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Scaling Functions Robust to Translations
Steven A. Benno,Member, IEEE, and Jośe M. F. Moura,Fellow, IEEE

Abstract—The discrete wavelet transform (DWT) is popular
in a wide variety of applications. Its sparse sampling eliminates
redundancy in the representation of signals and leads to efficient
processing. However, the DWT lacks translation invariance. This
makes it ill suited for many problems where the received signal is
the superposition of arbitrarily shifted replicas of a transmitted
signal as when multipath occurs, for example.

The paper develops algorithms for the design of orthogonal and
biorthogonal compact support scaling functions that are robust
to translations. Our approach is to maintain the critical sampling
of the DWT while designing multiresolution representations for
which the coefficient energy redistributes itself mostly within each
subband and not across the entire time-scale plane. We obtain
expedite algorithms by decoupling the optimization from the
constraints on the scaling function. Examples illustrate that the
designed scaling function significantly improves the robustness of
the representation.

Index Terms—Multiresolution, robust representations, shift-
invariant scaling functions, translation invariant, wavelets.

I. INTRODUCTION

T HE DISCRETE wavelet transform (DWT) is popular in a
wide variety of applications. Its discrete subband decom-

position allows for a coarse-to-fine multiresolution analysis
(MRA) of signals, and its sparse critically sampled dyadic
grid is computationally more efficient to compute than the
fast Fourier transform (FFT). It is precisely this sparse grid,
however, that causes the DWT to fail to be invariant even to
translations of the input by multiples of the sampling period.
As the input is translated in time, coefficient energy from one
subband of the DWT escapes into other subbands, even though
the spectral content of the signal does not change.

Strang [1] has commented on the DWT’s lack of invariance
as a major drawback in using orthogonal wavelet transforms
in pattern recognition applications. Several approaches have
been developed to address this problem. One approach is to
use the translation-invariant continuous wavelet transform [2],
but this representation is highly redundant and computationally
expensive. Another approach is to compute the dyadic wavelet
transform at the full sampling density and to extract a subset
of samples from the overcomplete representation to form an
orthonormal representation [3]. In [4] and [5], a library of
shifted basis functions is used to achieve translation invariance.
These approaches, however, are translation invariant only
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when the entire input signal is uniformly shifted. If there
are components within the input signal that are translated
relative to each other, these representations do not provide
a superposition of translated wavelet coefficients.

In [6] and [7], the authors present a method for choosing
wavelets that minimize the worst-case approximation error for
representing all signals in a class at some prescribed scale.
Specifically, they consider the frequency domainclass. To
obtain more explicit results, a crucial assumption made in [6]
and [7] is that the signals being analyzed are bandlimited. The
paradigm of our work is related to [6] and [7] in that we are
also minimizing the approximation error in representing a class
of functions. In our case, however, we consider the class of
functions generated by the translations of a mother function.
We address the issue of translation invariance explicitly. In a
sense, as we look for robustness to shifts of the same signal,
our problem is more restricted than the more general problem
studied in [7]. However, by considering this more restricted
framework and attacking directly the shift invariance, we do
not require the bandlimited assumption to get explicit design
algorithms. Indeed, bandlimited constraints represent special
cases of our work and are discussed in the Appendix. We
obtain explicit algorithms by minimizing a translation error
measure at a midpoint.

Our approach to the translation-invariance problem is to
apply the concept ofshiftability to the DWT. A signal is
shiftable [8] if and only if, given , there exists a set of
functions such that

(1)

Note that the coefficients are a function of and
are computed by inner products with , which is a dual
function of , so that , , where
is the inner product. In other words, a function is said to
be shiftable if an arbitrary shift of by can be represented
by a linear superposition of its integer shifts .
When (1) holds, the set of functions generates
a shiftable representation.

