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We develop the optimal Bayes multiframe detector/tracker
for rigid extended targets that move randomly in clutter. The
performance of this optimal algorithm provides a bound on
the performance of any other suboptimal detector/tracker. We .
determine by Monte Carlo simulations the optimal performance
under a variety of scenarios including spatially correlated -
Gaussian clutter and non-Gaussian (K and Weibull) clutter. We
show that, for similar tracking performance, the optimal Bayes
. tracker can achieve peak signal-to-noise ratio gains possibly larger
than 10 dB over the commonly used combination of a spatial
matched filter (spatial correlator) and a linearized Kalman-Bucy
tracker. Simulations using real clutter data with a simulated
target suggest similar performance gains when the clutter model
parameters are unknown and estimated from the measurements.
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I, INTRODUCTION

This work studies integrated detection and tracking
of randomly moving targets in clutter using as input
data a sequence of noisy images. The images may
be collected by electromagnetic sensors such as high
resolution radars, or optical sensors such as infrared
(IR) devices. At each sensor scan, an image or frame
is produced. If one or more targets are present during
a scan, the corresponding image contains the returns
from the targets plus the returns from the background
clutter. Otherwise, if no target is present, the sensor
return consists exclusively of clutter. The clutter
accounts for spurious reflectors, which may appear
as false targets, and for measurement noise.

In thie case when multiple, at most M, targets of
interest are present, the multitarget detector decides
from the noisy data how many targets (0,1,2,...,M)
are present in each frame. Once a target is declared
present by the detector, a subsequent tracker estimates
its position in the surveillance space. The interpolation
across successive scans of the estimated positions of
a target forms a track for that target. Due to clutter,
false detections, known as false alarms, may occur,
and false tracks may be estimated. Conversely, actual
targets may fail to be detected. This situation is known
as a miss. Even if correct detections (i.e., no misses
or false alarms) occur, the background clutter can still
cause the tracker to produce a wrong estimate of the
position of the target, i.e., a tracking error.

The ultimate goal is to estimate the target state,
typically a collection of kinematic components such
as position, velocity, or acceleration. In most existing
algorithms, e.g., [1], detection and tracking are two
separate stages. The measurements of interest to
the tracker are not the raw sensor images, but the
outputs of preliminary detection subsystems. The
detection stage involves the thresholding of the
raw data, usually one single sensor frame. After
further preprocessing, validated detections provide
measurements that, for targets that are declared
present, are treated as noise-corrupted observations of
the target state such as, for example, direct estimates
of position (range, azimuth, and elevation). Due
to the ocurrence of random false alarms in the

detection process, or due to clutter coming from

spurious reflectors, interfering targets, or man-made
decoys, validated measurements may actually be false
measurements that do not originate from true targets.
Multitarget trackers generally assume [1, 8] that
the targets are pointwise and associate a linear (or
linearized) dynamic model to the state of each target
of interest. A tracking filter, usually a variation on
the Kalman—Bucy filter, combines the validated
measurements with the dynamic model, providing an
estimate of the state of the target. An important issue
arising from the decoupling of detection and tracking
is the problem of deciding which set of measurements
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or weighted combination of measurements should be
associated to each target state estimator or to clutter.
This problem is known as data association. The most
common data association algorithms, see [8], compute
posterior probabilities of association conditioned

on the measurements and use them throughout the
estimation process.

Brief Review of the Literature: = References
concerned only with target detection, not tracking,
include [4-6]. In [5], Pohlig introduces an algorithm
for detection of constant velocity objects such as
meteors, asteroids, and satellites, in fixed stellar
backgrounds. The measurements are obtained by a
staring sensor with an array of charged coupled device
(CCD) sensors in the focal plane of a telescope.

The focal plane image is integrated and sampled

in space and time, resulting in a three-dimensional
(two spatial dimensions and one temporal dimension)
discrete model, where the optical intensity of both
targets and the background are modeled as Poisson
distributions with different means that reflect the
different photon counts arising from targets and
clutter. Pixel intensities under both hypotheses of
presence and absence of target are assumed spatially
uncorrelated. The detection algorithm in [5] is a

3D generalized likelihood ratio test (GLRT) based
on batch processing: all available sensor frames are
stacked in a data volume, and then the GLRT decides
on the presence or absence of a target anywhere in
that volume.

The work by Reed, Gagliardi, and Shao [6] is
similar in rature to Pohlig’s approach and introduces
a 3D (again space plus time) matched filter for
detection of known, moving targets within a Gaussian
background clutter with known spectral density.
However, unlike [5], [6] considers the case of
continuous (nonsampled) data; it is best suited for
optical rather than digital processing. A different
problem is considered by Chen and Reed in [4].

The goal in [4] is to introduce a constant false

alarm rate (CFAR) algorithm to solve the problem

of detection of a known target signal in a given
scene, using a set of K correlated reference scenes
that contain no target or, alternatively, very weak
target returns. The reference scenes are obtained
either from different frequency bands of the main
scene (multispectral or hyperspectral imagery) or
from sequential observations in time. The proposed
detection algorithm is a GLRT that tests for the
presence or absence of a target in the main scene
using as data the entire collection of reference scenes
plus the main scene itself. The underlying model
assumes that, after preprocessing (essentially removal
of the local variable mean), each individual scene is
a zero-mean, Gaussian, white random vector, i.e.,

the spatial correlation between the pixels in each
individual image is neglected. However, the model
assumes a cross-correlation between pixels at the same
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spatial location in different scenes. An alternative
modeling for multispectral imagery that incorporates
both interframe and intraframe correlation was
proposed in [71.

Instead of decoupling detection and tracking as in
[1], or considering detection-only of moving objects
as in [5, 6], we develop the optimal, multiframe,
Bayes detector/tracker that processes directly the
sensor images and integrates detection and tracking
into a unified framework. The Bayesian strategy
involves the computation at each scan of the posterior
probability of the unknown target states conditioned
on the observations. In [3], the author uses a dynamic
programing approach and the Viterbi algorithm to .
study target detection. We postpone to section IIIE a
detailed discussion comparing the Bayes algorithm
with the dynamic programming approach in [3].

In our approach, we integrate detection and
tracking into the same framework by augmenting
the target state space with additional dummy
states that represent the absence of targets. The
posterior probability of a given target being absent
is propagated in time together with the posterior
probabilities of the other “present target” states. In
contrast to Pohlig’s batch detector [5], we develop
a recursive framework where we still process all
frames available in an optimal way, but these frames
are processed one by one and discarded as we finish
processing them. As a new frame is available, we
simply update the posterior probabilities for the
target states by running one more iteration of the
algorithm. )

Modeling Assumptions: The optimal Bayesian
algorithm takes full advantage of all prior information
on the clutter, target signature, and target motion
models, and allows multiframe detection and tracking
with recursive processing across all observed sensor
scans. We consider both pointwise (single pixel) and
extended (multipixel) targets. We present detection
results for targets with deterministic signatures and
for targets with time-varying random signatures. The
random signatures are described by multivariate,
spatially correlated Gaussian distributions. We
assume translational motions, and we define as the
target state the spatial coordinates of the target’s
geometric centroid. Since practical sensors have
a finite resolution, we restrict the target centroid
positions to a finite grid where each pixel represents
a resolution cell of the sensor. We describe motions by
finite state machines (FSMs) obtained by discretizing
the continuous differential equations that describe the
target dynamics. The dummy states that represent the
absence of a target are incorporated into the FSM
model that also specifies the transition probabilities
between the absence and the presenceof a target, and
vice-versa. :

We consider two classes of clutter models:
spatially correlated clutter with Gaussian statistics,
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and uncorrelated non-Gaussian clutter with heavy tail
amplitude (envelope) statistics. The spatial correlation
of the clutter is captured by using noncausal, spatially
homogeneous, Gauss—Markov random fields (GMRFs)
of arbitrary order [25]. GMRFs are statistical

models that capture the locality properties of the
clutter, namely, the clutter at a given spatial location

is strongly dependent on the clutter intensity in
neighboring locations. This assumption is intuitively
realistic in many practical scenarios. Regarding
non-Gaussian clutter, we represent it by spherically
invariant-random vectors (SIRVs) [13-15], which
have been shown to generate a variety of envelope
statistics of practical interest, including the Weibull, K,
Rician [18], and G [19] envelopes.

Performance Studies: This work focuses on
performance results for the optimal multiframe Bayes
detector/tracker in a variety of scenarios, including, as
we mentioned before, both deterministic and random
signature targets, observed in both Gaussian and
non-Gaussian clutter. We test the proposed algorithm
primarily on synthetic data with known clutter and
target models. The optimal performance curves,
obtained through extensive Monte Carlo simulations,
provide an upper bound to the performance of
suboptimal algorithms. We benchmark against these
bounds the performance of competing suboptimal
schemes such as the association of a single frame
spatial correlator (matched filter) with a multiframe
linearized Kalman—Bucy filter (KBF) tracker. These
studies show that there is a significant margin of
improvement to be had over existing detectors and
trackers.

