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ABSTRACT

Time delay determination is an important
problem in numerous applications. The approach
taken here models the signals via linear
differential equations driven by white noise. The
time delays are unknown parameters modulating the
received signals. The maximum likelihood estimation
of the delays requires the filtering in the minimum
mean square error (MMSE) sense of the signals. The

problem becomes that of the joint estimation of the
signals with the identification of the delays. Due
to the structure of the signal model, the signal
NNSE estimate is obtained via a recursive structure

of the Kalman—Bucy type.
The class of signals considered includes the

stationary signals, to which the cross—correlation
receivers are restricted. In fact, it can be shown
that the receiver studied in this paper is a
generalization of the cross—correlation receiver.
The paper presents the general receiver structure,
discussing it in the context of a specific example.
The Cramer—Rao bound associated with the delay
estimation is also discussed.

ItflROIJCTION

The signal received by the array of sensors is

z(t,s) = y(t—D(s)) + v(t,s), tE T, sE S,

where t is the time parameter, s is the space
variable that takes values on a set of coordinates
S (S{l,2,... ,S}), and D(s) represents the actual
delay. The observation noise v(t,s) is modeled as a
Gaussian white noise vector process with covariance
matrix R(t1,s1,s2)'S(t1t2). The signal y(t) is

dx (t)
—=A(t)x(t) +B(t)u(t),
dt

y(t)C(t)x(t),

TIME DELAY ESTIMATOR

mip J(t,t.;D5)
D°

with the log—likelihood function

(2.b) where

the state x(t) is a real vector with initial
condition x(t ) which is a Gaussian random vector
with mean c(t 9 and covariance matrix (t ); the
dynamics disurbance u(t) is modeled as a 8aussian
white noise vector process, independent of the
process v(t,s) and of the random vector x(t0), with
covariance matrix Q(t1)3(t1—t2).
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(3, a)

(4)

(5)

Depending on the system matrices A(t), B(t),
C(t), equations (2) model nonstationary narrow or
broadband processes. The above model includes as a

special case the stationary signals.

The time delay estimator is developed via
maximum likelihood techniques. From [11, the delay
vector estimate is given by

(1)

J(t,t.;DS)=J{EZ(r)_Y(r,DS)]TR(r)[Z(r)_Y(r,DS)]+1
(3.b)

+trtR1(r)P(r,D5)])dr

where

z(t)=[zT(t, 1) ZT(t,2) ... s) 1T

DS=[D(l)ID(2)j... ID(S)JT

R(t)= R(t, 1,1) R(t, 1,2) . . . R(t, 1, S)

R(t,2,l) R(t,2,2) .. . R(t,2,S)

R(t;S,i) R(t;S,2) ,:: R(t;S,S)

The conditional mean signal estmate Y(t,DS) and
the error covariance matrix P(t,D ) appearing in
(3.b) are given by

S S
Y(t,D )= C (t—D(s))(t,D(s)ID )

s1
S

P (t,D ) 7J l C (t—D(s)).Y Ss1 m'l

.P(t,D(s),D(rn)IDS).C (t—D(m))

C (t)=[Ol... IOjCT(t)IOI... 0jT

(t, aIDS)EIx(t_s)IZt,DS]
P(ta1,a2ID8)=E{[x(t-a1)--(t,a1 IDS)].

[x(t_a2)_(t,a2IDS)]TIDS}

a>D . ; D . min{D(s), VsES}— mm mm
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(2.a)



Figure 1 illustrates the delay estimator
structure. The filter block accomplishes the
minimum mean square error (MNSE) signal estimate
conditioned on the delay vector. It represents a
Kalman—Bucy type filter developed for systems with
delays in the gbservations [3]. The state vector
estimate x(t,aID ) is given by the partial
differential equation [1]

i(t,aiDS)
+

(t,aIDS)
=

with the boundary condition

d(t,D IDE)
miii = A(t—D ).(t,D ID5)+mm miii

where

+K(t,D IDS). [z(t)_(t,DS)]
miii

S S T 1
K(t,ajD )[ P(t,a,D(s)ID )C (t—D(s))J.R (t)

s=l

represents the filter gain matrix. The 5state
estimate error covariance matrix P(t,a1,a2ID ) is

given by coupled partial differential equations,
see [1] for details. These partial differential
equations represent the extension to filtering with
delays in the observations of the Riccati equation
associated with the Kahman—Bucy filters.