By designing a shiftable MRA, the efficient sparseness of
the critically sampled dyadic grid is maintained, whereas the
coefficient energy in each subband is invariant to translations
of the input signal. It is to say that thesubspacesgenerated
by the MRA are translation invariant, e.g., if , then
for , . Furthermore, using a shiftable
MRA allows us to interpolate between grid points within a
subband by interpolating with grid points within that subband
alone. In other words, interpolating in time between grid points
is accomplished with a one-dimensional (1-D) interpolation
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instead of a two-dimensional (2–D) interpolation in the time-
scale plane.

In general, however, (1) will not be satisfied, i.e., a function
will not be shiftable. For example, it is not possible for a
function to be shiftable and to have compact support [6].
The goal of shiftable MRA’s is realized under appropriate
bandlimited conditions. We discuss these conditions, and, for
the cases where these conditions are violated, we relax the hard
constraint of shiftability and consider instead the design of
robustsignals for which, in (1), we have approximate equality.

The goal becomes the design of signalsfor which the
mean square error in representing their arbitrary shifts by its
integer translates is small, i.e., for small arbitrarily chosen

, robust signals satisfy

(2)
This translation error is a measure of the representation’s
robustnessto continuous translations. The design ofscaling
functions that minimize is a constrained minimization,
for example, scaling functions satisfy the two-scale equation
constraint [9]. This constrained optimization problem is, in
general, difficult. To obtain explicit algorithms for designing
robustorthonormal and biorthogonal scaling functions, rather
than solving directly the problem in (2), we minimize ,
i.e., at . In our experience, and as also reported
in the literature [3], [10], with many lowpass signals and
many scaling functions, is the maximum of for

so that in these cases, minimizing does solve
(2). In general, we need to check that indeed, this holds; when
it does not, our algorithms only design the scaling function
that minimizes . In the sequel, unless otherwise specified,
when we refer to the design ofrobustsignals, we refer to the
minimization of .

We will consider the design of robust scaling functions
(usually represented in the literature by the symbol), namely,
the design of robust orthonormal and robust biorthogonal
scaling functions that minimize . In the orthonormal
case, we seek functions that are as robust as possible
with respect to (w.r.t.) while satisfying the constraints
of orthonormality and the two-scale equation. By imposing
the additional constraint of compact support, we present an
elegant strategy to take advantage of the parameterization
by Zou and Tewfik [11] to find that scaling function whose
corresponding translation error is smaller than any other
for a given length of support. In this sense, our algorithm finds
the orthonormal scaling function with compact support that is
optimally robust with respect to (w.r.t.) .

In the biorthogonal case, we parallel the orthogonal case
but exchange the orthonormality constraint for the less strict
biorthogonality constraint. Once again, we utilize a characteri-
zation of biorthogonal scaling functions with compact support
[12] to find the pairs and that are optimally robust
wrt . We show that the extra freedom gained by going
from the orthonormal case to the biorthogonal case leads to
more robust representations.

We note that in this paper, thelength of supportof the
scaling functions is kept fixed. In [13]–[15], we design ro-
bust representations with an arbitrarily small translation error

at the expense ofincreasing the supportof the scaling
functions.

We now provide a brief summary of the paper. In Section II,
we formally describe the problem of translation invariance
and robust representations. The section presents a general
expression for that is valid for unconstrained . In
the Appendix, we gain insight into translation invariance by
looking at special cases that involve bandlimited assumptions.
The general translation error expression presented in Section II
is used as the basis for designing robust representations in the
remainder of the paper. In Sections III and IV, we apply the
notion of robust representations to the DWT for the orthogonal
case and biorthogonal case, respectively. For each case, we
present an algorithm for designing robust scaling functions
that are optimal w.r.t. . Finally, Section V concludes the
paper.

II. ROBUST REPRESENTATIONS

We develop the notions of shiftability and of robust repre-
sentations. In the sequel, we will deal with, which is the
set of integers, , which is the space of finite energy
functions defined on the real line, and , which is the set
of finite square summable sequences: indexed by
the integers.