In practice, the situation of perfect match between
the data and the model is not realistic. In order to
assess the robustness of the algorithm to mismatches
between the measurements and the model, we
present an example of detection/tracking with real
clutter data, obtained by a laser radar mounted to
the bottom of an aircraft. We fit the model to the
real clutter by estimating its parameters from the
data. The experimental results confirm that there
is a significant improvement in performance over
conventional algorithms such as a plain single frame
image correlator associated with a KBE.

Summary: Section I is this Introduction. Section
IT presents the models for sensor, target, motion,
and clutter that underly our integrated approach to
detection and tracking. Section Il examines the
derivation of the optimal Bayesian detector/tracker
based on the models from Section II. Sections IV and
V quantify, respectively, the detection and tracking
performances of the algorithm through comprehensive
Monte Carlo simulations assuming a single target
scenario. Both correlated Gaussian clutter and
non-Gaussian clutter situations are considered, and
performance comparisons with alternative suboptimal
detection and tracking algorithms are provided.
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Finally, Section VI summarizes the contributions of
this work. :

We omit in this paper specific details on the
implementation of the Bayes detector/tracker. These
can be found in reference [24] for the particular case
of a single, deterministic 2D target observed in GMRF
clutter. :

II. THE MODEL

At each sensor scan, there are at most M targets
present in the surveillance space. Each target is a
rigid body with translational motion belonging to
one of M possible classes characterized by their
signature parameters, and by the dimensions of their
noise-free image. We restrict our discussion to the
situation where all targets are distinct. For simplicity
of notation, we restrict this section to one-dimensional

- (1D) spaces. A brief discussion on the corresponding

2D models and a comprehensive investigation of 2D
detection/tracking performance are found in Section
V (see also [24] for further details on modeling and
implementation of the 2D detector/tracker algorithm).

A. Surveillance Space and Target Model

We first model the surveillance space of the sensor.
Given the sensor’s finite resolution, we discretize the
1D space by the uniform finite discrete lattice

L={l:1<I<L} 1)

where L is the number of resolution cells and / is an
integer. We refer to the lattice £ as the sensor lattice.
The resolution cells are also referred to as pixels.

To develop an integrated framework for detection
and tracking, it is useful to extend the lattice £
with additional states that will be used to represent
the absence of targets and to account for the fact
that target images extend over more than one pixel
in the sensor lattice. We introduce first the vector
Z, =[z}...z2M]7, which collects the positions of the
geometric centroids of the M possible targets in the
sensor image at scan n.

Let the pixel length S? of a class p target, 1 <
p<M,beSP = (I +IF +1), where I/ and I? are the
maximum extent in pixels of the target, respectively
to the left and to the right of its centroid. These
parameters are assumed known and time invariant. If
S? is odd, we make l{’ = IP = (§P — 1)/2. Otherwise, if
S? is even, we adopt the convention that [? = §7/2 and
I? =P — 1. To account for the situations when targets
move in and out of the sensor range, we define the
extended centroid lattice,

L,={l: =P +1<I<L+IP}. )

which corresponds to the set of all possible centroid

positions z? such that at least one pixel of the target
is still visible in the sensor image. Finally, to include
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the possibility of absence of a target, we introduce

an additional dummy state. We adopt the convention
that, whenever a class p target is not present at the nth
scan, z? takes the value L + I + 1. With the addition
of this dummy absent target state, we define the
augmented lattice,

L,={l: =1P+1<I<L+I’+1}. 3)

Extended Target Model: 'When a class p target
is present, i.e., z§ € £,, the noise-free target image
is simply the spatial distribution of the target pixel
intensities, af, —If <k <[P, centered at the centroid
lattice cell z7. Otherwise, if z2 = L +I” + 1, meaning
the target is absent, the sensor image corresponding
to target-only returns reduces to a null image. These
intuitive ideas are formalized mathematically by
expressing the noise free image of a class p target at
the nth sensor scan as the nonlinear function

4
@)= dey, el )

k=—17

t,(2) =0, 5)

where e, 1 <1 <L, is an L-dimensional vector whose
entries are all zero, except for the Ith entry which is
one. If I<1orl>L, e is defined as the identically
zero vector. This particular definition for e, outside
the original sensor grid £ is adopted to guarantee
that the target model in (4) will accurately describe
the disappearance of portions of the target from the
sensor image as the target’s centroid moves closer to
the boundaries of the surveillance space.

The pixel intensity coefficients af in (4) are also
known as the target signature coefficients, They
may be deterministic and known, deterministic and
unknown, or random. Random signatures account for
fluctuations in the reflectivity, or in the conditions of
illumination of the target, as well as random variations
in channel characteristics such as fading. For
simplicity, we assume in most of this paper that the
signature coefficients are known and time invariant.
An extension of the detection/tracking algorithms
to targets with random signature is presented in
Section IIID. Monte Carlo simulations with synthetic
spatially correlated/temporally uncorrelated Gaussian
targets are presented in Section IV.

22=L+I+1

B. Multitarget Observations and Clutter Models

We consider a multitarget scenario with M possible
targets, and collect the L sensor readings at each pixel
of the nth scan in the L-dimensional column vector
y,.. Due to the presence of spurious reflectors and
background, y, consists of the superposition of the
various noise-free target images plus clutter. Using the
extended target model introduced in Subsection IIA,
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the observation vector or nth sensor frame y, is given

by
Yo =t @) + @) + -+t (2 + v, (6)

where v, is the background clutter vector, also
referred to as the nth clutter frame, and t,(z5), 1<

p <M, is given by (4) and (5), depending on whether
the pth target is present or absent at the nth scan. The
clutter v, is assumed to be statistically independent of
t,@), 1<p< M.

At each frame, the clutter at a given spatial
location (pixel) may be statistically correlated with the
clutter at another spatial location. The clutter intensity
may also have Gaussian or non-Gaussian statistics.
We adopt one of three models for v,: spatially
white Gaussian clutter; spatially correlated Gaussian

.clutter; and spatially white non-Gaussian clutter.

These models allow us to assess how clutter spatial
correlation or non-Gaussian clutter statistics affect the
performance of the detection/tracking algorithms.

Gaussian Clutter: Under the assumption of
Gaussianfty, the vector v, has a multivariate normal
probability density function (pdf), p(v,) = N(0,R),
where R is the clutter spatial covariance, and 0
is the mean. The zero-mean assumption assumes
a preprocessing stage that removes the possibly
spatially variant local mean. A non-zero mean can be
accounted for trivially. We distinguish two cases for
the covariance matrix R.

White spatially homogeneous Gauss clutter: With
spatially uncorrelated (white) clutter, the covariance
matrix R is diagonal. Assuming spatial homogeneity,
R = 021, where I is the identity matrix and o2 is the
variance (power) of the clutter.

Spatially correlated homogeneous Gauss—Markov
clutter: 'We model spatially correlated clutter as
a GMREF [25]. This model simply states that the
clutter intensity at a given pixel of the sensor image
is a weighted average of the clutter intensity in
neighboring pixels plus an error term. We assume here
a noncausal neighborhood region for each pixel. If we
add the assumption of spatial homogeneity, an mth
order 1D noncausal GMRF model for the nth clutter
frame is given by the spatial difference equation

0 =Y ;= )+ v+ Dl +u, () 1<I<L
=1

M

where u,(l) is a zero-mean, correlated prediction error
such that

ED,Du,(01=0 V¥ k#l @®)

and the symbol E[.] stands for expectation or
ensemble average. In order to completely define (7)
at all pixel locations, we specify boundary conditions
(BCs) outside the sensor lattice £. Common boundary
conditions are simply v,(l) =0 for/ <1 or/>L.
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These are known as Dirichlet BCs. Other BCs can be
alternatively used, see for example [23, 25].
Second-order statistics of GMRFs: The GMRF
model is very attractive because it provides a simple
parameterization for the inverse of the covariance
matrix of the background clutter v,. Collecting the
clutter samples v, (/) and the error samples u,(l),
1 <1<L, in two L-dimensional vectors v, and u,,
an equivalent matrix representation for the difference
equation in (7) is

®

Av, =u,

where A is a sparse and highly structured matrix -
usually referred to as the potential matrix. For the 1D-
mth order homogeneous model in (7), the potential
matrix is an m-banded, Toeplitz, symmetric matrix
with structure [25]

! - —ap -, O
- I~ —o —ay,
—a, -0 1 -
—Q,, 1 —ay
0 -a, 1
A=
0 0
0 —a,,
0 0 a,
0 0
: 0
[ O

We now derive the second-order statistics of w,, which
is referred to as the prediction error, and of the clutter
field v,. Combining the orthogonality condition in (8)
with the matrix equation (9), we note that’ ‘

E[u,u’] = E[Av,u]] = 62A (11)

where T denotes the transpose of a vector or
matrix. In (11), we used the assumption of spatial
homogeneity (roughly speaking, the spatial
“equivalent” of stationarity) to make E[v,(Du,()] =
o2, foralll,1<I<L. :
Finally, since A is nonsingular and symmetric, then
v, =A~lu, and
! = (Efv, VI = (A7 E[u,ul 1A !
=(@2ATAA )T = A/52. (12)

Equation (12) gives for free, with no matrix inversion
required, the inverse of the clutter covariance in terms
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of the highly structured matrix A given in (10). This
structure is used to design computationally efficient
detection and tracking algorithms when the clutter
is correlated as a GMREF. Finally, for our simulation
studies, we use equation (9) and a technique based
on the upper Cholesky factorization of the potential
matrix A, [25], to generate samples of the GMRF
clutter v,,.

