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ABSTRACT

The paper studies for an ARMA(py.qo) process. the joint deter-
mination from a finite data sample of its structural parameters
py and q,, its AR and MA components, and its innovation
power o*

The order estimation algorithm is based upon the mini-
mization of a functional d that measures the mismatch of the
assumed model ARMA(p.q) to the data. The functional is
evaluated from the estimated reflection coefficient sequence
associated with the process. When the orders are decided. the
proposed technique simultaneously provides the estimates of
the AR and the MA coefficients. as well as o°.

1. INTRODUCTION

In any identification problem going from data to a model,
the model structure (e.g.. the number of poles and zeros) has
to be determined prior or within the estimation procedure.

For an ARMA(po.qo) process. the AIC introduced in [1]
and the MDL suggested in [2] are well known techniques for
order selection. They both select the number of poles. py. and
the number of zeros. g;. minimizing a functional that sums the
power of the sequence of residues with a term that accounts for
the model overparametrization. In [3L|kl] those techniques are
used in conjunction with an AR and estimation procedure.

This paper presents a joint order and coefficient estimation
algorithm for ARMA processes. exclusively based on the re-
flection coefficient sequence associated with the ARMA(p,.q.)
process. It extends previously reported work on ARMA esti-
mation, ( see [5]. ﬁ)

The order selectxon is based upon the minimization of a
functional that measures the mismatch of each assumed
ARMA(p.q) model to the data. The functional d is evaluated
through the reflection coefficient sequence estimated from the
data using the Burg technique. | 7} When the orders are de-
cided, the proposed scheme simultaneously provides the AR
and the MA components.

The paper organization is the following. In section 2, the
functional d is defined. It is proved that d = O for the true
model, i.e., p = p, and ¢ q.. Some properties of d are
listed in section 3 as the base for the order selection scheme
proposed. Section 4 displays some simulation resufts. Finally,
section 5 concludes the paper.

2. FUNCTIONAL DEFINITION

Let {y.} be a stationary, Gaussian. ARMA(p,.q,) process
given by

"
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where {e,} is a white Gaussian noise with zero mean and vari-
ance o®. The poles and zeros of (1) lie inside the unit circle.
The usual conditions on system minimality are assumed to
be verified, thus the coefficients ps. qv. {ai,i = L,...,po}.
{bi.i=1,....q0} and o° fully characterize the model (1).

In this section we define a functional d(.V.p.q) that mea-
sures the mismatch between each assumed ARMA(p.q) model
and the ARMA(py.q,) process. Throughout the section we as-
sume the exact knowledge of the reflection coefficient sequence
associated with {y.}. We first introduce notation and present
important relationships derived in [5]. [6] when the orders p,
and g, are known.

Notation )

We denote by @ and >, 0 < j < N. the coefficients
of the prediction error filter and innovation fllter of order .\,
(:¥ > 0). associated with the ARMA(ps.q0) process. Let Wy

and W ;! be the lower triangular matrices of order N - I, with
unit diagonal. and nondiagonal entries
iW.’V iy — ””:7] N ]‘ f" ! 5 0 S l.~.]. ,\ A\— (2)
Wil =al, j<i.0< i <N (3)

The matrices M, (V, po, go). Ma2(V.po,qo). mT (N, pi.q.).
and mI (V. p.. q‘,) are the blocks of W with the orders shown
in Fig. 1 for N " py - ¢go.
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Figure 1: Blocks considered in W y.
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Define
MN,po, o) = Mailpy = quopango) |- I M2(Nopg) - (4)
m(N, po, qo) = {mlr(pu g P ) | }'mlr(‘\‘,p“.q“)] . (5)

Let Nop(N,po,go). Nueo(NV.po.q). nf(N.po.q,) and
n;(;\' po,qu) be defined in correspondence with the matrix

W\'-1 in a similar way as defined above for W, replacing
the roles of p, and g;.



Let T
a =laa ... a,)} (8)
b = ibiby... b, " (7)

be the AR and MA components of the ARMA(ps.gy) process.
and )
QN) = [ (N) 0(N) ... 0 (N T

be a conveniently defined vector (see [5]. [6]). that converges to
the MA component (7) as N goes to infinity, i.e.. limy .o (V)

Define the lower triangular matrices of order N + 1,
A(N,po,g0) and 3(N,po. qu) as

ANV, po ) = [0, (a7, (1 0L ], ®

BN, P o) e = [0[ ol atx)J, |1 0{,%] © )

pn*qU’\;kS;V,

where |, denotes the line k of the corresponding matrix,
J. is the circular permutation matrix of order k£ and Oy is the
null vector of order £.

