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ABSTRACT

This paper develops the two-dimensional (2D) clutter adap-
tive, multiframe Bayes detector/tracker for targets with
random signature. We model the background clutter and
the target signature as samples of two independent, spa-
tially correlated, 2D noncausal Gauss-Markov random fields
(GMrfs). The target’s motion is modeled by a 2D hidden
Markov model (HMM). We study, through Monte Carlo
simulations, the performance of the adaptive multiframe de-
tector/tracker, and show that the performance of the adap-
tive tracker is very close to the performance of the tracker
when the clutter model is perfectly known.

1. INTRODUCTION

The problem of automatic detection and tracking of
moving targets in clutter has received increased atten-
tion in recent years, see e.g. [1, 2]. However, most
references found in the literature [3] propose the sub-
optimal association of a single frame detector and a lin-
earized tracking filter, or, alternatively, consider mul-
tiframe detection-only (no tracking) of moving targets
[4]. By contrast, we developed in 5] a Bayes algorithm
that optimally integrates detection and target position
estimation. This detector/ tracker is a 2D nonlinear,
recursive, multiframe, spatio-temporal algorithm that
fully incorporates the models for target signature, tar-
get motion, and background clutter. '

’ The algorithm in [5] assumed that the target signa-
ture was deterministic and perfectly known to the de-
tector /tracker. In this paper, we extend this algorithm
in two directions: random target signature modeled as
a spatially correlated random field arising from stochas-
tic fluctuations in the target’s reflectivity and condi-
tions of illumination; and clutter adaptation when the
clutter statistical model parameters are unknown and

need to be estimated. We detail the structure of the

detector/ tracker, and evaluate its performance. Our
studies show that there is little performance degrada-
tion of the adaptive multiframe detector/tracker ver-
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sus the detector/tracker that has full knowledge of the
clutter model.

We comment briefly on the remaining sections of
the paper. Section 2 establishes the 2D target and
clutter models, expanding on [5]. Section 3 describes
the 2D nonlinear Bayes detector/tracker with random
target signature. Section 4 details the structure of the
detector/tracker, shows how the algorithm combines
the statistical information from the target signature
and clutter models, and discusses implementation is-
sues. Section 5 examines the algorithm’s performance
and, finally, section 6 summarizes the contributions of
the paper.

2. REVIEW OF THE MODEL

We consider a 2D rigid target whose clutter-free image
is contained in a bounded rectangular region of size
(ri +7rs +1) x (; + 15 + 1). In this notation, r; and
rs denote the maximum vertical pixel distances in the
target image when we move away, respectively up and

~ down, from the target centroid. Analogously, !; and

l; are the maximum horizontal pixel distances in the
target image when we move away, respectively left and
right, from the target centroid. An imaging sensor pe-
riodically scans the surveillance space generating an L
x M sensor image Y, that contains the returns corre-
sponding to the target plus the returns from the back-
ground clutter. The unknown quantity at each frame
n is the target’s centroid position, z,, defined on an
equivalent 1D extended lattice [5],

L={1<I<(L+ri+r)(M+1L+1)+1} (1)

where Ly = (L+7;+7s) (M +1;+15)+1 is a dummy tar-
get state that is used to indicate that the target is ab-
sent from the surveillance space at a given frame. The
motion of a target that is present is described on the
lattice £ by a first-order hidden Markov model (HMM)
specified by the transition probabilities T'(z, j) = P(z, =
i| Zn-1=14), (i,7) € L x L.
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The clutter-free pixel intensity of an observed target
is described by a set of spatial signature parar.-ters,
{An(k, )}, —1i <k <71y, —1; <1< ;. Let A, (k, 1) =
E[A,(k, 1)] where E[.] stands for the expected value.
We model the spatial target signature as

An(k, 1) = Ap(k,1) + ¢n(k, 1) (2)

where ¢, (k, I) is a zero-mean, noncausal, spatially ho-
mogeneous, 2D Gauss-Markov random field (GMrf) mo-
del [6] that describes the target’s spatial correlation.
The field {¢.(k, I)} is generated by the 2D finite dif-
ference equation

Gn(k, 1) = B [pn(k — 1, 1) + ¢n(k + 1, 1))
+ B [Palk, 1 = 1) + ¢k, L+ 1)] + n(k, 1) (3)

where €, (k, 1) is a zero-mean Gaussian prediction error
such that E[¢(k, l)e(p, r)] = 03d(k — p, I — 1), with
0 denoting the 2D delta Kronecker function. Analo-
gously, the clutter returns at frame n, V,(i, j), 1 <
1t <L,1<j< M, are described by the 2D zero-mean
GMrf model

Vﬂ(ia J) = :35 [Vn(i -1, .7) + Vn(i +1, ])]
+ BrlVali, 5 = 1)+ Va(i, j + 1] + Un(i, j) (4)

where E [V,,(3, ) Un(p, 7)] = 626(i —p, j —r). The as-
sumption of zero-mean clutter implies a pre-processing
of the data that subtracts the mean of the background.
A nonzero clutter mean could be accounted for triv-
ially. We use Dirichlet (zero) boundary conditions to
specify equations (3) and (4) near the borders of the
respective lattice. We also assume that L >> r; + r,
and M >>1I; + 1.