Non-Gaussian Clutter: When dealing with
non-Gaussian clutter, we assume that the sensor
measures, at each resolution cell, the in-phase and
quadrature returns of the clutter and targets echoes.
The clutter measurements at instant n correspond to a
sampling of the returned clutter complex envelope and
are given by the even-sized vector

v,=[vl v vé_‘vgl g (13)
0 1
0 0
-a,, 0 0
0 0
—a, -, O 0
-0y —a,, 0
(10
0
1 —-a,
- 1 Oy
0 —Q,, —Q 1 J

where L is the number of resolution cells. We assume
that the double-sized vector v, has a joint pdf with
non-Gaussian statistics such that the sequence of
random variables

e =/ (6 )P+ (E)*

is identically distributed with a pdf different from a
Rayleigh distribution.

K and Weibull envelope statistics: We are
interested in analyzing how the tracker performs
against a background clutter whose envelope at-each
resolution cell has heavier tails than a Rayleigh
envelope. Useful clutter envelope statistics are the K
and Weibull models that are frequently used in the
literature to represent the amplitude statistics of clutter
returns {20-22]. The corresponding pdfs for the two
models are [18] as follows.

1<k<L (14)
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1) K pdf:  pg(e) = b**'e’ /2" 'T (W)K,_,(be) e >0
where v is a shape parameter, I’ (.) is the Eulerian
function, K,_;(.) is a modified Bessel function of the
second kind and b is related to o2 by b? = (2v)/d2.

2) Weibull pdf: pg(e) = ace* ! exp(—ae) e >0
where ¢ 1s a shape parameter and a relates to the
average power o of the quadrature components by
20% = a 2T (1 +2/c).

Simulation of K and Weibull clutter samples:
Rayleigh envelope. statistics correspond to a
multivariate joint Gaussian distribution of the
in-phase and quadrature clutter returns. Similarly,
heavy-tailed envelope statistics such as the Weibull
and K distributions correspond to a generalized SIRV
model in the backscatter domain [13, 14]. Techniques
to simulate heavy-tailed clutter using SIRV models
have been discussed extensively in the literature
(14-16]. In particular, we used the algorithms in [16]
to generate the samples of uncorrelated K and Weibull
clutter that were used in the Monte Carlo simulations
in Section IVB. We omit the simulation details here
for lack of space and refer the reader instead to the
literature, particularly [16].

C. Target Motion

Assuming that the targets are rigid bodies with
translational motion, the target motion is completely
specified by the dynamics of the target centroid.

We adopt a first-order statistical model for the
centroid dynamics. Given the sensor finite resolution,
we model the motion of a class p target in the
corresponding augmented lattice [Ip by a set of
transition probabilities

(P& =klz =)} kijeL,

The transition probabilities P(z? |zf_), 1 <p <M,
represent the likelihood of displacement of a class p
target between two consecutive frames. The transition
probabilities in (15) define an FSM that specifies the
dynamics of the centroid for the class p target.

Example: Targets with constant mean velocity: A
particular dynamic model of interest is a target where
the nominal velocity is constant. We perturb this mean
or nominal velocity by an mth-order random walk
fluctuation. The target centroid position at instant n
is then given by ‘

(15)

2y =2, +d +e, (16)

where d is the mean velocity, and ¢, is a
discrete-valued, zero-mean white noise component
that is independent of the centroid position and takes
values on the discrete set-S = {~m,...—1,0,1,...,m}
for some m > 1. Fig. 1 shows the central section of
the FSM that corresponds to the model in (16) when
d =0 and m = 1. This FSM is simply a first-order
discrete Markov chain. As mentioned before, a target
that is present moves to the absent state whenever its
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Fig. 1. Example of FSM diagram.

centroid is outside the lattice [Zp ={l:-+1<I<
L +17}. When no target of a given class is present,
we assume that there is a non-zero probability p, of a
new target from that same class appearing randomly
at the next sensor scan. We assume that the target
centroid may appear at any pixel of the centroid
lattice £, with equal probability p,/(L + I +1p).
This assumption is a worst case scenario, when the
detector/tracker has no a priori information about
initial position of a new target. Other more elaborate
distributions for the probability of reappearance are
easily taken into account.

. OPTIMAL BAYES MULTITARGET
DETECTOR/TRACKER

We assume that at each scan n an unknown
number of targets ranging from zero to M may be
present. The targets that are present belong to distinct
classes (i.e., in the context of this model, they have
different signatures). We collect the observation scans
from instant O up to instant » in the long observation
vector Y4 = [yZ...yZ1". Given Y%, we want to perform
three tasks at instant n: 1) determine how many targets
are present/absent (detection); 2) assign the detected
targets to a given class (data association); 3) estimate

* the positions of the detected targets (tracking).

A. Nonlinear Stochastic Filtering Approach

As mentioned in Section II, the vector
Z, = [z,ll...z:'I]T

collects the positions of the centroids of the M
possible targets in the sensor image. If all z? =L +

I +1, 1< p<M, then no target is present in the
surveillance space at the nth scan. The optimal Bayes
solution to the joint detection/tracking problem is
obtained by computing at each scan the joint posterior
probability, P(Z, | Y¢), i.e., the conditional probability
of the vector and centroid positions.

The Bayes detector/tracker that we present
processes the observations as they become available.
It computes recursively P(Z, | Y3) at each scan, thus
avoiding having to store all the measurements from
instant zero up to the present. The recursion is divided
into two steps. The first step is the prediction step.

It uses the statistical description of the target motion
between two consecutive scanned frames to predict
the current position of the targets based on all past
observations. Once a new sensor frame is available, a
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second step, known as the filtering step, uses the new
measurements to correct the prediction. The incoming
sensor data is processed using the information in the
clutter and target signature models. In the sequel, we
describe both steps in further detail.

The following assumptions are made in the
derivation of the algorithm.

_ 1) In each frame, only one target from each of the
M possible classes may be present.

2) The sequence of clutter frames {v,}, n > 1, is
independent, identically distributed (iid).

3) The sequence of target states {Z,}, k >0, is
statistically independent of the sequence of clutter
frames {v,}, £ > 0.

4) Targets from different classes move
independently and the translational motions for targets
from each class are described by first-order discrete
Markov Chains completely specified by the transition
probabilities P(z2 |22_), L < p<M,zZ € L,.

5) In all observed frames, the target signatures
are deterministic and known (but not necessarily
time-invariant) for each target class.

We make the following remarks regarding the
previous assumptions:

a) The detector/tracker algorithm can be easily
modified to account for unknown, random target
signatures in each sensor frame. We discuss the
necessary modifications in Subsection IIID.

b) Instead of assuming that at most one target
from each class is present in each frame, we could
have used an alternative problem setup in which there
is a known maximum number of targets, /\C,-Z 1, for
each target class p. In this paper, for convenience,

~and without loss of generality, we make Np =1, Vp,
1<p<M.

¢) The assumption that the sequence {v,}, n>0,
is iid is equivalent to ignoring all interframe statistical
correlation between the clutter pixels. The 2D GMRF
model in Section IIB assumes however an intraframe
or spatial clutter correlation.

We now detail the derivation of the algorithm.
In the subsequent derivation, we denote the
probability mass' function of discrete-valued random
variables by the capital letter P, whereas the pdf of
continuous-valued random variables is denoted by
lowercase p.

Prediction Step: This step computes the prediction
posterior probability

P(Z,| Yy ) =PG@,......20 | Y5

Lel, 1<p<M. .(18)

From P(Z, | Y3~!), we can obtain the marginal

posterior probabilities of the centroid position of each
target conditioned on the past frames from instant O to
instant n — 1. We also obtain the posterior probabilities
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of absence of each target conditioned on the past
observations.

Combining the Theorem of Total Probability with
Bayes law, we write

P(Zn I Yg—l) = ZP(ZmZn—l I Yg—l)
Z,., .