I..(Zt,D S)=Jttr{R_l(r)EP (r,D S) ()
ij a

TD
a ij

D' D5). YD(r, DS).T+
1

(6.a) 2 D(i)D(j) IDS=D S
a

?(t,aIDS)..D(t, aIDS)/a.
CRAM—RAO B3ND

For any unbiased estimator, the Cramer—Rao
bound is given by he 5iiwerse of the Fisher
unformatjoninatrix I(Z ,D ) [41—E61, i.e.,

E{[DS(t)_DaSI• ES(:)_DS]T)>I_l(Zt,DS).

The elements I..(Z ,D ) are given by

2 t S
lnlp(Z D )]

I. .(z ,D )=—E{a
DD(i)D(j) D

where p(ZtIDS) is the probability density
of the observations given the delays.

From equation (10) it follows that cD(t,DSL and
Y (t,D ). are the output of a dynamic systmi wth

spate ctor consiting of x(t),5 (t,alD ),
1(t,aD ), fi.(t,aID ), and fL(t,aID ) with white
noise inputs i(t) and v(t,s).

A CASE STUDY

Consider the problem of estimating the time
(8) delay between the signals observed at two spatially

separated sensors (S={l,2)). The observations are
modeled by equation (1) where we assume Da(1)=0
and D (2)D =0.005 seconds. The observation noise
covarince mhrix is R(t1,s1,s2).5(t1—t2) where

J(t,t.,DS)

Figure 1: Delay Estimator Structure

It can be shown [21 that,

K(t,atD ).EZ(t)—Y(t,D )]

(6. b)

where

YD(t,D) =3(t D5)/D(i)

YD(t,D)iED(t,D)iJ _________

P (t,DS). .=E{[Y (t,D5).—c (t,D5).].i D 1 D

From (4)

S
Y (t,D5).= Z C (t-D(s))..(t,D(s)ID5)+ (10)
D 1 S 1s1

+C1(t-D(i)).Y(t,D(i) IDS) +

+[9C(t_D(i))/3D(i)].(t,D(i) IDS)

where

aID5)'(t,aID5)/D(i)

(7)

function
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0. 1 if s1=s2

R(t1, i' s2)
0. elsewhere

This covariance structure models spatially
uncorrelated noise. The signal process y(t) is a
iForstationary signal modeled as a first—order,
linear dynamical system of the type of (2), where
we assume C(t)=l. The state variable initial
condition is zero mean with covariance
(—0.0l4)10.0, and the dynamics disturbance
covariance is Q=20.0. Functions A(t) and B(t) are
given by

A(t)-50. [exp(-2t2)+lI

B(t)=5. [l.l/V'0.0l+t2

Finally assume that one can restrain the delay
domain to the time interval [—0.0l4,tO.0l4]
seconds. Establishing a discretization step of
0.001 seconds, the time delay estimation processor
is implemented through a bank of 29 Kalman—Bucy
type filters working in parallel. Each filter is
tuned to an allowable value of the delay
(D=—0. 014fO. 001k; k=0, 1,... ,28). The log—likelihood
function is built by means of these filters'
out put.
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The simulation study was carried out using
computer generated data. Figure 2 shows one sample
of the two sensors observation process. Figure 3
illustrates the achieved delay estimate time
evolution. One can see that, after a short
transient, it settles down around the true delay.

In order to get the delay processor
statistical behaviour, a 500 sample Monte Carlo
experiment was run. The delay estimate ensemble
average and the mean square error variance time
evolutions are plotted in figures 4 and 5,
respectively. One can see from the time evolution
of the ensemble average that the delay estimate is
asymptotically unbiased.

0.

Figure 5: Mean Square Error Variance

2.

Finally, figure 6 plots the Cramer—Rao lower
bound computed from (7)—(lO), see [2] for details.
Figures 5 and 6 considered together clearly show
that the time delay estimate mean square error
variance achieves the Cramer—Rao lower bound.
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Figure 3: Delay Estimate
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Figure 4: Delay Estimate Ensemble Average

Figure 2: Observation Process
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CONCLUSION

The work presented in this paper reports on
maximum likelihood delay estimation with stochastic

nonstationary signals. The delay processor
presented performs the estimation of the signals
via a recursive Structure of the Kalman—Bucy type,
along with the identification of the delays.

Maximum likelihood theory provides optimal
estimates that are asymptotically unbiased
(consistency) and that asymptotically achieve

Cramer—Rao bound (efficiency). For the case study
presented, the simulation results obtained are seen
to follow closely these properties.
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Figure 6: Cramer—Rao Bound