1) Representation Subspace:Let . We associate
with this the following subspace that we refer to as its
representationsubspace. The integer shifted versions ofare
written as to emphasize that the integeris fixed.
The representation subspaceis the closed linear span of all
integer shifted replicas of, i.e.,

span (3)

with the sequence

(4)

In (3) and (4), we have used the common notation of omitting
the limits of the summation when summing over the set of
integers .

When is a scaling function , in multiresolution analysis
(MRA) parlance, is the central space of the MRA usually
represented by .

Clearly, the subspace is invariant to integer translations,
i.e.,

if then

However, for general and arbitrary real valued
noninteger , we will usually have that the arbitrarily
shifted replica . When, for arbitrary real valued,

, the function is said to be shiftable. The next
paragraph introduces more formally the notion of shiftability.
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2) Shiftability: A function is shiftable [8] if
and only if

(5)

Equation (5) states that the arbitrarily shifted replica
is in the representation subspace.

We note that the integer translates ofspan the but are
not necessarily orthogonal. Therefore, the coefficients
in the expansion (5) are usually computed with the help of
a biorthogonal function [9], which is associated with. In
particular, , where is the inner product
defined in , , and is the th
translate of the biorthoghonal.

In summary, the definition in (5) states that a function
is shiftable iff its representation subspaceis invariant to
arbitrary real valued translations , i.e.,

for any and for any

3) Robust Representations:There may be extra require-
ments on besides finite energy that prevent (5) from being
satisfied with equality, i.e., from being shiftable. We intro-
duce thetranslation error

(6)

where the explicit dependence of on has been dropped for
convenience. When this mean square error is bounded above
by a small threshold , the representation is robust to
translations. A reasonable design criterion is then to minimize

. This, however, does not lead in general to
explicit algorithms without introducing additional constraints
on the function , such as restricting to be bandlimited;
see the Appendix as well as [6] and [7]. In order to obtain
explicit algorithms for the design of robust orthonormal and
biorthogonal scaling functions, we consider a more limited
version of this problem. More precisely, the explicit algorithms
developed in the next two sections design scaling functions
that minimize . For many lowpass functions and many
scaling functions, we have experimentally observed, and other
authors have noted [3], [10], that the minimum mean square
translation error is maximum at . In other words,
the leakage of the signal energy to higher scale levels is
a maximum when a signal that is an element of the MRA
subspace is shifted by 1/2. Thus, for classes of scaling
functions for which the maximum of does occur at 1/2,
it is sufficient to work with to characterize the behavior
of the scaling functions under fractional translations, and our
algorithms do lead to theoptimal robust scaling function that
minimizes the supremum of . If, for the class of scaling
functions, this is not true, then our algorithms only provide
the scaling function that minimizes . In practice, once
we have designed a, we plot the value of for that
and verify that the maximum of for stays
below a desired threshold. In work published elsewhere, we
consider the design of under different setups [13]–[15] and

different metrics, in particular the gap metric [16], [17] or its
generalizations [18].

Before we address the problem of designing robust repre-
sentations, we compute, in the next subsection, an alternative
form for the translation error, which will be useful in later
sections.

A. Translation Error

We rewrite the translation error given by (6) in the Fourier
domain

(7)

where is the Fourier transform of. If the integer translates
are not an orthonormal basis of, it is well

known that the coefficients of the representation that
minimizes the translation error are computed by inner products
with the integer translates of a dual functionof , i.e.,

(8)

(9)

(10)

In (9), is the translation operator . In
(10), is the Fourier transform of the dual, , and is
the modulation operator . Writing (10)
explicitly, and then invoking the Poisson summation formula,
we obtain successively

(11)

In (11), the sum on the right-hand side is identified as the Zak
transform of the product . In general,
the Zak transform of a function is given by (see [19])

(12)

A similar object is also referred to as the Weil–Brezin mapping
[20].