= P(Z,|Z, . Yg IPZ, | Y5
Z,,
(19)

Since the sequence of target centroid positions
{Z,}, k > 1, is, by assumption, a first-order Markov
process, then, conditioned on Z,,_,, the current state
Z, is statistically independent of the sequence {Z, },
0 <k <n-2.If we add the assumption that Z, is
also independent of the sequence of previous clutter
frames {v,}, 0 <k <n-—1, n > 1, we conclude that,
conditioned on Z,_,, Z, is statistically independent of
the previous observations, Yg‘l, ie.,

P(Z,|Z, Yo Y=P(Z,|Z, ). (20)

n—1>

Replacing (20) in (19), we get

PZ,|Yi =Y PZ,|Z,_DPZ,_, | Y.
Z, 1)

Finally, assuming that the different targets move
according to statistically independent Markov chains,

P(Z,\|Z, ) =Pl |z_))...PE" L) (22)

and we write

P(Z, Y5 ) =) > Pl zy)

1 M
2,y Z

D PEM M OPEZ, | YR, (23)

Filtering Step: 'We now compute the filtering
posterior probability, P(Z, | Y3). From Bayes’ law,

P(Z,|Y}) =PZ,|y, Y5 ") (24
=C,p(¥, | Z,, YEOP(Z, | Y5™") (25)
=C,p(y, | Z,)P(Z, | Yg™h) (26)

where C, is a normalization constant. To write
equation (26), we used the fact that the sequence of
clutter vectors {v, }3°, is iid and independent of the
sequence of state vectors {Z,}>2,. Hence, given Z,
vector y, is independent of Yg~'. The term p(y, | Z,)
is referred to in the nonlinear stochastic filtering
literature as the observations kernel [28, 30] and
specifies the conditional statistics of the observed data
assuming that the targets’ states (positions) are known.
The analytical expression for the observation kernel
depends on the clutter and target models. We present
next the optimal detection and tracking algorithms.
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B. Minimum Probability of Error Bayes Detector

For each of the M possible targets, there are two
possible detection states during the nth scan: absent
or present. The detection algorithm is therefore a
statistical test that, based on all present and past
observed data, Y§, chooses one among oM possible
hypotheses H,,, 0 <m <2¥ — 1. In this notation,
hypothesis H, stands for “all M possible targets are
absent.” Conversely, hypothesis H,»_; means that all
M possible targets are present. Hypotheses H,,, m # 0
and m # 2M — 1, represent all other combinations
in between of presence and absence of the multiple
targets.

.Given P(Z, | Y§), we compute the posterior
probabilities of the detection hypothesis H,,, 0 <m <
2M _ 1. The minimum probability of error detector
decides that hypothesis H, is true if [31]

P(H, | Yy > P(H, | Yp)

V k#m, 0<m, k<2M_1
where P(H,, | Y}) is the posterior probability of
hypothesis H,,. We describe two illustrative examples.

Example 1: Single Target

With a single target, there are only two possible
hypotheses at each sensor scan:

1) Hy: {target absent}.
2) H,: {target present}.

27N

The minimum probability of error detector assuming
equal cost assignment to misses and false alarms and
zero cost assignment to correct decisions reduces to

P(H, | Yp &

—_—— 2, 28
P@E, [YDS %)

Introducing the posterior probability vector f,, such
that its kth component is

fun) =Py =k|Yh) kel (29)

then
P(Hy | Y3) = fun(L+1} +1) (30)
P(H, | Y3) = 1 — f, (L+1} +1). (31)

Remark. The decision rule in (28) minimizes
the total probability of decision errors, misses, and
false alarms. Alternatively, if we change the threshold
in (28) and vary it over a wide range, the detection
algorithm operates as a Neyman—Pearson detector [31]
that maximizes the probability of detection for a given
probability of false alarm.

Example 2: Two Targets

We illustrate next how to compute the quantities
P(H,, | Yp) from the filtering posterior probability
P(Z, | Y}) when there are two targets, i.e., M = 2.
With two targets, there are 4 possible hypotheses for

932

the presence or absence of targets at the nth sensor
scan: ‘

1) Hy = {Both targets absent}.
2) H, = {Target 1 absent and Target 2 present}.
3) H, = {Target 1 present and Target 2 absent}.
4) H, = {Both targets present}.

We introduce the filtering posterior probability
matrix F,, whose (k, j) element is the conditional
probability that target 1 is at pixel k and target 2 is
at pixel j, conditioned on the observation path Y§, i.e.,

kel, jeLi,
(32)

F(k,j) = P(zy = k.25 = j | Y§)

The posterior probabilities of the different hypothesis
are computed as follows:

P(Hy | Y} = Fy,(L+1} + LL+12+1)

L+12
P(H,|Y) = Y FL@+I+1,))
j==1+1
o (33)
PE, YD) = > FkL+P+1)
k=—I}+1 '
L+l! L+

PH, Y= > > Eukj.

k=—I}+1 j=-12+1

The posterior probability of the two targets being
present can be alternatively calculated as

2
P(Hy | Yg) = 1-) P(H,|Yp).
r=0

(34

C. Tracking: Maximum a Posteriori Tracker

We examine next the solution to the tracking
(localization) problem. We use a maximum a posteriori
(MAP) strategy that gives optimal localization in
a Bayesian sense, with respect to a cost function
that assigns uniform penalty to any tracking error
regardless of the magnitude of the error [31].

If, after detection, hypothesis H,, 1 <m <2M —1,
is declared true, we introduce the conditional
probability tensor I, defined as
P, H,|Yp)

m — ) ny —
() = P, | Hy, YD) = g

nln

(35)
The MAP Bayes tracker looks for the maximum of
II" over Z, to estimate the positions of the targets

n|n
that are assumed present under hypothesis H,.
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Example 1: Single Target .
In the single target case, the tensor I}, reduces to
a vector whose general element is

M, (k) = P(z, = k | target is present, Y?)

Jon (&)

T+ 1) (36)

When the target is present, the MAP estimates of the
actual target position are

P

) S
Z,, = arg

| max

—I+1SkSL+1!

L, (k). @7
Example 2: Two Targets
In the case of two targets, the conditional
probability tensors I, , k = 1,2,3 are matrices.
Let FnIn be the filtering posterior probability matrix
defined in (32) and let H,, H,, and H, be the three
possible “target present” hypotheses as described
before. We have three cases as follows.

1) Target 1 is declared absent and target 2 is
declared present: In this case, we find the optimal
MAP estimate of the centroid position of the class 2

target, denoted by zflln, using the expression

- Ep(L+14 +1,)) 28
Z =argmax ——————
s 1Y% (38)

2) Target 1 is declared present and target 2 is
declared absent: This situation is the dual of the
previous case. The optimal MAP estimate of the
centroid position of the class 1 target, denoted by z,{ln,
is given by

—~ F(k,L+12+1) 3%
=argmax —————
i A T P, | YD)

3) Targets 1 and 2 are declared present: When
both targets are declared present, the optimal MAP
centroid estimates are

o~ F, (k, /) _ _
) njn .
z) .24 )=arg max —————— kel €Ll,.
( njn nln) gkeZ:,,jeZZ P(H3 IYS) 1 J 2
(40)

D. Detection/Tracking of Targets with Random
Signature '

In the previous subsections, we considered
the situation where the targets’ signatures are
deterministic and known. We now extend the
algorithm to account for targets with random pixel
intensity.

For simplicity, assume that the targets have equal
size, i.e., i =l, and IP =1, 1 < p <M, where M is
the number of targets. Let [ = I;+ 1, +1 and define
the I-dimensional column vector of the signature
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parameters a? such that its ith component is
l1<p<M. 41

Now stack these signature parameters in the column
vector

a,f(i):agn -, <i<li,

0, =[@)...@"". 42)

Assume that the sequence {©,} is iid and independent
of {Z,} and {v,}, for n > 1. After a few algebraic
steps, it is easy to show that

P(Z, | Yg)

-c, [ A e,,,z,,>p(@n>den] P(Z, | YI ).

(43)

Equation (43) shows that, under the assumptions

that the sequence of target signatures {@©,} is iid and
statistically independent of both the sequence of target
positions and the sequence of clutter frames, we can
obtain the observations kernel for each possible state
vector Z,, at instant n by averaging the conditional pdf
of the measurements p(y,|®,,Z,) over all possible
realizations of the vector of target signatures.

E. Comparison with Dynamic Programming
Approaches

In this subsection, we contrast the nonlinear
stochastic filtering approach to target tracking with
previous work by Barniv [3]. We contrast Barniv’s
paper [3] with ours with respect to two issues: 1)
the Viterbi algorithm used in [3] versus Bayes’ law
as used by us; 2) setup of the problem and other
modeling assumptions. We also make some brief
comments on computational complexity.

