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ABSIRALT

The present work describes an  ARMA
estimation algorithm that differs from the knouwn
available technigues. It substitutes the
autocorrelation estimation sequence by the sequence
of estimated reflection coefficients. These are
reliably provided by the Burg technique [11. Then
it fits to the process both a sequence of higher
order linear predictors (e.q., Levinson algorithm},
and a sequence of higher order linear innovations
filters (e.q9., by recursive inversion). Finally,
it obtains the MA coefficients from the linear
relations satisfied by the corresponding
coefficients of the successive higher order linear
predictors, and likewise obtains the AR
coefficients from the linear relations satisfied by
the corresponding coefficients of the successive
higher order innovation filters.

We stress that the procedure does not wuse
the sample autocorrelation lags; it uses instead
the sequence of sample reflection coefficients,
from which it estimates independently of each other
and in a dual way, the MA and the AR components of
the process.

1. INTRODUCTION

The use of autoregressive moving-average
(ARMA)} models in spectral estimation has received
increased atention in the last few years (see e.q.
£23-041). Most of the reported techniques involve
several steps, the first of which constructs a
sample autocovariance function. Another
characteristic of those algorithms is the
dependence of the MA component estimation upon the
AR component estimation.

This work addresses the ARMA estimation
problem, presenting an estimation procedure that
does ot share the two above mentioned common
features. On the one hand, it departs from the
usual approach of wsing the sample autocovariance
lag sequence, estimating instead from the data the
sequence  of reflection coefficients. The
simulation results presented here wuse the Burg
technique [11 for the estimation of the reflection
coefficients. On the other hand, the AR and MA
coefficients -are obtained in a dual way. The
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algorithm  constructs from the reflection
coefficients two sequences of successively higher
order linear filters - one is a sequence of linear
predictors, the other is a sequence of innovations
filters. The MA part is then obtained by exploring
the linear relations that are satisfied by
corresponding coefficients of the sequence of
linear predictors, while the AR part is obtained
similarly but using in turn the coefficients of the
increasing order innovations filters, The
estimation algorithm dualizes the roles of the AR
and MA components, performing %the same kimd of
operations for both components.

The estimation algorithm is based on a
finite sample of lenght T drawn from the Gaussian,
stationary stochastic process {yn}, with the ARMNA

signal model

P q
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where {en} is a Gaussian, white, =zero mean, unii

variance noise sequence. The linear, time-
invariant representation (1) 1is assumed to be
stable, minimum phase, with no common roots on the
nunerator and  depominator polynomials of its
transfer function.

The estimation algorithm discussed here
assumes apriori knowledqge of the number of poles p
and zeros gq, and that prq. We are presently
testing an extension of the present procedure that
jointly estimates the orders p and q as well as the

parameters.
In section 2 we briefly review the
underlying theory concerning the estimation

algorithm, which is detailed in [61. Here, the
emphasis is on the algorithm aspects of the
estimation procedure. Some simulated examples are
presented in section 3. Further examples are in
£51. In £71 some preliminary results of this
algorithm are compared with those of an estimation
procedure based on d-step ahead predictors. A
statistical analysis computing analytically the
asymptotics of the bias and of the error covariance
has been carried owt and will be presented
elsewhere.
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2. BUAL ESTIMATION ALGORITHN

The dual estimation algorithm  herein
presented is derived from the exact knowledge of
the increasing order prediction and innovation
filter coefficients associated with the process
{yn}. We will see that both the AR and the HA

components are obtained from the solution of 3
system of linear equations built up from those
coefficients. In the presence of a3 sample of
lenght T of the observed process, those exact
values are replaced by a3 suitable estimate. This
problem is discussed later.