3. THE ALGORITHM

Define the vec operator that converts a P x @ matrix
into a PQ x 1 long vector by sequentially stacking the
rows of the matrix, and let y,, = vec(Y,,), where Y, is
the observed L x M sensor frame at instant n. Define
also the vector a, = vec(A,) where A,(k, 1), -1; <
k <rg, —l; <1<, are the target’s clutter-free spatial
signature coefficients at frame n, see section 2.

The optimal multiframe Bayes detector/tracker in-
volves the recursive computation at each frame n of the
posterior probability mass function P(z, | Y}), where
zn € L is the unknown target state at frame n and

2 = {yo, ...,¥n} is the collection of all observations
from instant zero up to instant n. The algorithm is
divided into 4 steps.

Filtering Step Using Bayes law and combining assump-
tions that the sequence of clutter frames {Vy}, k > 0,

and the sequence of targets signatures {ax} are both
independent, identically distributed (i.i.d) in time, mu-
tually independent of each other, and independent of
the sequence of real target states {2}, & > 0, it can
be shown that, for n > 0, away from the borders of the
sensor lattice, we have

P(zn | Y3) = Cy [ [ P51 an, zn)p(an) da
X Plen] Y37) (5)

where C,, is a normalization constant. The recursion
is initialized with P(zp | Yg') = P(z), i.e., the prior
distribution of the initial state. Introducing the vectors
Pn(n and Ppjn_1 such that p,,.(1) = P(z, = 1| Y{) and
defining the observations kernel, S,,, such that

Sall) = [ ¥ | an, 20 = Dplan)dan,  (©
we can rewrite equation (5) in matrix notation as

Pnjn = CnSn © Pnjn—1 (7

where the symbol ® denotes pointwise product.
Remark Equation (5) is still valid near the boundaries
of the sensor lattice provided that the target signa-
ture vector a,, is properly defined to take into account
portions of the target that fall outside the surveillance
space and are no longer visible in the sensor image.

On the other hand, for the absent target state z,, =
L,, the filtering step reduces to

P(Ly | Y3) = Cnp(¥n | 2o = L) P(L1 | Y27')  (8)

where, in this particular case, the kernel p(y, | z, =
L) reduces to the clutter statistics, p(V,).

Prediction Step Using the total probability theorem
and the same assumptions made before on the inde-
pendence of {z}, {V}, and {a;}, we write for n > 1

P(zp | Yg_l) = Z P(zn | 2n—1)P(2n-1 IYg_l) .

Zno1

9)

Recalling from section 2 the transition probability ma-

trix T'(i, j) = P(zn = i | 2n—1 = j), equation (9) is
rewritten in matrix format as

Pnjn—1 = Tpn-—lln—l ) (10)

Detection Step Recalling that z,, = Ly = (L +r; +75)
x (M +1;+1s)+1 indicates that the target is absent at
frame n, then the minimum probability of error Bayes
detector is the test

H,
P(za=Li | Y3)21-Plza=L1| Y})  (11)
H,
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where H; denotes the hypothesis “target is present”,
and Hy denotes the hypothesis “target is absent.”
Tracking Step If hypothesis H; is declared true, com-
pute the conditional probability vector

__ P(a=1]Yp)
1—Plzn=1L1| Y3)

Qf [n] leL (12)

where £ denotes the extended lattice £ minus the dummy
state L;. The MAP estimate of target’s centroid posi-
tion is

2map [n] = arg xlneaszlf[n] . (13)

4. IMPLEMENTATION: FILTERING STEP

The implementation of the filtering step in equation (5)
requires the computation of the observations kernel S,
defined in (6). Let F = r; + 75 + 1 and Il=UL+1+
1 and introduce the symmetric, block-Toeplitz, block-
tridiagonal matrices, A, and Ay of size 71 x 7l such
that

Ay =T (-6 H) - °H- 0 (14)
where ® is the Kronecker or tensor product, I, is the p
x p identity matrix, and H; is an [ x [ matrix such that
Hy(i, j) =11if | i — j |= 1 or zero otherwise. We also
define the prediction error image at frame n, T, (i, j),
such that

Tn(i, §) = Yali,5) — B; Ya(i, 5 — 1) + Ya(i, 5 + 1)]

= ByYali+1,5) + Ya(i — 1,5)] (15)

with zero (null) boundary conditions. For | = (p —
D (M+L+ls)+q,ritrs+1 < p < L i+l +1 < g < M,
introduce now the 71 x 1 vector v}, such that

I

v, =vec(Y(p—r; —rsip,qg—1; — l5:q)] . (16)

Away from the borders of the sensor grid and using
the GMrf models for target and clutter from section 2,
it is possible to show that, after absorbing constants
that are independent of the state 2z, = I, and using
appropriate normalization factors, then

INT l
where
T = (0.7Ac+0,7Ap)7" (18)
m, = o7%J + 0;2 Asm, . (19)