1) Viterbi Algorithm versus Bayes’ Law: For
simplicity of notation and to follow Barniv’s
model, we consider a single target scenario and
assume initially that the target is present in the
surveillance space in all observed sensor frames, so
that no hard detection decision between presence
or absence of target has to be made at each sensor
scan. Reference (3] applies Bellman’s dynamic
programming [12] and its implementation by -
Viterbi [10] and Larson [11] to solve the target
trajectory estimation problem. Let z, and y, denote,
respectively, the unknown target state and the
observations at instant k. Define the target state path
Z{ and the observation path Y% such that

(44)
45)

Z{‘) = [ZO’zl,--wzk]

Y6 = Yo Y1o-- - Yi)-

Denote by Z;, . the estimate of the unknown target
state z ., at instant k + 1, based on the observations
Y&*!. Barring some minor differences in the indexing
of the state and observation paths, Barniv’s estimate
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of the target state is given by

Zertjer1 = afgfgalﬂ(zku) (46)
where I(z,) is a quantity that is proportional to
maxP(Z§ | ¥6) @)
0
and is computed using the recursion
1(zy1) = P(Vear | Zk+1)mzfx[P(Zk+l I ZM ()] k>0.
(48)

When the observation y, at instant zero is available,
(48) is initialized with

I(zy) = (Yo | Zy)P(zy).

Barring some minor differences in the initialization of
the algorithm due to the availability of the observation
Yo, (48) corresponds essentially to the forward
recursion step of the Viterbi algorithm, see [10]. By
contrast, our tracking algorithm is a MAP estimator
based on Bayes’ law, i.e., our estimate for the
unknown target state at instant kK + 1 is

(49)

Zeatjers = ABMAXP (G [YGH. (50)

Combining the prediction and filtering steps of our
algorithm in one equation, the posterior probability
mass function (pmf) on the right-hand side of (50) is
obtained by the recursion

P(Zk+l |Y,6+l)

= Cre1PWir1 | Zes) ZP(an | )P (2 |Y’6)

%
k>0 (51
where C,,, is a normalization constant that is
independent of z,,,. We initialize (51) with
P(zy | ¥o) = Cop(¥o | 20)P(20) (52)

where C, is a normalization constant that is
independent of z.

Equations (48) and (51) clearly define two
different recursive algorithms. We now show that
equations (46) and (50) correspond to two different
maximization problems and may lead to different state
estimates. Write

P(ZS+1 |Yl(c)+1) - P(Zk,Zk.,.l !Y6+I)

= P(Z | 2401, Y5 P (20, | YET.
(53)

The second factor in (53) is the conditional pmf of
the current state z,,; given the path of observations
Y§*! up to instant & + 1. This is what our proposed
nonlinear stochastic filter computes at each instant.
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The first factor can be simplified to

P(Z |Zk+1’Yk+1) P(Zk ‘zk+1aY ). (54)

Recall that Barniv’s state estimate is given by

5 — k+1 k+1
zk+1|k+1~argrg§g({mzexP(Zo | Yo )}
0

= argr?ax{n%axP(ZO | Zgs1s YEIP(Zesy |Y"“)}
k+1 0
(55)
Note now that

Zea1

max{mzaxP(ZO | Zew1s YOP @1 | Y"“)}

% [mza}xp(z Y )] max P(z, | Y. (56)

If the factorization in (56) were possible, then
Barniv’s estimate Z, Fljr1 and ours would coincide.
However, because the maximization on the left-hand
side of (56) does not factor as the expression on
the right-hand side of the same equation, the two
estimates may be different. Also note that we provide
in our paper only the filtering estimate for the
unknown state path, i.e., our algorithm computes the
sequence

Zy  for k2>0.
Reference [3] on the other hand provides the smoothed
state path estimate, i.e., the sequence

for k>0, i<k.

Zijk
The smoothed estimates in [3] are obtained using
the backward retrieval step of the Viterbi algorithm,
see [10]. In terms of applications, Barniv’s algorithm
provides a batch estimate of the state path,

Zf = argmax P(Z§ | Y)
0

whereas ours is an on-line algorithm that is similar in
nature to Kalman-Bucy filtering, i.e., whenever a new
state estimate is available at instant k, we do not go
back and reestimate the previous states z; for i <k.
Finally, in a multitarget scenario where targets
are not assumed a priori to be always present, a
multitarget detection step must be added to the
tracking algorithm. In Barniv’s work, the Viterbi
forward recursion is run as if only one single target
were present and multitarget detection is done simply
by thresholding the function I(z;) at the last stage of
the recursion. All states z; for which I(z;) exceeds
a certain threshold are assumed to be the final state
of one possible target. The state trajectories for
each detected target are then retrieved by moving
backwards along the path of corresponding surviving
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nodes in the Viterbi trellis, see [10, 3] for details.
Since this procedure leads to a large number of false
detections (roughly 40 detections per target [3]),

a post-processing clustering step is used to merge
nearby estimated trajectories. In our approach, we
expand the state space to include dummy “absent
target” states and propagate the joint pmf of all
target states, including the dummy states. Multitarget
detection is then accomplished using a minimum
probability of error M-ary Bayes hypotheses test.

2) Setup of Problem and Modeling Assumptions:
In the sequel, we contrast briefly the state and
observation models used in our work with the models
introduced in [3]. In our paper, for targets that
are present, the corresponding states are the pixel
locations at each sensor frame of the target centroids
in the discrete centroid grid. In [3], the states are
defined as straight line trajectory segments across a
group of G > 1 sensor frames that define the stages
(instants) for the Viterbi forward recursion. The
corresponding observation (measurements) model
in [3] involves a differential preprocessing of the
original sensor images. After preprocessing, it is
assumed in [3] that all residual measurement noise is
. Gaussian and white. In our work, the measurements
are the raw sensor frames themselves, with no
preprocessing except for a possible removal of the
moving local mean (as explained in Section VB).
Instead of using a white Gaussian measurement
noise assumption, we take full advantage of the
real statistics of the background clutter to improve
detection/tracking performance. That includes
exploring both the clutter spatial (intraframe)
correlation and the clutter’s possibly non-Gaussian
amplitude statistics.

3) Computational Complexity: We compare the
computational complexity of the Viterbi algorithm
to our proposed Bayesian tracker. Let z, € L be the
hidden variable, with the number of elements in £
being denoted by L,. Define the L,-dimensional
vectors fy, and iy, such that f,(j) = P(z, = j| Y§),
and i, (j) = I(z, = j), j € L, where I(z,) is the function
defined in (47). Introduce also the L; x L, transition
probability matrix, Py, such that P.(n, ) = P(z;,, =
n,|z, = Jj), (k,j) € L x L. The recursion in (51), that
corresponds to the Bayes tracker, can be rewritten in
matrix notation as

»fk+1|k+1 = Ck+lSk+1 o [PTfk|k]

where © denotes the pointwise multiplication operator
and §;,, is an L; x | yector such that §,,,(j) =
PVist | 21 = J)» j € £. On the other hand, Viterbi’s
forward recursion in (48) is written as

(57

iry; =S;,; @ [max{P, o i<, (58)

where P}, is the I/th row of the transition matrix Py,
ie., P(j) = Pz, = 1|z = j), j € L. The bracketed
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expression on the right-hand side of (58) reads as
follows. For each I, 1 <I < L,, do the pointwise
multiplication of the /th row of the transition
probability matrix P, by the previous filtering vector
i resulting in an L,-dimensional vector, i;. Then, look
for the maximum of the entries i.(j) over the range

1 < j <L, and assign this maximum to the Ith entry
of the bracketed vector.

A comparison between (57) and (58) shows that
the two recursions differ basically in the computation
of the bracketed vector on the right-hand side. The
Bayesian tracker involves the multiplication of an
L, x L, matrix by an L, x 1 vector, which requires L?
floating point multiplications and L,(L; — 1) floating
point additions. On the other hand, the forward
recursion of the Viterbi algorithm requires L? floating
point multiplications and L, global maximum searches
over an L;-dimensional vector. Those maximum
searches require in turn L, (L, — 1) comparisons. The
two algorithms therefore trade arithmetic (addition)
computational complexity for logic (comparison)
computational complexity. We make two additional
remarks.

REMARK 1 The Viterbi smoother requires that, in
addition to the forward propagation of I(z;) using
recursion (58), we must also store the indices of
the maxima over j, 1< j <L, of it(j), forall k>0
and all /, 1 <1< L,. This table of stored indices

is necessary for the implementation of Viterbi’s
backward retrieval step, see [10].

REMARK 2 In most applications, the transition
probability matrix Py is not a full L; x L, matrix,

as transitions are only alllowed between adjacent
target states. As a result of the sparse nature of Py,
the number of floating point multiplications required
in the prediction step for both the Bayes tracker and
the Viterbi recursion falls in practice from O(Lf) ‘

to O(aL,), where a < L,. The required number of -
floating point sums in the prediction step of the Bayes
tracker and the complexity of the maxima searches in '
the Viterbi recursion are also reduced accordingly.

F. Flowchart Summary of the Bayes Detector/Tracker

We present in.Table I a flowchart summary of the
proposed optimal Bayes detector/tracker.