The symbol * . will be used to represent the Cartesian
norm.

Known Orders

When p, and g, are known, the increasing order prediction
and innovation filter coefficients associated with {y.} are re-
lated with the vectors a and (k). The following result is
proved in [5]. [6].
Result 1: The vectors a e £2(k) satisfy,

NI (k. pigo) 3, Qk) - ny(k.po.go) = O (10)
MT(N, po, @) Tpn @ + m(N.po,qu) 0 (11)
MU, (k,po,q0) I, @ + ma(k,po, o) = I, Q(k) (12)

N3, (k,po, @) Iy, S(K) +m2(k,po,q0) = Jp,a,  (13)

po+g <k<N.

For N > py + qo. the vectors a and (k) are the solution of
the systems of linear equations in {10)-(11). Those equations
are decoupled with respect to a and (k). On the other hand.
the linear algebraic relations (12)-(13) establish a joint function
between those vectors and the increasing order prediction error
filter and innovation filter coefficients. [n a matrix format,
Result 1 is expressed as

iA(N~Pm‘ZU)!k. Wy = {g(quPu’Q«))jk, (14)

BN, P1,40) 1a VVNl = [A(N.po,q)lsa (15)
Pyt Qo < k< N. ’
Unknown Orders
When p, and q, are not known, we assume that {y,} is an
ARMA(p.q) process. The order selection algorithm is based
upon a functional d(.V, p,q) evaluated for each pair (p.q). Its
value is obtained from a set of vectors computed from the
coefficients of the prediction and innovation filters associated
with {y,.} and considered up to order N.

Those vectors are defined as follows. Let N;(N,p,q).

n,(N,p.q). My;(NV.p.q). m(N.p.q).{,j = L,2and M(N,p,q).

m(N,p,q) be defined for (p.q) in accordance with the corre-
sponding matrices introduced for p = py and ¢ = qo.

Definition 1: 'é6(k, p,q) € R? is the minimum norm vector x
that minimizes

”Nfl(lc.p,q) J, x + nl(/c,p,q)H2 , prqg<k<N. (16)

-
Definition 2: 'y(N, p,q) € R? is the minimum norm vector y
that minimizes

IMT(N,p,q) oy +m(N.pq)|, , N2p+q  (17)

[
With (16) and (17). we build the lower triangular band
matrices of order N + 1, 'A(N,p,q) and '8(N,p,q) as.
oF, 11 4(V,p.0)" 3, | 1 0% ] (18)
[oF_, 1" 8(k,p,0)" 3, 1 [0k 4] (19)
pt+q<k<N.

[IA(N,p,q)]k.
['8(¥.p,9)],,

Il

Using the Result 1, note that for p = po and q¢ = qo.

Y6(k,po.go) = k), Pota <k N, (20)

“Y(NV,p@)= a, N>2p+aq, (21)

leading to
[IA(N,p(,,q(,)]k. = [A(N, Pquo)]k. (22)
[Vﬁ(a‘V, P(‘u%)]k. = [B(N.,po, )}, - (23)

The above four equalities show that when p = py and
g = go. the vectors defined in (17) and (16) coincide with a
and Q(k) related with the AR and the MA components of the
ARMA(py.q0) model (1). By analogy. we associate 'y(N, p.q)
and '6(k,p,q) with the AR and the MA components of the
ARMA(p.q) model assumed for {y,}.

Definition 3: The vectors **4(k. p, q) and **eg(k,p, q) are
defined by

Jp 2'k7(k: P, q)

NL(k,p,q9) J; *6(k, p.q) + n2(k, p, 9).(24)
“ke p(k,p, q) q) 3, '6(k

p
NI (k,p, ,p,9) + ny(k,p,q)(25)
pra<k<N.

