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Abstract

The multipath passive location problem with wide-
band source signal is considered. Spatio/temporally
based high resolution algorithms are presented, that
assumne no knowledge of the second order statistics of
the emitted signal. With these methods, the restric-
tion on the size of the recelving aperture commonly
imposed by spatial only high resolution algorithms is
substituted by a global condition on the total num-
ber of spatial and temporal degrees of freedom. This
approach shows that the frequency contents of the
emitted signal is effectively used to compensate for
the eventual defficiency in the number of available
sensors, extending the number of detectable paths for
an array of a given size.

1. Introduction

High resolution methods for detection and direction
estimation of multiple sources are widely discussed in
the literature. Originally developed for narrowband
(NB), not completely correlated sources, extensions
to wideband (WB) possibly coherent sources have
been proposed.

The coherent problem is particularly challenging.
The orthogonality relation upon which these methods
are based (that the noise eigenvectors are orthogonal
to the eigenvectors corresponding to the directions
of the sources) no longer holds. In the extreme case
of completely coherent NB sources, all the snapshots
have colinear noise-free components, defining a signal
subspace of dimension 1, generated by a single linear
combination of all the steering vectors.

The paper discusses alternative methods that ex-
plore the spatial (number of sensors K) and temporal
(time bandwith product N} degrees of freedom in a
cooperative fashion to resolve P perfectly coherent
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paths. The resolvability constraint is

K+ N >2P. (1)
Next, we revisit the spatial smoothing method of [1],
presenting an elegant and short proof of their re-
sult. Section 3 summarizes a temporal only algorithm
(K =1, N > 2P) demonstrated in [4]. Section 4 out-
lines a spatial/temporal procedure with resolvability
condition (N > P,N + K > 2P). Finally, Section 5
describes the dual method (K > P,N + K > 2P).

2. Spatial Smoothing Revisited
In [1], the NB coherent problem is solved when
K > 2P. (2)

Spatial smoothing (SS) of the data is followed by a
signal subspace technique (SST) as in the scheme:

SS SST

We now prove that (2) is the resolvability condition
for P paths. Reinterpret the noise free component y;
at the output of sensor k of a linear uniform array as
the impulse response of the following system:

exr1 = Dep +buy state eq.
e =0 (3)
k41 = sT €r41 output eq.

where

ee,€CPyeCyreC
o D = diag [e«f1 ... eIw0P]
e s =[s1---sp] is the vector of source signals.

When (ug = 1,u = 0,k > 1), the state e; € CPis
the vector of the k-th components of the P steering



vectors. Define the Hankel pattern associated with
the impulse response y; of system (3):

Y Y2 Y3 YMm
Y2 Y3 YMm+1
H=| 1 : (4)
Yg-1 Yq YM+q-2
Yq Yg+1 YM+g-1

Using the notation of Eqs. (10) and (11) of [2], it is
easy to see that

— 1
ASA= —_HHY,
SA= 3)
Theorem [1]
rank H HH = P iff
s5i #0, i=1,...,P, ©)
Dy #Dj; i,j=1,...,P

Proof: Matrix (5) has rank P iff H has rank P. By a
theorem due to Padé [5], H is full rank iff the system
(8) is of minimal dimension. By a standard result of
Kalman {6}, system (3) has minimal dimension iff

rank
rank

b|Db|---|DP-1b] = P

s|Ds|---|[DP~1s] = P ()

These are true iff (6) are true. o

It can be concluded that these methods overcome
the defficiency in degrees of freedom of the incoming
signal by further spatial processing of the observation
vector. Combining the requirements ¢ > P, M > P
the condition on the number of sensors is:

K >2P. (8)

In the wideband context there are additional de-
grees of freedom in the temporal dimension of the ob-
servations, which can be used to compensate for the
perfect coherency of the sources. In 3], a wideband
coherent method is presented that uses the frequency
diversity of the emitted signal to resolve the source
matrix singularity. In the coherent case this method
requires at least the minimum bounds:

N > P, K>P

@)
where N is the number of independent frequency
components of the observations (time-bandwith prod-
uct). The resolvability condition is given indepen-
dently in N and K, reflecting the distinct roles as-
signed to each one by this method: frequency (N) is
used to define a nonsingular “source matrix”, while
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space (K) is used to define the signal subspace at each
frequency.