G. [lllustrative Example: Two Extended Targets in
Gaussian Noise

Finally, we close this section with an illustrative
example of application of the optimal Bayes
detector/tracker in a multitarget scenario with
overlapping targets. We track/detect two extended
targets in a 1D finite grid, against a white Gaussian
background clutter with covariance matrix o21. Both
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TABLE I
Flowchart Summary of Multitarget, Multiframe Bayes

Detector/Tracker Py r reeeoneens
1) Initialize P(Z, \Yg”l) with the given prior P(Z,). sl 1
2) Compute P(Z, | Y,) using equation (26) with n=0. g
3) For n=1 up to the total number of available frames: 508f
§

+» Compute P(Z,, | Yg'l) using equation (23).

« Compute P(Z, | Yg) using equation (26).

« Do M-ary detection using the hypotheses test (27).

« If hypothesis H,, is declared true, compute Hr’n’[‘n(zn)
using (35) and look for its maximum over Z, to i )
estimate the centroid positions of detected targets. 40 e number”

End of for-loop. @)

class 1 and class 2 targets extend over 9 resolution
cells with [; = r; = r, = [ = 4, but have different
(deterministic) signatures. Class 1 targets have a
rectangular-shaped signature, whereas class 2 targets
have a triangular-shaped signature.

In any given sensor frame, either two targets (one
from class 1, the other from class 2) are present, or
just one target (either class 1 or 2) is present, or no
target is present. When two targets are present, the :
corresponding sensor returns may be apart from each % 2 v % 00
other, as shown in Fig. 2. Otherwise, they may overlap ®)
in the sensor, causing their signatures to be added in :
the sensor image, as shown in Fig. 3. Fig. 2. (a) Noise-free sensor scan with two targets. (b) Observed

The targets have translational motion with the (noisy) sensor scan, PSNR =3 dB.
position of the targets centroids in the 1D grid
described by known first-order discrete Markov chains
with deterministic drifts d; = 2 and d, = 3 for class
1 and class 2 targets, respectively. Once a target :
belonging to a given class disappears from the sensor B
range, another target of the same class may appear
randomly at any resolution cell with a probability
p, = 0.3. The simulation was conducted for a total
of 100 frames, with 100 resolution cells per frame. A
target that is estimated to be absent is indicated by
a “+” mark on the horizontal axis, while a true 0s
absence of target is indicated by a “0” mark on the
same axis. 0 : i i
Figs. 4(a) and (b) show the tracked positions ’ © “can rumber ® b
~ of the centroids of class 1 and class 2 targets, (a)
respectively, between frames 20 and 70, with peak 25
signal-to-noise ratio (PSNR = 10log,,(1/02)) equal to
10 dB. Notice that, between frames 65 and 70, class
1 targets are absent from the sensor view, which is
correctly indicated by the detector/tracker as a series
of superimposed o and + marks on the horizontal
axis in Fig. 4(a). During the same time period, a
class 2 target is present and is correctly tracked as
indicated in the bottom right corner of Fig. 4(b).

The opposite situation occurs between frames 36 and

sensor retum

sensor retum
- n

sensor return

42 when the class 2 target is absent and is correctly " :

[] 20 40 80 80 100
declared not present by the detector/tracker (as seen cell number
in Fig. 4(b)), but the class 1 target is present and (b)
accurately tracked as indicated in Fig. 4(a). Finally, Fig. 3. (a) Noise-free sensor scan with superimposed targets.
notice that between frames 43 and 54, not only are (b) Observed sensor scan, PSNR = 3 dB.
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Fig. 4. (a) Centroid tracking for class 1 targets. (b) Centroid
tracking for class 2 targets, PSNR = 10 dB.

both targets present, but also their images overlap
since the difference between their centroid positions

is less than 2/, + 1. Despite the superposition, Fig. 4(a)
and (b) show that the centroids of the two targets are
accurately tracked independently. The algorithm is
capable of performing data association with a high
degree of accuracy at the same time that it is able to
reject false alarms and prevent misses.

IV. DETECTION PERFORMANCE

We study the detection performance of the optimal
nonlinear detector/tracker assuming a single target
scenario. The performance is evaluated through the
receiver operating characteristic (ROC) curves for the
Neyman—Pearson detector, obtained by varying the

“threshold in (28). The experimental ROCs presented
in this section are generated using Monte Carlo
simulations.

A. Correlated Gaussian Targets in Correlated Gaussian
Clutter

We consider first the case when the background
clutter is Gaussian and correlated. We simulate 1D
Gaussian targets with dimensions /; = [, = 4 moving
in a grid of size L = 100. The synthetic targets are
samples of a correlated first-order GMRF model with
mean m, = 1 and covariance parameters ¢, and o,.
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Fig. 5. Performance of multiframe Bayes detector with correlated
Gaussian targets in correlated GMRF clutter. (a) Otacg = 0.2.
(b) oy, =04

The target image is cluttered by a first order GMRF
clutter with parameters o, and o.. The synthetic
targets move in a 1D range resolution grid with a
mean drift of 2 cells/scan. There is a fluctuation
probability of one cell around the mean displacement
equal to 0.4. As one target disappears from the ~ -
surveillance space, there is a 20% probability of a
new target reappearing at any arbitrary position in the
grid L= {I:1<I<L},ie., p,=0.2. This assumption
corresponds to a worst case scenario when new tracks
can be initialized with uniform probability at any cell
in the sensor grid.

Fig. 5(a) shows the experimental receiving
operating characteristic curves (ROCs) for the
multiframe Bayes detector, with o, = 0.2, o, = 0.16,
and «a, = 0.24, for two levels of the average SNR =
20log,(m,/c.), respectively 3 and 0 dB (i.e., o, = 0.7
and o, = 1). Fig. 5(b) shows the ROCs when ¢, = 0.4
(i.e, increasing the variance of the target pixels).

The experimental curves were estimated from a

total of 8,000 Monte Carlo runs. The plots in Fig.

5 indicate good detection performance, even in the
adverse conditions of heavy clutter. For example, the
algorithm reaches a 90% probability of detection for
false alarm rate of 1073, Fig. 5(b) shows that there
is a slight deterioration in performance when we
increase the target variance.
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Fig. 6. Comparison of optimal Bayes detector performance (a)

under Rayleigh, Weibull (c = 1.5, a = 0.6777), and K (v = 1.5)

clutter, PSNR = 6 dB; (b) under K (v = 1.5) clutter (PSNR =
6 dB) and Rayleigh clutter (PSNR = 4 dB).

B. Non-Gaussian Clutter

To evaluate the detection performance for
non-Gaussian clutter, we ran Monte Carlo simulations
with a succession of single targets moving in
uncorrelated complex clutter with K and Weibull
envelope statistics. For simplicity, the successive
targets are pointwise with a unit signature in the
in-phase component. We use as figure of merit the
PSNR ratio defined as PSNR = 10log,,(1/02), where
o2 is the variance of the white noise sequence from
which the corresponding non-Gaussian SIRV is
simulated (see reference [16] for details). The motion
. parameters are the same as in the Gaussian simulation,
except that, in the case of complex clutter, a speed of
d resolutions cells/scan corresponds to a speed of 2d
in the double-sized sensor image. The probabilities
of detection and false alarm for each value of the
threshold are obtained from statistics collected from
10,000 sensor frames, where each frame corresponds
to 64 resolution cells or 128 complex quadrature
returns.

Fig. 6(a) shows the superposition of the optimal
Bayes ROCs with Rayleigh, Weibull, and K clutters,
respectively, from top to bottom, for PSNR = 6 dB.
The simulated K clutter has shape parameter v = 1.5.
The parameters for the simulated Weibull clutter are
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¢ = 1.5 and a = 0.6777. The plot shows that, even
when the correct clutter statistics are incorporated
into the detector’s structure, there is still a slight
deterioration in performance under non-Rayleigh
clutter, probably due to the heavier tails of the K
and Weibull statistics, which increase the likelihood
of false alarms. Fig. 6(b) shows the superposition of
the ROC under Rayleigh clutter for PSNR = 4 dB
and the ROC under K clutter, PSNR = 6 dB. The two
curves in Fig. 6(b) roughly coincide, thus suggesting
an approximate 2 dB gain in PSNR under Rayleigh
clutter compared with the spiky K clutter.

V. 2D DETECTION/TRACKING PERFORMANCE

We investigate in this section the performance of
the proposed Bayes detector/tracker with 2D extended
targets moving in digital images corrupted by heavy
clutter. We carry out two sets of experiments: one with
2D synthetic data and the other with a real data clutter
intensity image recorded by an airbone IR laser radar
[17]. In the second set of experiments, a simulated
target (military vehicle) template is inserted into the
real data background.