O
Definition 4: The vectors 2*§(N,p,q) and **epa(N,p,q)
are defined by

3,2%6(N,p,q) = Mp(k.p.q) 3, 'v(N,p,q) +ma(k, p,q)(26)
Pherra(Nopg) = Mb(k.p.g) Jp 'v(N,p,q) + mu(k, p, q)(27)
prq< k<N

O
Note that (24) and (26) are similar to (13) and (12) that are
verified for the ARMA(py.go) model (1). The linear algebraic
relations (25) and (27) evaluate the error associated with the
least-squares minimizations in Definitions 1 and 2.
Once the elements of the matrices 'A and '3 in (18) and
(19) are evaluated using (16) and (17}, we build the matrices
2A and ’8 as

YA(N,p,q) Wy = *3(N,p,q) (28)
'8(N,p,q) W' =2A(N.p.q). (29)
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Using the Definitions 3 and 4 yields,
Pavopa),, = [MemalN.pa)” 1*0(Np.0) 3, 11 0% 4]

[2A(N~Pﬂ)h_ = [Mear(hp. )" 1" ylkp. )Ty 11 of ],
p+q<k<N.

For p - p.. q = go. replacing the Result 1 and (20)-(21) in

the Definitions 3-4 leads to
potg<k<N,

ZkeAR(kep()wa)) = 0. (
Pot o< k<N, (31
(

“ceMA(]\'»PmQM) = 0,
2'k7(kﬁpu,¢1u) = a, pntg<k<N, 3
z‘ké(]\'r.Pn,l]()) = ﬂ(k) , Po+qo = k<N. (3'3

As a consequence, both *A (N, py, qu) and *B(N, py, qu) given
by (28) and (29) have a band struture, beginning on line p; + qo.
In particutar, YA (N, po, g0) = 2A (N, pu. q0) and 'B(N, po, q0) =
zﬁ(NaPo,QO)v

We finally define the functional d(N,p,q).

Definition 5: The functional d(N,p,q) is given by
d(N,p.q) = dar(N,p,q) + dma(N,p,q), (34)

where
RIS |['A.pa)], - PAG L] 39)
E=p+q .
dua(N,p,q) = kqu 8V.p.0)] - [80N.p9)], 2 , (36)
—
Nz ptq

From (35) and (36) the elements d 4z and dyr4 on the func-
tional d evaluate the mismatch between the last NV +1 -~ p - ¢
lines on the pair of matrices ('A.*A) and (}3.3). For p = p,
and ¢ = ¢o those matrices coincide and so d(N, po,qn) = 0.

The order selection is based on the values of d(N,p,q) for
each pair (p,q) and increasing values of N. From the Defini-
tions 1-5, note that d(V, p,¢) is not evaluated for NV less than
p+q. The vectors (*7.2%y.%%e,z) and (16,26, 2 ey, ) that
define the functional d, may be evaluated recursively in p. ¢
and N [8].

3. ORDER SELECTION

The order selection is based upon the properties of the func-
tional d{NV, p, ¢) defined in the previous section.

Properties

When there is exact knowledge of the prediction and in-
novation filter coefficients of increasing order, the following
properties hold. Due to space limitation, we will not present
the proofs. the reader being refered to [8]. In figures 2 to 4
we sketch the locus, in the (p.q) plane. in correspondence with
the properties P1 to P6. The symbol 77 refers to a non null
functional d, while 0 represents the set of pairs (p.q) where d
is zero.

PL.d(N.p,q) = 0 for p>py N = p- q .
P2.d(N.po,q) = 0 for ¢ > gy, N > py +q.
For p > po. ¢ = qo and N > p + qo. Pl is verified because

the errors associated with the least-squares minimizations in
(16)-(17) are zero and [8].

. 2 T
L (N.pog) =M ylkopgo) = [aT OT—M] . (37)

L8 (k, p, q0) PEA(N.poqu) = k), (38)
pra<k<N.

This means that the assumed ARMA(p.q,) model (p > py).
has p, poles at the same locations as the poles of {1). the
remaining p — p, poles being at the origin. Also. from (38) the
two models have the same set of zeros.

By duality, similar conclusions are valid for P2.

P a 0] p \ qo
/// //
/
Po 88 y 2 0&&@9‘7
00}~ /
OI"J N> tq s
, B N > potq
s /
a) P1 b) P2

Figure 2: Locus considered in P1 and P2

P3. If Ny (p + ¢,p.q) and Mz (p + q,p.q) are nonsingular
matrices, d(p + q.p.q) = 0.