Substituting (11) and (12) into (7), we obtain, after some
manipulation

(13)

Equation (13) expresses, via the Zak transform, the translation
error in terms of the Fourier transforms of the autocorrelation



3272 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 12, DECEMBER 1998

Fig. 1. Translation errorE(�) for the Daubechies D8 scaling function.

function of and of the cross-correlation of with its dual
. In deriving (13), we made no assumptions regarding the

dual except that it exists. Furthermore, we see that the Zak
transform arises naturally in this error expression.

In the special case where is orthonormal,
, and

Equation (13) reduces to

(14)

Equation (14) shows that for orthogonal, for each , is
given in terms of the integral along the frequency axis of the
magnitude square of the Zak transform of the energy spectral
density of . Intuitively, from (14), we see that the error

is smaller when is less dependent on.
In [15], we have developed algorithms that iteratively reshape

to design with small and present figures
that illustrate that tends to become independent
of .

Fig. 1 is a plot of the translation error for the Daubechies
D8 scaling function. The error is zero when , which
corresponds to the scaling function being perfectly aligned
with the lattice. When the scaling function is shifted halfway
between grid points, the translation error attains its maximum
value of 0.255, i.e., 25.5% of the coefficient energy escapes
the representation subspacefor D8 when .

In the next two sections, we reduce this error by ap-
propriately choosing a scaling function that minimizes the
translation error for a given filter length. In Section III,
we design optimally robust with respect to (w.r.t.)
orthonormal scaling functions. In Section IV, we relax the
orthonormality condition and look for optimally robust w.r.t.

biorthogonal representations.

III. ROBUST ORTHONORMAL SCALING FUNCTIONS

We now consider discrete wavelet transforms that are as
robust as possible oroptimally robustw.r.t. . We first
derive an appropriate expression for the translation error for
orthonormal scaling functions at and then minimize
this translation error value within the class of orthonormal
scaling functions with compact support.

A. Minimax Design of Robust Orthonormal Scaling Functions

Let be a scaling function1 and its representation
subspace, i.e.,

span (15)

Because is a scaling function, it satisfies the two-scale
equation

(16)

Designing functions to be optimally robust w.r.t. to
translations is now constrained by the two-scale equation. In
other words, the design of that minimizes the translation
error is constrained by (16).

Optimization problems with functional constraints are hard.
Specifying completely determines its corresponding scal-
ing function . References [11], [21], and [22] discuss
unconstrained parameterizationsfor all possible sequences

that generate orthonormal scaling functions with
compact support. We follow Zou and Tewfik [11]. By express-
ing the cost function in terms of instead of , we
can solve the optimization problem directly in terms of the
free parameters and drop the constraint imposed
by (16). Other authors [23], [24] who have addressed similar
design issues regarding scaling functions have found limited
success in expressing their cost functions directly in terms of
only the two-scale coefficients .

1) Minimization Strategy:In the example seen in
Section II, the translation error in the interval
is a concave downward function symmetric about ,
where it attains its maximum value. This suggests that we
develop a strategy to minimize the translation error at

. By restricting attention to , we can express
in terms of the coefficients of the two-scale equation

only. We can then take advantage of the unconstrained
parameterization mentioned above to develop an algorithm
that designs orthonormal scaling functions that minimize

.
2) Cost : We first derive an expression for the transla-

tion error at for orthonormal scaling functions.
Let be the orthonormal scaling function and its
Fourier transform. From (14), the translation error at
is

(17)

The Zak transform of a Fourier pair and satisfies

(18)

This property enables us to relate the Zak transform of
to the Zak transform of its Fourier pair , which is the
autocorrelation of . Using (18) and the fact that is real
and even, we obtain, for

1Scaling functions are usually represented in the literature by�, which is
why we use in this section� rather thang.



BENNO AND MOURA: SCALING FUNCTIONS ROBUST TO TRANSLATIONS 3273

Substituting this into (17), becomes

(19)

(20)

Equation (20) expresses the translation error in terms of
the samples .