Our claim is that temporal (frequency) and spatial
degrees of freedom can be interchanged, and thus that
a global condition on the total number of degrees of
freedom is sufficient.

3. Temporal Method

Let the signal received at the k-th sensor be described
by:

P
re(t) = Zapk s(t—mpr)+wp(t),t€Tk=1,..., K

p=1
(10)
where:

. {apk}f_if’pﬂ and {TPk}féfl’,p=l are the attenua-
tion and delay from the source to sensor k along
path p;

s(t) is the emitted wideband signal, assumed ad-
equately described, over the observation interval,
by:

s(t) = isn efwnt, (11)
n=1

The frequencies wy, are equispaced: wyp —wp_1 =
A, and s, are random variables of unknown co-
variance matrix.

wg(t) is the observation noise at sensor k, in-
dependent of the signal s(¢). The (tempo-
ral/spatial) covariance of wi(t), %, is assumed
known.

With the assumption (11), the rank of the covariance
matrix of the noise free component of the stacked
vector of observations:

Q = E[z =7, (12)

where

e = [T ()] T ()] (13)
is N. The eigenvectors of @) in the metric of the noise,
i.e., solutions of the equation:

QZ-I U = Aju; (14)

corresponding to the N largest eigenvalues span the
same space as the columns of the (X L) x N matrix

G, see [4]

GT = [Gn)T-G(t)T]
P
G(tq)kn = Zakpfn(tq_fkp) (15)
pr=1
fn(t) = ejw,..t.



That is,
Span{uy,..., us} = Span{columns of G}.  (16)
From (16), there exists an invertible matrix T

U=[uw] -lun]=GT. (17)

It is shown in [4], that the I-th sub-bloc of G is a
L x N matrix Y; such that:
Y}T =F()A (18)

where F(t;) depends on the known functions f.(?)
and on the delays 74, and A is a block diagonal ma-
trix with P x 1 entries:

(19)

The k-th column of ¥;¥ depends only on'the propa-
gation parameters corresponding to the k-th sensor:

[¥i"]

Agk = a = [ag1 - axp]”

= Fy(ti)ax (20)

k

where

Fi(t) = [v(ti, 1)l - [v(t, mep)lae - (21)

and

v(t, Tkp) =[filti — Tkp)' | fn(l = Tkp)]T- (22)

Since the frequencies wy, are equispaced, v(t1, Tkp)
are Vandermonde vectors. We apply to them the
“spatial smoothing” technique [1], defining the vec-
tors:

ik = [ lem - [V emag-1]Tm=1,.., M.
(23)

These vectors can be utilized to define a signal sub-

space at sensor k. The “covariance matrix” defining

these signal subspaces is given by:

Ry = Fy S, F¥ (24)
where S is a nonsingular P x P matrix, and the
matrix F; has columns:

V(rkp) = [Volt1, ep) T IV, ) 7] T (25)

where v,(t;, Txp) is formed by the first ¢ components
of the vector v(#;, 7kp) (see (22)). Application of a
conventional eigendecomposition method to Ry yields
estimates for P and for the delays 74,. The role of the
steering vectors in the NB spatial methods is played
here by the vectors v(7zp), dependent on the known
functions fn(t), and the unknown parameters 7xp.
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The matrix T depends on the values of the parame-
ters that are being estimated. In [4], this algorithm is
recursive, with initial values provided by some other
method. The resolvability condition, derived from
the requirements ¢ > P and M > P, is

N >2P (26)
dual of the condition for NB coherent methods: K >
2P. Eq.(26) says that P paths can be resolved even
in the extreme case of one sensor K = 1.