This property refers to the set of pairs (p.q) such that N =
p+q. i.e.. the pairs located at the diagonal shown in figure 3a.
Note that this diagonal is shifted down as .V increases.

p ‘Q p a qn

%
\\\¢

/

’
7 N Zpy+ 4o

7/
b) P4

Figure 3: Locus considered in P3 and P+.

P4.d(N,p.q) = 0 for p<po,qg<q.N>pi+q. .
P5.d(N,p,q) £ 0 for p>py,g<go.N>p+aq-

P6. d(N,p,q) 7 0 for p<py,¢>q,.N>po~q.

P g qo P q qu
Q 7
// \\//
Po y Do ,
. -
s 2Pt N ooprg
Y v
’
a) P5 b) P6

Figure 4: Locus considered in P5 and P6.
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Selection

From P1 and P2 the range space of d(N,p,q) presents an
orthogonal pattern of null zeros, with (po.qu) as its intersection
point (see fig. 2). This pattern is established for N = p; + qo
and does not change as .V increases.

Every ARMA(p.q) model with (p.q) belonging to an orthog-
onal pattern of null functional has the same spectrum as the
one corresponding to its intersection point [8][) For the pat-
tern associated with (p..¢,). this is due to P1-P2. Note
that among all the models related to an orthogonal pattern,
the intersection point is the one with the smallest number of
parameters. Together with P3 to P6, we then conclude that
(pu.qn) is the intersection point of the orthogonal pattern with
d = O established for the smallest value of N and that it is
“stable” with increasing values of N. The selection algorithm
identifies this pattern.

Define

I(N,p.q) d(N.p,q) =0v N <p+gq} (39)

={(p.q)

L(p.g) = () T(N,p,q) (10)

N2

where ( stands for set intersection.
For each value of N, the set I(N,p,q).

i) does not include the orders (p.g) of ARMA models that
definitely are not the correct structure for {y.}, i.e.,
{(p.q): d(N.p.q) #0, N > p+q};

ii) collects all the models for which there is not enough in-
formation for an accept or reject decision, L.e.,
{{p.q): d(N.p,q) =0, N > p—qj}or
{(p,g): N <p+aq}

The functional properties yield

{(p,a): (p=porq>aq)v(p=pong=a)}c L(pa)
i.e.. the orthogonal pattern with (p..g.) as its intersection point
is a subset of £(p.q). Thus (p:.qo) is obtained as the model

ARMA(p.q) belonging to L(p. ¢) and with the smallest number
of parameters,

(Pos @) = r&}'iqr’l{p - q. (p.q) < L(p,q)}- (41)

When the order is decided. the algorithm simultaneously pro-
vides the corresponding AR (vector 'y) and MA (vector ')
components.

4. SIMULATION RESULTS

In the presence of a finite sample of lenght T" of the observation
process. the exact values of the prediction and innovation filter
coefficients are replaced by its estimates obtained from the
data using the Burg technique. [7].

Due to estimation errors on these cofficients, Pl - F6
do not exactly hold. The selection algorithm is implemented
replacing the zero in (39) by a positive constant. The intersec-
tion point of an orthogonal pattern is obtained searching the
functionat d(.V, p,q) by increasing diagonals. i.e.. p ~ ¢ = k.
| < k < NV and picking the first pair (p.q) for which d(N.p, q)
is small and much smaller than the other values in the same

diagonal.
For the ARMA(1.1) model

Yn — 0.6y,.1 = €, — 0.6, (42)

with o® = 1. and N = 10, we perform 100 independent Monte-
Carlo runs. Table 1 displays the number of correct estimates
of the orders py and gy for several values of T.

\ T=100 | T=250 | T=500 |
| Number of :
{ correct estimates .

[B—

62 87 99

Table 1.

The same kind of simulation results were obtained for the
ARMA(2.1) model

Yn — 1.2yn_1 + 0.36y, 2 = €, +0.9e, (43)

with ¢? = 1, N =15 and 100 independent Monte-Carlo runs.
Table 2 displays the number of runs leading to the correct order
selection for several values of T.

T=500 | T=1000 | T=5000 |

: Number of
| correct estimates 52 82 100

Table 2.
5. CONCLUSIONS

A joint order and parameter estimation algorithm for ARMA
processes was presented, based on the reflection coefficient
sequence associated with the process. The order selection is
obtained through a functional minimization. The AR and MA
coefficients are the solution of systems of linear equations.
Some simulation examples display the order selection perfor-
mance. In a future work we will compare it with known order
techniques.
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