimensional complex vec-
tor of DFT’s at the frequency wn; A(©;wn)
[a(i;wn) |-+ la(fp;wa)] is & (K x P) full column
rank matrix whose columns are the steering vectors
for each one of the P incoming directions {6,}7_; at
the frequency wy; s(wp) is the P-dimensional vec-
tor of the Fourier components of the source signals
at the frequency wy,, as seen by the first sensor (note
that the interpath delays are included here); w(w,)
is the DFT of the random vector w(t), with known
covariance matrix 02X (wy).

Assuming that the gains of each sensor are the
same, ax(0,) = ap, we incorporate the amplitude fac-
tors ap in the source vector, resulting in the following
definition of the steering vectors:

a(Bp;wn) =1 1

eJwn C2(8p) eIunix(8s) |7

(3)
where (; is the delay relative to sensor 1.

The covariance matrix of the DFT components (2)
is (asymptotically):

R(wa) = A(Q; wa)S(wn)A(Q;wn)¥ + 0?Z(w,) (4)

The CSSM method computes the “smoothed” co-
variance matrix:

N
R=) T,R(wa)TF.

n=1

(%)

where T, are (K x K) nonsingular matrices that map
the signal subspace at each frequency w, into the sig-
nal subspace at a reference frequency wp, and satisfy
the following set of equations:
TaA(O;wn) = A(O;wq)
Using (4) and (6) in (5) yields

R A(Q;wo)SAO; wo)® + TN | T T(wn)TH
A(O; wo)SA(O; wo)

n=1,...

N (6)

)
with obvious definitions of § and S.

In [8], it is proposed that the vector of estimates of
the directions of arrival be made of dimension K , say,
augmenting an initial set of estimates obtained with
a given method, ©g, with another set of directions,
®y, and use the following transformation matrices:

Tn = A{O0|®o; w0} A(O9|Pg; wn) ™! (8)

Using in (7) equation (8) and the expression for the
sample covariance matrix:

L
fan) = L0 e @
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where [ denotes the snapshot index, the matrix used
by the CSSM method can be written

N L
R= A(@ol‘po; wo) E (% Z&l(wn)jl(wn)}’) A(@o'@o;wo)

" (10)
wherc we have defined
§(wn) & A(@0|@0;wn)Mr(wn) (1)

This algorithm has been justified on the basis of
geometric/algebraic relations. Using (10) it can be
given an alternative interpretation. Consider the
model (2) together with the following assumptions:

o s(wy) is, for each n, a P—dimensional unknown
deterministic vector ;

* w(wy,) is a K—dimensional normal random vec-
tor, with zero mean and known covariance ma-
trix, 02S(wy).

Under the above, the minimum variance unbiased
estimate (MVUE) of s(wn) given r{wy) is the projec-
tion of r(wn) on the subspace spanned by the columns
of the matrix A(®;w,) (see , e.g. [6]):

#(wa)mvus = (A(o;wn)”A(e;wn))“A(e_;wn)”r(wu)

(12)
When A(Q;w,) has an inverse, (12) simplifies to

${wa)MvuE = A(B;wa) " r(w,) (13)
which has covariance matrix
R; = A(Q;wn) 1 R(wa)A(©;wa) %, (14)

Comparing (14) with (10), we conclude that the
“smoothed source covariance matrix” S is in fact a
scaled version of the covariante matrix of the esti-
mates of the unknown deterministic vectors s(w,) for
the model described 1,

2 B {é’(wn)s"(w,,)”]
EnEy 8 (wn)8 (wo)H

—
X

S

(15)

when the DOA’s are those in the augmented set
(©0l%o).

Consider the diagram in Fig. 1. The CSSM algo-
rithm uses the fact that it has available the observa-
tions of the output of N different systems (one for
each frequency) to excitation vectors s(wp) that span
the whole P-dimensional complex space. It estimates
these excitation vectors, and then “reconstructs” the
output of one of the systems (the reference frequency
wo), simulating in this manner N independent obser-
vations.

1E; denotes average over snapshots, and Ey,, over frequency.
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Figure 1: Estimation step of the CSSM.

It then applies the conventional NB HR solution
to the “reconstructed” signal set {#(wo;)}i,, with
asymptotic covariance provided by (7).

Given the output, for each DF'T component, of its
associated observer (A(0;wy,)) this method estimates
the signal as it would be observed through a specific
spatial observer (A(©);wy)). It is this “interpolation”,
or “reconstruction”, idea that is central to our algo-
rithm.