4. Temporal/Spatial Method

The method proposed in this section incorporates
knowledge about the spatial structure of the observed
field into the temporal algorithm of section 3, finding
a global signal subspace for the entire array.

Analogously to the coherent signal subspace
method of [3], we define transformation matrices, Lg,
that map the signal subspace at sensor & into the
signal subspace of a reference sensor ko:

Ly Fy = Fy,. (27)

The coherently averaged matrix W:

w

K
S L Vi Lf
k=1

K
L, [Z Sk
k=1

will have rank P as long as the rank of

K
S=) S
k=1

is P. The condition on M (M > P) in force in the
temporal only method of the previous section can now
be relaxed. For this combined temporal/spatial ap-
proach the source matrix is

H
)

(28)

1l

(29)

K M
=33 D{"Vapaf DI D"

(30)
k=1m=1
where
Dy = diag{e?®7 ... 277} (31)
and A is the frequency spacing.
In [4], for a uniform linear array,
Dy = DyDF-! (32)



with

D = diag{e/29: ... ¢i8dP} (33)
Dy = diag{e/8do1 ... ¢fAdor})
where dp, is the intersensor delay for the signal trav-

elling along path p and do, the phase relative to a
reference point. From (32) and (30),

5-3

k=1lm=1

M
(

(34)

The application of a conventional high resolution
method to W to successively resolve the P paths re-
quires that matrix (34) be nonsingular.

Although it is evident that whenever either K > P
or M > P, S has full rank, this last equation also
suggests that a combined condition in K and M must
exists that ensures the nonsingularity of S.

The study of the rank of matrix (34) can be shown
to be equivalent to the study of a system of homo-
geneous multivariate polynomials [4]. The analytic
study of that system for general values of P, K and
M presents major difficulties. For the tested values of
P (only small values of P were studied) the condition:

N+K>2P (35)

derived from M + K > P and ¢ > P, actually yields
a full rank matrix S, except possibly over a set of
arrival angles of measure zero.

The algorithm can be partitioned in the following
steps:

1. The vectors [V}]; that are a linear combination
of the vectors v(7xp), of the known model, are
determined from the “signal eigenvalues” of @ .

2. Frequency smoothing is applied, increasing the
rank of the “source matrix” at each sensor.

3. Finally, the spatial structure is used to combine
the signals at each sensor, by means of the ma-
trices L.

5. Spatial/Temporal Method

A dual method is now briefly formulated. This
method starts by calculating the signal subspace at
each frequency of the incoming waveform. Then, us-
ing the fact that K > P, spatial smoothing is ap-
plied to each frequency component of the incoming
waveform. Finally, transformation matrices map the
signal subspace at each frequency into the signal sub-
space at a given frequency, and are then combined,
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D(""1)Do)("‘"l)akakH(D(k'l)Do)("“I)H.

giving the global signal subspace. When the spatial
smoothing step is eliminated in this dual method, it
coincides with the WB coherent method of [3] .

In [3] the resolvability constraint is only stated
asymptotically, as

K>P N large. (36)

For the completely coherent case, it is clear that the
technique of [3] requires at least N > P. It is in-
teresting to see that incorporation of just one step of
spatial smoothing (M = 2) is sufficient to find more
accurate bounds. For equally spaced frequencies the
following conditions ensure a nonsingular S:

K>P+1 N>P (37)
The source matrix becomes
N
5= "[S(wn) + (D"~ Dg)S(wa) (D"~ Dy)H].
n=1
(38)

The recursion in n guarantees, with the bounds (37),
that N (D=1 Dg)S(wn) (D =D D)H is a defi-
nite positive matrix. Since Eﬁ:l S(wn) is semidefi-
nite positive, their sum must be definite positive, en-
suring thus the nonsingularity of 5.
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