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ABSTRACT

Classic Ocean Acoustic Tomography by Wiener inversion
needs good estimates of the noises power affecting the er-
rors between the in siru measurements of the travel times
and their estimates obtained by reliable simulations. We in-
vestigate the maximum likelihood estimation of a structured
covariance matrix, whose subspaces of interest are known,
but whose associated powers are unknown. Using the Ocean
Acoustic Tomography constraints, we assume that the co-
variance is the sum of a full rank known matrix and an
unknown component. We derive the maximum likelihood
estimates for these noise powers and compute the Fisher in-
formation matrix to get insight into the geometric properties
of the estimators. We verify with a realistic classic Ocean
Acoustic Tomography simulation the good quality of our
noise power estimates.

1. INTRODUCTION

Classic Ocean Acoustic Tomography (OAT) is an inverse

method to map sound velocity and current fields in the ocean.

Twenty years of development work provide us with an ocean
acoustic propagation atlas ([1], p382-401) and with reliable
oceanic models. Single slice OAT gives only average in-
formation along the ray path structure, and is restricted to
deep ocean with no bottom and surface interactions. To
invert shallow water channels, it is important to combine
OAT, which provides constraint information —prior model-
with ocean measurements —data assimilation— that are now
cheaply available with inexpensive oceanographic instru-
mentation (Temperature, Conductivity, Depth sensors).
Data assimilation relaxes the hard constaint of accurate
tracking the position of the sensors. Reference [2], for ex-
ample, assumes that with large planar array of sensors the
OAT inverse operator is insensitive to sensor motion as long
as one has a good estimate of the power of the errors, in-
cluding position errors, clock driffting, or ambient acous-
tic noise. This paper addresses the estimation of the noise
powers, casting this problem as a special case of the gen-
eral structured covariance estimation in the linear statistical
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Fig. 1. Ray propagation and sensor displacement offset.

model [3, 4, 5]. In OAT, it is often possible to derive from
historical data and first principles reasonable estimates of
the structure of the underlying signals and noises subspaces.
The structured covariance estimate reduces to finding the
power parameters of the components of these subspaces.

In section 2, we introduce the classic tomography model.
In section 3, we derive the Maximum Likelihood (ML) re-
gression equations for the constrained parameter estimates
and the Cramér-Rao bound. In section 4, we apply these
results to a realistic simulation of classic OAT for a single
couple source/receiver setup.

2. TIME-OF-FLIGHT TOMOGRAPHY

Classic OAT infers from measurements of the pulses travel
time the state of the ocean traversed by a sound field. This
contrasts with matched-field OAT that uses the whole acous-
tic pressure field. We present here the linear statistical model
corresponding to the forward step in classical OAT.

The travel time 7;(t) along ray R; from source to re-
ceiver in the sound velocity field C(z, v, 2,t) is:

rilt) = / ds
' R; C(m7y7z7t)

where s is the arc tength along the ray path R;, assumed
known and fixed, i.e., s depends on x,y,z but not t, and n; is
a general error term. Ocean sound speed variations are lin-
earized around a nominal sound velocity field Co(z,y, 2)
estimated from the historical data. To first order, the ex-

+ ni(t),



pression for the travel time perturbation term becomes:

~6C(z,y,2,t)ds  cos(Bi)l(t)
R; 002(1‘, Y, 2) Co(Ts, Yss 2s)
where j3; is the angle between the locally linear wavefront
¢ and the horizontal as in figure 1 at the source position
Ts,Ys, 2s. LThe vertical variation of the sensor is assumed to
be corrected with a pressure meter that gives the depth. For
a complete model see [6]. All rays measured at the snapshot
t are biased by the same displacement I(t).

To describe the ocean perturbation model, it is com-
mon to project the perturbation to an eigenvector basis ~
the Empirical Orthogonal Functions (EOF). These EOF are
the eigenvectors of the velocity field perturbation covari-
ance matrix that is estimated from historical data. Write
the perturbation dC(z, y, 2, t) on the EOF basis {Uy} as

P
50(58,11,2,?5) = Zak(t)Uk(IL‘,y,Z), (2)
k=1
where p, the number of EOFs to be kept in the inversion,
depends on the quality of the historical data. We group the
measured d7;, the unknown 8y, and the noise n; in vectors
67, 0, and n of dimension N, p, and N respectively. The
symbol N is the number of rays. Let H and g be the N x p
matrix and the N-dimensional vector that collect the EOF
and the mooring motion structure. From eqgs. (1) and (2):

or(t) = HO(t) + gl(t) + n(t).