We now relate the samples of the autocorrelation function
to the coefficients of the two-scale equation. Since

is the autocorrelation function of the scaling function
, it also solves the two-scale equation

(21)

where is the autocorrelation sequence of the coefficients
from the original two-scale equation that determines , i.e.,

Using (21) to express , we have

Since are orthonormal, we have successively

(22)

In other words, the samples are equal to the odd
samples of the autocorrelation sequence of divided by 2.
Substituting (22) in (20), we obtain, for the translation error

(23)

The error is expressed in terms of the energy of theodd
samples of the autocorrelation sequence of the coefficients

of the original two-scale equation.
We now investigate what constraints, if any, the two-scale

equation (16) imposes on the odd samples of the autocor-
relation sequence . Let be the

-transform of the sequence . Similarly, let
be the -transform of . Recall from [25]

that being orthonormal is equivalent to
satisfying

(24)

The left-hand side of (24) is an even polynomial in, which
is constrained to equal a constant equal to 2. Since (24)
involves only the even samples , the orthogonality of
the scaling function is equivalent to constraining all of the
even lags of the autocorrelation sequence to be zero
except for the zero lag, which equals the energy of . On
the other hand, the two-scale equation does not constrain the
odd lags , which, by (20), completely determine the
translation error . This states that there is no fundamental
conflict in designing orthonormal functions minimizing

that simultaneously satisfy the two-scale equation. All of the
degrees of freedom available in the minimax strategy for
designing the scaling function can be dedicated to reducing

. We show how to do this next.

B. Robust O.N. Scaling Functions with Compact Support

MRA’s based on compactly supported wavelets are compu-
tationally efficient. Daubechies [25] was the first to provide
a characterization of all orthonormal compactly supported
scaling functions in terms of the coefficients of the two-
scale equation . Alternative parameterizations are in [11],
[21], and [22]. We use the results in [11] that provide an
unconstrained parameterization of the in terms of a set
of angles . We apply this parameterization to the
expression found in (23) for . In this way, the difficult
problem of finding robust functions that minimize subject
to the constraint of satisfying the two-scale equation becomes
an unconstrained parameter optimization problem.

1) Robust Compact Support O.N. Scaling Functions:Zou
and Tewfik [11] provide a parameterization for all possible
orthonormal scaling functions and wavelets with a given length

. The coefficients are functions of sines and cosines of
angles . It is easy to express the autocorrelation
sequence as a function of . In turn, the maximum
translation error in (23) becomes

(25)

where we have indicated explicitly the dependence on. The
gradient with respect to is

(26)

The examples that follow show that for a given, it is
relatively straightforward to find closed-form expressions for
(25) and (26). These are then used in optimization algorithms,
like gradient descent, to find the minimal value of .
In general, may have multiple local minima, and
the usual techniques (e.g., random restarts) may be needed
to ensure that the optimization algorithm finds the absolute
minima.

Finally, it should be noted that since the valid sequences
of length are a subset of the valid sequences of length

(recall that all valid sequences are of even length),
then in a trivial way, the minimal value .
In other words, the minimum error is monotonically
decreasing with the number of coefficients. Consequently, we
expect that the minimum error attainable by scaling functions
with infinite extent in the time domain will have a smaller
error than is possible by any scaling function with compact
support. Indeed, we have demonstrated that the sinc function
is perfectly shiftable in the Appendix.

C. Design Examples

In this section, we present results of the theory developed in
the previous subsections. We consider first scaling functions
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Fig. 2. Maximum translation errorE( 1
2
; �) for the single parameter case.

with , which are parameterized by one parameter and
then with , which are parameterized by two parameters.