A. 2D Simulations with Synthetic Clutter

Clutter: The background clutter is a 2D
noncausal first order GMRF. The clutter intensity
at pixel (i, j) during the nth scan, v,(i,j) is modeled
by its minimum mean square error (MMSE)
representation [29]

Vp(is)) = Bplv, (s j — 1) + v, G,/ + 1]

+8,v, (i —1,/) + v, + 1,)] +u,G, j)
(59

where u,(i, j) is the driving noise term. We collect the
clutter samples v, (i, ) and the error samples u, (i, j)

in two long row-lexicographed vectors, respectively
v, and u,, thus obtaining an equivalent matrix
representation to the difference equation (59). The
matrix representation is analogous to the 1D case, i.e.,

(60)

Av, =u,

where A is the potential matrix of the 2D GMRF.
Using the orthogonality between the field {v,(i, )}
and the driving noise {u,(i,j)}, the clutter covariance
matrix is proportional [25] to the inverse of the
potential matrix A.

The parametric structure of the potential matrix
extends naturally to the 2D case [23, 25]. The
corresponding inverse of the clutter covariance
for the 2D clutter background is a block-Toeplitz,
block-banded matrix where each of the individual
blocks is itself Toeplitz and banded [25]. A
comprehensive study of the eigenstructure of

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 37, NO. 3 JULY 2001



®)

Fig. 7. (a) Clutter-free target image. (b) Simulated sensor image,
PSNR =0 dB.

perturbed Toeplitz and block-Toeplitz matrices
and their relation to 1D and 2D GMRF models of
arbitrary order with different choices of BCs is found
in [23].

Target and Observations: For simplicity, we
limit our discussion in this section to a single target
scenario. The target is a rigid body with a 2D
translational motion. We assume that, at any given
frame, the target’s clutter-free image is contained
inside a 2D rectangular region of size (; + 7, + 1)
(; + 1, + 1). In this notation, r; and r, denote the
maximum vertical pixel distances in the target image
when we move away, respectively up and down, from
the target centroid. Analogously, /; and /; denote the
maximum horizontal pixel distances in the target
image when we move away, respectively left and
right, from the target centroid. Let / be the 2D finite
lattice I = {(k,l): —r; <k <r, —; <1<} The
2D target signature at frame # is given by the the
signature coefficients

a(k,l) = c"(k,D)¢" (kD) kel 61
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&)
@

Fig. 8. 2D random walk fluctuation around average target drift.

where the term ¢"(k,l) € R specifies the target’s pixel
intensity whereas c"(k,l) € B = {0,1} is a binary
shape coefficient. In the Monte Carlo simulations
presented in this section, we assume that the targets
have a rectangular template and that their signatures
are deterministic, time invariant, and known. Without
loss of generality, we make the target pixel intensities
constant and equal to 1. The targets are contained in
a square region of size 9 x 9, and are cluttered by a
first-order, highly correlated GMRF background with
B, = B, = 0.24. Figs. 7(a) and (b) show, respectively,
the clutter-free target image and a random sample

of the target plus clutter image when the target is
centered at pixel (100, 50) with PSNR equal to

0 dB.

Motion: We describe here the 2D translational
motion model used in the simulations presented in
this work. The simulated targets have mean velocity
of 2 resolution cells per frame in both the horizontal
and vertical directions, and move in a grid of size
L x L pixels. The actual displacement is a random
walk fluctuation around the average displacement. In
other words, if (i, ) is the predicted centroid position
according to the deterministic velocity, the actual
position lies in a 2D spatial region around (i, j), with
fluctuation probabilities 7, s, t, and g shown in Fig.

8. In our simulations, all fluctuation probabilities of - -

one cell were set to 20%. Like in Subsection IIA, we
expand the 2D sensor lattice to build a centroid lattice
that accounts for boundary effects. We define then an
equivalent 1D representation of the 2D centroid lattice
that is obtained by sequentially stacking the rows of
the 2D lattice into a long vector (see reference [24]).
The equivalent 1D centroid lattice is denoted as L.
Finally, like in the 1D case, we build the augmented
lattice £ by adding to.£ a dummy state that represents
the absence of the target. The unknown state at instant
n is a*1D random variable z, defined on L. We denote
by P, the transition probability matrix that collects
the transition probabilities {P(z, =i |z, ; = )}
G, peLlxL. .

Multiframe Bayes Detector/Tracker: Lety, be
the observed L x L sensor frame at instant n. Define
the filtering posterior probability vector f,, such that
f ‘]n(l) =P(z, =1|Yf), l € L, where £ now denotes the

1D row lexicographed centroid lattice augmented by
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TABLE I
Pseudocode For 2D Bayes Detector/Tracker

a) Initialization.
b)Forn=1to N
« Prediction step: fnln—l = PTfn-l|n—l'

efori,j=1to L

Differential operator: p; ; = ¥,(i,J) = B[y, (i,J + 1) + y,G,j — D] =B, +1L,))+y,(—-1,/)), with y,(i,j) =0, for i,j <1 or

i,j>L.
end of loop
sfor I,/ =1t L,
i=l-1;j=J-1;

Maiched filter: A, ; = Zk Z,ak_,u,. +,j+1» With the limits for the summations given in Table III.
8= {a,,}, with k and [ in the ranges assigned to each pair (i,j) in Table IIL.

A =L oI - 5,H)~ g, H; ®L; where @D = size(a; ;).
Energy term: p, ; = (vec[ai_j])TA,(vec[al.' -

Observations kernel: S, (I —~ 1)L, +J) = expl2X,_; ;_; — pI—I:J—Is)/ZUI%]'

end of loop.

+ Normalized kernel entry for absent target state: S, (L2 +1) = 1.

* Filtering step: 1, = C,S, ©f,

fn-

Hy
* Binary Detection: fn["(L7l' + l)zl —nt”(L% +1).
H

1 Where C, is a normalization constant such that Et Jan® = 1.

* MAP estimation: If hypothesis H, (target present) declared true, 2n|n = argmax, ;. £, (D).

* fn—l|n*1 = i'nln'
End of outer for-loop

c) End of program.

the dummy absent target state. Similarly, introduce the
prediction posterior probability vector f,, ;. Finally,
define the observations kernel vector S, such that
S, =pQy,lz, =1, 1€ L. For simplicity of notation,
make 7; = /; and r, = [, and introduce L, = L +I; + ;.
Let I, denote the p x p identity matrix and H,, be

a p x p.matrix such that H(i,j) =1 for |i — j| = 1

or zero otherwise. We use the symbol ® to denote
pointwise multiplication and the symbol ® to denote
the Kronecker or tensor product [27]. The symbol
vec denotes the operator that converts a P x Q into

a PQ-dimensional column vector by sequentially
stacking all the rows of the matrix. In the particular
case of a single, deterministic target with known

and time-invariant signature coefficients a; ;, and a
first-order 2D GMREF clutter model as described by
(60), the optimal 2D Bayes detector/tracker with a
total number of frames equal to N, is implemented by
the pseudocode in Table I (for a detailed derivation,
see [24]).

Remark. The actual implementation of the matrix
multiplication Pf,_,,,_, in Table II explores the
sparse and block-banded structure of the transition
probability matrix P;.. Note also that the energy term
p is constant for the range [; + 1 <i, j <L~ and,
therefore, can be computed off-line. In general, for
an L x L sensor grid, it can be shown that, using
the GMREF clutter model, the Markov chain motion
model, and the small extended target models, we
reduce total number of required floating point
multiplications from O(LS) to O(alL?) in the filtering

step of the algorithm and, from O(L*) to O(yL?) in the
prediction step, where v < L.

We now discuss two suboptimal trackers whose
performance we later compare with the performance
of our optimal Bayes tracker: the maximum likelihood
(ML) tracker, and the linearized Kalman—-Bucy tracker.

Maximum Likelihood Tracker: The correlation or
memoryless ML tracker ignores the information on
the dynamics of the target motion and makes tracking
decisions at each sensor scan based solely on the
present observed data. In the single target case, let
z, denote as before the position of the centroid of a
target that is assumed present in the nth sensor scan.
The memoryless ML estimate of the centroid position
is given by

Zyr, = AgMAX (Y, | 2, = 1) (62)
i

where L is the equivalent 1D centroid lattice.

Linearized Kalman—Bucy Tracker: Although the
single frame, memoryless ML tracker is generally
accurate in scenarios of high SNR, its performance
deteriorates noticeably as the power level of the clutter
increases. An improvement to the ML estimator in
heavy clutter is obtained by further post-processing its
output with a linearized KBF. This is a suboptimal
multiframe tracking scheme that reintroduces
information about the target dynamics into the
tracking algorithm. It resembles common algorithms
presented in the literature [1].