3. Description of the Algorithm

Consider the following (complex) model of the ob-
servations at an array of K sensors of arbitrary (but
known) geometry. the observations are the superpo-
sition of P distant NB sources:

r(t) = A(©)s(t) +w(t),

teT  (16)

where, for simplicity, we do not indicate frequency
dependence. i
In (16), A(©) is the matrix of steering vectors:

[A(O)kp = arp(@) = efix(®s) (17)

and s(t) is the vector of source signals:

s()T = [ aysi(t)eiwm apsp(t)e’“mr ] (18)

The asymptotic value of the sample covariance ma-
trix has the same expression as (4):

N
R2 %Zr(tn)r(tn)y — A(©)SA(®)¥ +4°T (19)

n=1

We consider here the general case where the rank
ré pS) <P
The algorithm is iterative, each iteration step be-
ing divided in the following functional blocks: First,
we “reconstruct” the signal, as it would be observed
by a uniform linear array; this “reconstructed” sig-
nal is then input to the spatial smoothing algorithm,
yielding a covariance matrix with the properties re-
quired by the HR techniques. Finally, we compute a
HR spectrum to estimate the DOA’s.

(@:wof M)
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Below, we describe briefly each step. Lack of space
precludes going into the details of the algorithm.

3.1 Estimation/Reconstruction Step

The first step is functionally equivalent to the pre-
processing of the CSSM method discussed in the pre-
vious section: it is in fact an estimation step. In con-
tradistinction with the CSSM algorithm, where the
estimation problem is set in a deterministic frame-
work, we adopt here a stochastic model.

As the CSSM algorithm, our method starts with
initial estimates of the DOA’s that define the model
used in the estimation of the source vector. We use
as well an estimate of the source covariance matrix.
Consider the observation equation (16), together with
the following model:

¢ s(t) is a Gaussian stationary vector random
process, with zero mean and covariance matrix

S 2 Es(t)s(t)¥) (20)
independent of the noise process w(t).
For this model, the MVUE of s(¢) is given by:
5(t) & Tr(y), (1)

where we have defined the “filter” matrix

T £ $V2[$H/2 4(@)H 51 A(9) S /2 +021)SH/2 A(0) F 5!
(22)
where S/2 is a (K x r) square root of S.

Using the estimated source vector (), the signal
at the output of an hypothetical ULA is now “recon-
structed”. Let B(©) be the steering matrix of this
ULA, with steering vectors b(§). The estimate of the
signal at the output of this ULA is then:

#(t) & B(©)3(1) (23)
with covariance matrix,
R =B(®)TRTH B(0)H (24)

3.2 Spatial Smoothing

The next step consists in the application of the Spa-
tial Smoothing algorithm to the reconstructed signal.
Here, the spatial degrees of freedom are used to “sim-
ulate” the missing degrees of freedom in the source
vector, and make possible subsequent application of
the HR algorithms.

Application of the SS algorithm yields the following
“smoothed” matrix:

M
R ;= Z Ritm-1j4m-1-

m=1

(25)



where M is the number of sub-arrays used.

The distribution of the eigenvalues of R will not
show K — P zero values, but two regions will be clearly
defined, corresponding to “signal” and “noise” eigen-
values, yielding an estimate of the number of signals,
and of the “signal” and “noise” subspaces.

3.3 Spatial Spectrum

Finally, we use the estimates of the number of
sources, obtained from the distribution of the eigen-
values of R, and the estimated noise subspace to build
a spatial spectrum. Let

P(6) = b(6)"Un(An)LUHB(9) (26)
where b(8) is the stebring vector for the tentative di-
rection §; Uy is a (K x (K — P)) matrix formed by
the noise eigenvectors; Ay is a (K — P) x (K — P))
diagonal matrix, whose entries are the noise eigenval-
ues.

This spectrum, when compared to the usual MU-
SIC spectrum (which does not involve the inverse of
the noise eigenvalues), is more robust to errors in the
estimation of R, and on the noise term characteriza-
tion. In fact, since the model we are using in the esti-
mation is not the true one (we don’t know the DOA’s,
or S) we cannot expect to have a clear separation be-
tween the signal and noise subspaces. Weighting the
eigenvectors accordingly to ‘the inverse of the corre-
sponding eigenvalues (which has been proposed pre-
viously in [5]) makes the spectrum more robust, giv-
ing less weight to those eigenvectors that are poorly
estimated.

The directions of arrival are estimated as the P
largest peaks of (26), with P determined from anal-
ysis of the eigenvalues of R generated by the Spatial
Smoothing algorithm, in step 2 of the algorithm.

4. Simulation

Fig. 2 shows the spatial spectrum and the dis-
tribution of the eigenvalues after § iterations of
the algorithm, using the asymptotic sample co-
variance matrix. There are 3 perfectly correlated
sources, from directions 50°, 70° and 90°. A 10-
element non-uniform array is used, with the follow-
ing consecutive sensor spacings (in half wavelengths):
[1,.5,2.5,1,3.,.5,.5,2,2.,2] . The SNR for the
weaker signal (70°) is 20dB and for the other two
is 30dB.

For this example, the MUSIC spectrum does not
peak at the true source directions. With the present
algorithm, we see that the 3 sources were detected,
and that the DOA’s were correctly estimated. The
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small bias on the value of the estimates can be re-
moved if the algorithm is run using in the estimation
step a set of angles in the vicinity of the estimates
found, as it is proposed for the CSSM method in [4].

Figure 2: Spatial spectrum and eigenvalues after 5
iterations.
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