To present the algorithm, we will assume
that an infinite sample 1is given, i.e. that ue

krnow exactly  the above referred filter
coefficients. Leat

N . ) N

3y i=l,..4,H, E i, (2

be the Nth order, one-step ahead prediction error
filter coefficients associated with {yn}, and

denote by
(3)

the reflection coefficient of order N and by dﬁ the

variance of the Nth order prediction error.
Collecting the increasing order coefficients (3} in
a3 matrix format, yields the lower triangular matrix

of order N+1, Wl oas in 4,

N
_1__r' —.
UN = 1 (4)
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The elements on lime i (0g£igN) of this
matrix are the coefficients of the prediction error
filter of order i. The inverse of the nonsingular
matrisx (4) will be denoted by UN and its elements

writen as in (5},

wy = |1 . (5)
W
0
2 2
ool
Wl )
L i

The elements on line i of MN, W

(0,

are the ith order innovation filter coefficients.
They may be obtained from <{4) through a3 wmatrix
inversion. The lower triangular, unity diagonal

structure of (4) a3allows a recursive implementation
of this matrix operation.

By the Wold decompesition, the elements on
line N of matrix w&l
infinity, = long AR(MN) representation of the
ARMACP,q) process under  study. With a dual
argument, a long MA representation of the process
is obtained, for an high value of N, from the Nth
order innovation filter, i.e. the elements on line

N of the matrix UN.

Several spectral estimation techniques wuse
long AR or long MA models as an intermediate or a
final step in the estimation procedure. These
approaches correspond to exploring the matrices NN

constitute, 3as N goes to

and U;l by lines. On the contrary, the estimation

algorithm presented on this section looks upon the
columns of those matrices. In fact, both the AR
and the MA components of the ARMA process are
computed from the linear dependencies exhibited by
the elements on each column of the matrices UN and

-1

UN .
For Nyp, the elements on each of the first

N-gq columns  of the matrix “N are linearly

dependent. The coefficients of those linear
dependencies are the same for 2ll the columns,
being the parameters of the AR component. This
result, proved in [61, is writen as the following
system of linear equations,

N N-1 N-2 N-p
Uyt a ) P A TS e TP =0 )
N N-1 N-2 N-p  _
We1t 2y Uneg t 3 Vg teeet 3 Wy = 0
M N-1 N-2 )
p a3 wp‘l + 3 Up_g L ap = 0
M N-1
\wq_‘_l*’ 31 Hq o +3q+1 =0 .

Note that, in

matrix UN on  each

same column of that matrix.
A dual result, relating the MA component of
the process and the elements on each of the first

(6)y the elements of the
linear equation telong to the

columns of the matrix w;l is presented.

introduce the normalized version of (4), i.e. the
o

First,

matrix 1 Wwith elements

N

" .

al = 8t /4. 0<iCioN (7)
b i i =date

where di is the standard deviation of the

prediction error of order i. For N:p, the elements
on each of the first N-p columns of the normalized

Ao
matrix UNl,
dependent. The coefficients of the linear
dependencies are the same for all those columns,

defined by (4) and (7), are linearly
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leading to the following system of linear equations
(31-£61,

¢ p . ¢ =0 (8)
QO(N) eyt Gl(N) Cn-1t + aq(N) - 0
N “N-1 “N-g _
G N) Ay + N ayTa e (D 3y = 0
“N “N-1 “N-q _
(¢ cese FOOLIND =0
OE(N) ap+l+ 1(N) ap + 9 ap—q+1
where,
GO(N) = dN (9
and, [6],
lim Q. (N) = bi i=0,1,...4% (10)
N--3c0 1

Note that the elements of U;l on each of
the linear equations in (B) belong to the same
column of that matrix. This fact, together with
(10}, states that the coefficients of the linear
dependency defined by the elements on each of the

first N~p columns of U;l are, asymptotically, those

of the ¥A component of +the process. The result
axpressed by the first equation in (8), dealing
with the increasing order reflection coefficients,
was presented first in £81.

The systems of limear equations (6) and (8)
play a central role in the dual ARMA estimation
algorithm. They were established assuming the
exact knowledgqe of the prediction and innovation
filter coefficients. BEeing given a sample of the
process with lenght T, those values are replaced by

- “y
suitable estimates that will be denoted by 33’ Uj,
83. We use the Burg technique [1] and the Levinson

algorithm to estimate the reflection coefficients,
the prediction error filter coefficients and the
power of the prediction error directly from data.
For each wvalue of N we can thus construct the

. .-l ~2
estimated matriy UN and dN.