In (19), m, = E[a,], which, without loss of generality,
we make independent of n. Using the results in [6],
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we note that the matrix ¥ in (18) has a very well-
defined eigenstructure, factoring as ¥ = ¥D1¥7
where where ¥ = Sz ® S;, with S, denoting the p x
p 1D orthogonal discrete sine transform (DST) matrix
such that, for 0 < k,n<p-1,

2
sin w(k+1)(n + 1)'
p+1 p+1

Sk+1,n+1)= (20)

On the other hand, D is an 71 x 7I diagonal matrix
whose nonzero diagonal entries are given, for 1 <: <7
and 1 < j <, by

] e

diG-DI+4l=e -2 = — 2c:

[((-DI+j]=a CzCOS(l+1) C3COS(F+1)
(21)

where ¢; = O‘C_2 + a;g, c; = 05252 + 0;255, and

c3=a;? /3§+a;2 B¢. The special eigenstructure of ma-
trix & indicates that the quadratic form (mé)TX(m!)
in (17) can be computed efficiently by applying a 2D
fast discrete sine transform to the matrix equivalent
of the vector m!, and then adding the squares of each
transform component using as weights the inverse of
the nonzero entries of matrix D given by equation (21)
and computed off-line.

Remark The general structure of the algorithm re-
mains the same for the states z, = [ that are located
at the boundaries of the sensor lattice, except that the
definitions of Y,, A., and A, must be modified to
account for portions of the target that no longer fall
inside the sensor grid. Some correction factors must be
also introduced in the analytical expression for S, (1) to
guarantee that all entries in the vector S,, have a con-
sistent normalization. Similarly, a separate expression
has to be derived for the entry S, (L1) that corresponds
to the absent target state. We omit further discussion
on these technicalities for lack of space.

5. TRACKING PERFORMANCE

We present next tracking performance results for the
proposed algorithm. We simulate 2D Gauss-Markov
targets with correlation parameters G¢- = ,B,f = 0.16
and an average pixel intensity m, = 1 that is invariant
in both space and time. The sensor image consists of
the target image added to synthetic zero-mean Gauss-
Markov clutter with correlation parameters 85 = 3 =
0.24. The simulated targets have size 9 x 9 and move
inside a 120 x 120 sensor grid according to a 2D ran-
dom walk model superimposed to a time-invariant, de-
terministic drift. The nominal target velocity in both
dimensions is equal to 2 pixels/frame and the proba-
bility of fluctuation of one pixel around the nominal
position in one of the two dimensions is equal to 20 %.



A simulated target departs from an unknown, random
location in the 30 x 30 upper corner of the sensor image
and is subsequently tracked over 40 consecutive frames.

Figure 1 shows the standard deviation of the posi-
tion estimation error in the vertical dimension (mea-
sured in number of pixels) versus the frame number in
the image sequence. The error curves for the horizon-
tal dimension are qualitatively similar and are omit-
ted here for lack of space. In Figure 1(a), the tracker
has perfect knowledge of the parameters in the tar-
get and clutter models. The dashed line corresponds
to a clutter standard deviation o, = 0.7, or average
SNR= 20log (m,/o.) = 3 dB. The solid line corre-
sponds to o.. = 1, or SNR= 0 dB. In both plots of
Figure 1(b), o, is equal to 0.7. The dashed line in Fig-
ure 1(b) also assumes perfect knowledge of the clutter
parameters, while in the solid line the clutter parame-
ters 35, 85 and o, are estimated from the data at each
frame. These parameters are estimated using a varia-
tion of the parameter estimation algorithm introduced
in [7]. We refer the reader to that paper for further
details.

All curves in Figure 1 are obtained by 50 Monte
Carlo runs using a target standard deviation o4 = 0.2.
The four plots in Figure 1 show a similar behavior:
there is an initial position error that is rapidly recov-
ered as the tracker processes additional frames and the
errors converge to a small steady state value. A com-
parison between the solid line and the dashed line in
Figure 1(b) indicates that the error in the estimation of
the clutter parameters causes an increase in the initial
position estimate error and in the target acquisition
time (i.e., the number of frames that are necessary for
the error to decline to the steady state value). However,
there is no statistically significant difference between
the steady state behavior of the error with known clut-
ter parameters or with estimated clutter parameters.
In both cases, near-perfect tracking is achieved as the
number of frames increases. This is a quite surprising
result.

6. SUMMARY

We presented in this paper a new clutter adaptive Ba-
yesian algorithm for integrated, multiframe detection
and tracking of random signature targets that move
randomly in 2D cluttered environments. The random
components of the target and clutter returns are mod-
eled by 2D spatially correlated, noncausal GMrfs. The
motion of the target’s centroid in the sensor grid is
modeled by a 2D HMM. Experimental results show
good tracking performance in scenarios of heavily clut-
tered targets. Our simulations also show that the long-
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Figure 1: Tracking performance, oy = 0.2: (a) g, = 0.7
(dashed), o, = 1 (solid); (b) o, = 0.7, estimated clutter
parameters (solid), known clutter parameters (dashed)

term behavior of the proposed algorithm is similar in
both cases when the clutter model parameters are per-
fectly known or, in the adaptive case, when the clutter
model parameters are estimated from the data.
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