Assuming 8, I, and n are multivariate normal distributions
of zero mean and covariance I'g, a,z, and 02 Iy, we get the
structured covariance matrix:

R =< 6161t >= HUyH! + o}gg' + oIy, (3)

where H and g are known. We consider a more general
structured covariance than (3), namely, we extend it to:

dri(t)= +ni(t), (1)

mi
R=R,+) 0i.GiGs, @)
k=1
where R, = HUgH" 4+ 021y isa N x N matrix and G,
are full rank N x ri matrices. In other words: we assume
that we may have several sources of structured errors —my,
sources— that we know the subspace structure of each of
these error sources —the column spaces of G, 1 < k <
my— but that the relative strength of these error sources —
the parameters afk, 1 < k < my— are unknown. In this
paper we further assume that R, is full rank and known,
which is equivalent to assuming that I'y and o,zl are known.
This is reasonable in OAT where an iterative procedure is
used. At the first step of the iteration, we approximate I’y by
the eigenvalues of the ocean perturbation correlation matrix.
We approximate o2 by the average of the lowest eigenvalues
of the covariance matrix R. The estimated 97¢(t) are used to
correct the ocean model ~the I'y and the simulated travel
time arrivals— before running another inversion.

3. ML ESTIMATION

To find the maximum likelihood (ML) estimator (;f; of o? ,
we root the system of regression equations ([S], p260):

1 OR
Bal?‘k

tr{R—l(R—S)R— }:0, k=1,..,my (5

where tr is the trace and S = L 3~ | §7;87f is the sample

covariance. The element of the Fisher information matrix
(FIM) for the joint estimation of of, and o7, is:

_m [ ,8R ,_, OR
Jij = ztr{R s 57 [ ()

Ik

3.1. Inversion matrix lemma

To work further with equations (5) and (6) we need the fol-
lowing technical lemma.

Lemma 1 Let Anxn, Bnxk, Ckxk, and Dixn be four
matrices. If A, C, and R = A + BCD are non singular,
then

D[A+BCD]™ = [CDA'B+1I]7' DA™Y, (7)

Proof. Start with the inverse of a small-rank adjustment ([7],
p19)
R'=A"1-A"'B[DA'B+C'] ' DAL

Premultiplying by D and factoring on the right DA~}
DR ={1-DA"'B[DA™'B+C"| '} DAL,
Finally, factor on the right [DA™'B + C~'] -
DR'=C-'[DA'B+C"']" DAY,
from which the lemma follows.

3.2. ML estimation of the subspace power parameter

For given k, 1 < k < my, rewrite eq. (4) as R = Ry +
o7, GxGY. Since Ry is invertible and from the lemma:

GLR™ = [aka;szle + 1) B GLRZ',
from which, since G, is full rank,
GLR™ = [oh 1, + (@R D},
where Dy, is the N x r; matrix
D} = (GLRZ'Gy)'GLRZ! = (R G* R,

where M# is the pseudo inverse of the N x r matrix M
of rank r: M#* = (M*M)~'M¢, and R;/z is the inverse
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of the upper triangular Cholesky factor of Ry, i.e, Ry =

"2R?. It follows that (GLRZ'Gx) ™! = D4Rz Dj and

GyR™" = (DyRD:)™'Dj, ®)

since DszGEDk = Irk~ A
Regression equation The derivative term in eq. (5) is
GG Using the trace property tr(AB) = tr(BA), eq. (5)

becomes after manipulation
tr {(DLRD:)™? [DL(R - S)Di]} =0, k=1,..,m;. (9)

Fisher information matrix A similar derivation leads
to the FIM generic element
T = %tr {(DLRD,)™2} k,i=1,.,m (10)

Jri

%u {(D'RD,)"*DiG:G'Dy} .

Replacing R and Dy, by their definition in Jix from eq. (10)

-2

m — -
Jkk = itr { [012,’;1.[1“1: + (GiRgle) 1] } . (1 1)

Let the singular value decomposition of A;l = E- 126G, =

UA~1V*. The diagonal matrix A is of dimension ry, set
A(4,§) = oa,j. Eq.(11) becomes

Tk

m 5 o -2

Tow =5 D o+ 04,4] k=1,.,m.
j=1

The FIM entry Jgk,, 1 < k < my, is small if the singular
values 0224 are small for all j, 1 < j < 7. These singular
values are the lengths of the semi-axes of the hyperellipsoid
associated with G, after its projection on R’E_ 1z,

Cramér-Rao bound The variance of any unbiased esti-
mator is lower bounded by the diagonal entry of the CRB,
which itself is lower bounded by the inverse of the corre-
sponding entry in the FIM ([5] p231)

<(of =0t ) >=0% 2Tk k) 2 g k=1,.,mu.

The variance bound' of the error of the power estimates de-
pends on the projection of the associated error subspaces on
the other subspaces in the covariance matrix.