Remark: Computational Complexity. We compare
the computational cost of the Bayes detector/tracker to
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TABLE 11
Computation of Data Term )‘-‘j

L+1<j< L—IJ+15j5
XGi.J) L +1<j<l; L-1 L+l
I +1<i<l Is Is Is Is Iy L-j
LD DD DD 35 STND D) B
k=—i+li=—j+1 k=—i+ll=—l; k=—i+1l=-1;
R _ 1, Is s s Is L-j
B S S Y Y0 Y0
k=—ljl=—j+1 k=—ljl=—I; k=—l;1=—;
_ , L-i I L-i |, L-i L~j
‘ 15L++11,.Sl_<- >0 Zz’o Y >0

k=l l=—j+1 k=l l=—1; R

the association ML-KBF of the ML tracker with the
KBF. The ML step in (62), in the case of deterministic
targets observed in correlated Gauss—Markov random
clutter, reduces to maximizing over all the target
centroid positions (i, j) the quantity X, ; — p; ;/2,
where J; ; and p, ; are the data and energy terms
described in Table II. For an L x L sensor grid with
L> [, +1, this cost is dominated by the computation
of A; ; that is an operation of order O(8L?) with
B < L. The computational cost of the KBF stage
is neglible in comparison. For a scalar dynamic
model in both dimensions, the cost is only 4 floating
point multiplications and 4 floating point additions.
Hence, the overall ML-KBF association has cost
O(BL?). On the other hand, as discussed before,
the Bayes detector/tracker requires O(al?) floating
point multiplications in the filtering step, and O(yL?)
floating point muitiplications in the prediction
step, with a = § ~ v < L. In summary, the Bayes
detector/tracker costs roughly twice the cost of the
ML-KBF associjation. The ML-KBF association saves
the prediction step of the Bayes detector/tracker.
Tracking Performance in Correlated Clutter: We
study first the tracking performance of the Bayes
algorithm using synthetic data. The simulated targets
are 2D rectangular objects with constant pixel
intensity shown in Fig. 7(a). At each sensor scan,
we assume that at most one target is present. The
target starts from an unknown random location in
the 50 x 50 upper left corner of the image and is
subsequently tracked over 70 consecutive sensor
frames. Fig. 9(a) shows the evolution over time of
the standard deviation of the error in the centroid’s
vertical position estimate given by the nonlinear Bayes
tracker. The standard deviation is expressed in number
of pixels and evaluated by averaging the errors over
150 Monte Carlo runs. We repeat the experiment
for two values of PSNR, respectively +3 dB and
—3 dB. The corresponding curves for the horizontal -
position estimate are qualitatively similar and are
omitted for conciseness. Fig. 9(a) shows that there is
an initial localization error which declines over time

16 T —7 T T T T T

PSNR=-3 dB
—— PSNR=+3dB |-

-

Localization error (# of pixels)
o0
—

¢ ~ N . _'
R B A R S NN

e

Localization Error (# of pixels)

Fig. 9. (a) Performance of nonlinear Bayes tracker in correlated
GMREF clutter for PSNR = —3 and +3 dB. (b) Performance of
nonlinear Bayes tracker versus linearized KBF, for PSNR = 6 dB.

as new measurements become available. The target
acquisition time (i.e., the number of sensor scans

for the error to reach its steady state) increases as
the PSNR decreases. Likewise, the initial and steady
state localization errors also increase with decreasing
PSNR. '

Next, we compare the nonlinear Bayes tracker with
the alternative suboptimal association of the spatial
matched filter and a linearized KBE. Fig. 9(b) plots
the standard deviation over time of the error in the
vertical position estimate for both trackers, with PSNR
equal to 6 dB. We see from the plot that the KBF
tracker has higher initial and steady state position
estimate errors and a longer target acquisition time.
Fig. 10 shows again the vertical position estimate
error curves for both trackers. This time, the KBF
curve is obtained for PSNR equal to 6 dB, while, for
the nonlinear Bayes tracker, we lower the PSNR to
—5 dB. The two curves in Fig. 10 show that the
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Fig. 10. Comparison of tracking performance of KBF tracker

with PSNR = 6 dB and nonlinear Bayes tracker with PSNR =
-5 dB.

steady state performance of the nonlinear Bayes
tracker and the linearized KBF are very similar,
despite an 11 dB difference in PSNR.

B. Detection/Tracking Example with Real Clutter

In order to have a qualitative assessment of the
effect of model/data mismatch on the performance
of the algorithm, we ran a small-scale simulation
with real clutter data. We used real-world intensity
imagery of a snow-covered field in Stockbridge, NY,
obtained by a 0.85 um down-looking laser radar [17]
mounted to the bottom of a Gulfstream G-1 aircraft.
The imagery is from the Infrared Airbone Radar
(IRAR) collection at MIT Lincoln Laboratory and
_was obtained through the website of the Center for
Imaging Science at Johns Hopkins University [32].
Fig. 11(a) shows a 120 x 120 real clutter gray-level
intensity image with a heavily cluttered military
vehicle (tank) model superimposed on it. Fig. 11(b)
shows the tank template alone as a binary image
with target intensity equal to 1 and background
intensity equal to zero. The tank template (shape) was
extracted from a real image of the vehicle taken at
the same field with the same sensor. The target pixel
intensity was set arbitrarily to achieve the desired
low level of contrast between target and clutter. In
order to assess tracking performance, we simulated
a random trajectory for the target template and
detected/tracked it over 27 frames using the Bayes
algorithm. The target starts from an unknown location
in the 120 x 120 image and moves in the real clutter
background according to a 2D random walk model
whose parameters are known to the tracker.

Since the clutter background is real data, we
initially preprocess each frame in the image sequence.
The preprocessing consists of the segmentation of the
original images and the subsequent removal of the
spatially-variant local mean in each subimage so that

20 40 60 80 100 120
(b)

Simulated real target in heavily cluttered real

Fig. 11.
background (IRAR imagery). (a) Target plus clutter. (b) Target
template.

the pixel intensity histogram approaches a zero-mean
Gaussian distribution [4]. We then adjust a first-order
GMRF model to the Gaussianized data, estimating
the corresponding parameters 3, 3,, and o, for each
frame. The 2D GMRF parameters were estimated
using a simplified version of the ML estimation
algorithm introduced in [26].

We compare the tracking results using 1) the
proposed Bayes tracker, and 2) a standard 2D image
correlator associated to a linearized KBF. The
corresponding estimated target trajectories are shown
in Fig. 12. The Bayes tracker assumes a uniform
initial target position distribution over the entire
sensor grid. The linear filter, on the other hand, is
initially favored by using a Gaussian initial position
prior that is centered in the vicinity of the true initial
position and has a small variance. The real simulated
trajectory is shown in solid line. The position
estimates generated by the Bayes tracker are indicated
by the symbol +, whereas the estimates generated by
the linearized KBF are interpolated using dashed lines.
In the first half of the trajectory shown in Fig. 12, the
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Fig. 12. Nonlinear Bayes detector/tracker versus linearized KBF:
performance comparison.

simulated tank is going through a heavily cluttered
section of the background, and the single frame
standard image correlator is unable to track the target.
The KBF tends to discard the correlator’s position
estimates and through the inertia in its prediction step,
tries to fit a straight line trajectory. In the second half
of the simulation, when the tank is on an open field,
the image correlator is capable of correctly locating
the target and the filtering step of the KBF slowly
forces the estimated trajectory to approach the true
trajectory. By contrast, the Bayes tracker, which has
no prior knowledge of the initial position, makes a
large initial localization error (the isolated + on the
top left corner of Fig. 12), but, afterwards, as new
frames become available, the tracker immediately
acquires the target and tracks it almost perfectly.

A comparison shows that, even in steady state, the
localization error for the Bayes tracker is lower than
for the KBF, while the acquisition time is much
shorter.

Remark. The assumption that the sensor frames
are uncorrelated in time is unrealistic in practice.
However, the good tracking results with real clutter
presented in this section lead us to believe that the
Bayes detector/tracker exhibits a high degree of
robustness to interframe correlation.

VI. CONCLUSION

In this paper, we presented a new optimal recursive
algorithm for integrated, multiframe Bayesian
detection and tracking of multiple targets that move
randomly in heavily cluttered environments. We
considered both extended and pointwise targets with
deterministic and random signatures. We developed
models for target signature and target motion that take
into consideration the finite resolution of the sensors
and used these models to build a joint framework for
detection and tracking that underlies our proposed
Bayesian detector/tracker.

BRUNO & MOURA: MULTIFRAME DETECTOR/TRACKER: OPTIMAL PERFORMANCE

Extensive Monte Carlo simulations in 1D and
2D surveillance spaces determined the performance
of the optimal Bayes multiframe detector/tracker
under both spatially correlated Gaussian clutter and
non-Gaussian clutter with heavy tail (K and Weibull)
statistics. The detection and tracking characteristics
of the optimal Bayes algorithm are an uppper bound
to the performance of other suboptimal algorithms.
In particular, when tracking stealthy targets (dim
targets in heavy clutter) with the optimal Bayes
tracker, the Monte Carlo simulations with 2D targets
departing from unknown location show substantial
steady state tracking performance gains of up to
11 dB over alternative algorithms found in the
literature such as spatial correlators (matched filters)
and linearized KBFs. Examples with real clutter
data and a known inserted target also show better
detection/tracking performance than the association of
a conventional image correlator and a Kalman-Bucy |
tracker. These examples illustrate the robustness
of the algorithm to possible mismatches between
the data and the underlying models assumed by the
algorithm.
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