An inversion of U;l leads to UN.

recursively in N dus to
first matrix and

This
operation is implemented
the trianqular structure of the

the fact that W.»
2 N-1

NN .

is an upper left submatrix of

Replacing in (&), (7), (B) and (9} the es-
mated values of H;, ag and d?, the solution of the

resuylting linear system of equations yields the
estimate of the AR component and the estimate of

to the MA coefficients (see (10)).
The dual ARMA estimation procedure is
summarized in the following algorithm:

For N=0’1""’Nmax

L\ N
the Rurg technique.

(1£igh-1)

” 2 .
Compute ¢, and d5 from {yo, yl""’yT~l} using

Compute a? through the Levinson

algorithm.
Construct U&l by adding a new line to U;E

~

Obtain UN by matrix inversion from U;l.

1°

Solve (6) to obtain ai(N), i=l,...,p |Only for

Solve (B) to obtain ai(N), i=l,.uvyg Nrptq

End

In the above algorithm, ai(N) and di(N)

denote the estimates of the
coefficients using N-g and N-p linear equations
established from the innovation and prediction
filters of orders N, N-1, ..., N-p and N, N-1, ...,
N-gq, respectively.

At this point, some comments

corresponding

ought to be

done, strenghting  the main features of the
algorithm. First, the AR and MA components are
astimated independently of each pther, being each

one oktained from the
linear equations.

estimation 1is the
corresponiding

solution of s system of
The asymptotic nature of the HA
price to be paid for the
linearity. 1In [67 it is proved that

the rate of convergence of the di(N) parameters to
the bi coefficients is governed by the secornd power

of the zeros of the original process. Second, for
N:p+q, both (6} and (8) represent an oversized
system of equations, with the statistical relevance
of compensating the estimation errors on the
prediction and innovation filter coefficients.
Third, both the AR and #MA (asymptotically) are
obtained by a Modified Yule-Walker square root type
algorithm. An implementation of this algorithm
updating recursively (on the number of reflection
coefficients constructed from the data) the HA and
fRk estimates may be obtained. See [5]1 and [61 for
details.

3. SIMULATION RESULTS

The performance evaluation of the dusl
estimation algorithm presented in the previous
section is descriked here by simulated examples.
The spectrum associated with an ARMA(4,2) process
with

poles: 0.85 exp(+j70°), 0.85 exp(+j110™)

zeros: (.93 exp(1j90°)

bo=1

[
is compared with the estimated
from a sample of lenght T.

In fig. 1 we display the spectrum and its

estimates obtained with T=1000 data points, for tuwo
different values of N, the number of estimated

spectrum computed
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reflection coefficients computed by the BRurg
technique. The asymptotic nature of the HMA
comporent estimation (see equations (8) and (10))
is displayed in fig. 1 where an increase on N
improves the estimation of the spectral noteh.

1e.

Stl)-DB

-19.

.99 9.25 9.5@ 8.75 1.80

Fig.l - True and Estimated Spectrum,
T=1000 data points, N=10, 20.

The gquality of the spectrum estimation as a
function of the sample lenght T, is shown in fig. 2
obtained with N=20 and T=500 and 5000 datas points.
A decrease in T leads to a degradation of the
estimation of both the zeros and the poles of the
original process. This is due to the degradation

of the prediction and innovation filter
coefficients estimation.
o 10.
a
;
2
’ /
2.
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-20. T T T
.00 8.25 2.59 9.7% 1.88

Fig.2 - True and Estimated Spectrum,
N=20, T=500 and 3000 data points.

Figure 3-a) and b) show for 10 Monte-Carlo
runs the dispersion of the spectral estimates for
two values of the sample lenght 1. When T is
increased from 1000 (fig.3-3)) to 3000 (fig.3-b))
data points, the spread is significantly reduced.

18.

S (W) -DB
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N=20

-28. T T T
e .ee 9.25 9.59 8.75 1.ee

Fiq.3-3) - Estimated Spectrum for T=1000 data
points and 10 independent Monte-Carlo runs.

Stul-0B

~28. +— T T T
@.e0 0.25 9.50@ a.75 1.00

Fig.3-b) -~ Estimated Spectrum for T=5000 data
points and 10 independent Honte-Carlo runs.

We have shown that asymptotically the
variance of the errors on the ARMA parameters
vanishes with 1/T. Details will be provided in a3
forthcoming paper.
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