Special case 1: at least one subspace is rank one As-
sume that one of the error subspaces, say subspace k, is
rank one, and represent G, and Dy, by g4 and dg. Then,
from eq.(9), we get the ML estimate of o,

of =di(S~ Rp)dy, df = (RZ?q)*RZ?. (12)
This reduces by one dimension the search algorithm for the
other unknowns. The FIM is

Jer = Tg(diRd;c-)f?, Jii = Jek dbGiGldy.  (13)

The remaining J;’s are given by eq.(10). Let Ry = US;U*
be the eigenvalue decomposition. Denote by a%j the diago-
nal entries of ¥y, and by u; the vector U (:, j) then

~172

N
_ 2 _
o 2 Ty = m o, + Z"Ejz(gltc“j)2 » (14)
=1

from which a geometric interpretation follows. The largest
2

eigenvalues oy, are associated with the eigenvectors u; cor-
responding to the error subspaces or signal signatures in Ry.
If gy, is orthogonal to the first group of eigenvectors of Ry,
the sum term in eq. (14) will be large and the lower bound
will be small. The variance bound of the error of the rank
one subspace gy power estimate is small when gy, 1s orthog-
onal to the subspace defined by the signal and the other error
sources.

After expanding R in eq. (13), we obtain from Jk_k1

2

mi
IR +0f + Y ol lldiGil?
i=1,i#k

2
2
Uekza

For a generic matrix M let M = Rk:t/zM. The term d.G;

is then equivalent to g;*G;. The norm of this vector is a
measure of the colinearity of g5 and G; weighted by R;.
This last expression shows a partial separation of the influ-
ence of the signal in R, from that of the subspaces of the
error sources subspaces.

Special case 2: at least two subspaces are rank one
Assume that two subspaces, say subspaces kand ¢, 1 < k <
g < my, are rank one and represent G and G by gy and
9¢- Note R = Ro + 07, grg;, + 07, 949, and use Woodbury’s
identity several times on eq. (13) to get the FIM principal
sub-matrix corresponding to the power estimation of the &k
and g error subspaces. The determinant of this sub-matrix
may be expressed with ax = gLRy g, aq = gLR; ' gq,
and ag, = gt Ry g, = (axa,)'/?cosd where ¢ is the angle

t/2

between the vectors Ry " gy and Ry t/2 gq aS:

2
m° o _
det(Jxq) = - D C [DC + 2a3,],
D= (1 +ojar + afqaq + 0,2&0,2‘20) ,

— 2 _ . 9
and C = agay — ap, = axa,sin°¢.

If the angle ¢ is zero, the FIM is singular and the CRB on
the power estimation for error k and q are infinity. The CRB
on the power estimation for the two rank one subspaces are
sensitive to the angle between them weighted by the inverse
correlation matrix of the other variables.
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3.3. Noise powers in classic OAT

The covariance matrix in the OAT setup is in eq. (3). The
estimate of the noise power o2 cannot follow the procedure
described previously because R = HTgH!+ o,zggt Is sin-
gular. We replace o7 by its expression, see eq. (12), in Ry.
The derivative term in eq. (5) for ¢2 is Iy. Diagonalizing
R = UAU?, we get

tr { [EZIN + A] ” [(?gIN +U'(Rn — S)U] } =0.

This reduces the problem to a nonlinear equation of one un-
known. A root finding algorithm gives an estimate of o2
that can be used to find o7 given by eq. (12).

4. OAT SIMULATION.

We simulate the acoustic transmission from a single cou-
ple/receiver with partially known positions, separated by
74km, to study the tomographic reconstruction of a range
independent ocean sound velocity profile. The input data
are the North-East Atlantic ocean parameters, temperature
and salinity converted to sound speed, computed by a high
resolution dynamical model, DYNAMO [8] developed at
LEGI', as’integrated in [9]. The inversion estimates the
sound speed parameters 8, k = 1, .., p, for every day dur-
ing the Summer of 1989. The quality of the reconstruction
of the seasonal ocean variability is judged by the sum of the
mean square errors (MSE) of the ;(¢) estimates. During
the simulation, we vary the standard deviation o; of the er-
ror on the sensors position from 10 ¢cm (essentially precise
positionning of the sensors) to 1 km (relatively large posi-
tionning error).

Figure/ﬁz\compares the sum of the MSE for the estimates
of all the 8 (¢) versus o; for four methods. The * plot shows
the results with an oblique projection estimation [10]. The
remaining plots correspond to three Wiener inversions. The
o plot displays the results using perfect weighting functions,
i.e., using exact values of o; and o,,. It is a lower bound
for the reconstruction MSE. The x plot shows the results
using @, as the average of the lowest singular values of the
covariance R and constant o; of 30 m. The o curve is close
to the x curve at about 30 m, as expected, but blows up
away from this. Finally, the + plot shows the result when the
Wiener filter uses the estimates of the noise powers provided
by the method described in subsection 3.3. The similarity
of the o and + plots confirms the good quality of the Wiener
inversion using the ML estimates.
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Fig. 2. MSE of OAT reconstruction by four inversions
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