1) Single Parameter Case:In this example, we use the
parameterization for the four coefficient scaling function. From
[11], all length-4 sequences are given by

where is the unconstrained free parameter, and the coef-
ficients are normalized so that . is given
by the energy in the odd coefficients of the autocorrelation
sequence of . Taking advantage of the autocorrelation’s
even symmetry, we calculate only the positive odd terms

The error is given by the trigonometric polynomial

and is shown in Fig. 2 for . The scaling functions
for this range of are smooth. We provide in Figs. 3 and 4
several scaling functions and their corresponding translation
functions . These all exhibit a concave behavior
with the maximum occurring at . We are not stating,
however, that this is true for every scaling function. A closed-
form expression for the derivative of the error is readily found
to be

Its zero crossings are candidates for local minima of the
shiftability error . Alternatively, the gradient can be
used in numerical methods to find the value ofthat minimizes

. First, notice that has multiple maxima and
minima, and care must be taken to ensure that an absolute
minima is found. Second, the absolute minima occurs at two
values ( and ) that produce time-reversed

versions of the same filter because they have the same au-
tocorrelation sequence. The value of coincides
with the Daubechies D2 scaling function [25].

2) Two Parameter Case:The length-6 sequence is param-
eterized by , which is given by

and the odd terms of its autocorrelation sequence are

from which its gradient can be calculated. Fig. 5 shows the
error surface for this example. Black and white correspond to
large and small values of , respectively. The minimizing
sequences are for (0.38, 1.64) and (1.64, 0.38), which
correspond to the light spots in the upper-left and lower-right
corners of Fig. 5, respectively. These correspond to time-
reversed versions of the same sequence. The minimum value
for the two-parameter case is , which is smaller
than from the single parameter case.

Clearly, as increases, the closed-form expressions for
and quickly become tedious but are otherwise

straightforward and easily computed numerically by software
packages like Matlab or symbolically with the help of Maple
or Mathematica.

IV. ROBUST COMPACT SUPPORT

BIORTHOGONAL SCALING FUNCTIONS

In the previous section, we used the parameterization of
compactly supported o.n. scaling functions to design o.n.
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Fig. 3. Scaling functions for several values of�.

Fig. 4. Eight �(�) curves for scaling functions corresponding to different
� values. From top to bottom:� = 0:256�; � = 0:28�; � = 0:304�;
� = 0:328�; � = 0:352�; � = 0:376�; � = 0:4�; � = (5=12)�.

scaling functions with compact support that minimize .
Key to our development was the strategy of expressing the
translation error in terms of the odd samples of the
autocorrelation of the coefficients of the two-scale equation. In
this section, we extend these results to the case of biorthogonal
scaling functions.

Fig. 5. Maximum translation errorE( 1
2
; f�1; �2g) for the two parameter

case.

Requiring a compactly supported scaling function to be
orthonormal is highly constraining. For example, it is not
possible to have one that is symmetric. Dropping the orthonor-
mality constraint, we have greater freedom in designing a
scaling function and its nonunique biorthogonal dual to satisfy
multiple design criteria. Because nonorthogonal representa-
tions are redundant, the redundancy will allow for more robust
representations. This is supported by the following trivial
argument. Since o.n. scaling functions are contained within
the class of biorthogonal scaling functions, the minimum
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translation error obtainable by a biorthogonal representation
is at least as small as the minimal value obtained by an
orthonormal representation, i.e., , where
represents the minimal value offor a given length of support.

A. Maximum Translation Error for
Biorthogonal Scaling Functions

The approach for the biorthogonal case parallels the mini-
max strategy for the o.n. case. First, we derive an expression
for the error at and then demonstrate how each term in
that expression can be expressed directly in terms of the two-
scale coefficients that determine the scaling function and its
dual. Without loss of generality, we restrict the discussion to
the space given in (15) generated by the integer translates
of . Starting with the definition for , we have

The are found by inner products with the biorthogonal
dual

The function is the cross correlation betweenand

its biorthogonal dual . Substituting this into the expression
for and expanding, we obtain

(27)

In (27), is, like before, the autocorrelation function
of . In the special case of the previous section, where

are orthonormal, ,
, and the above expression becomes the same as that

derived in (20).
Next, we take advantage of the fact thatand each satisfy

a two-scale equation

(28)

We use these equations to relate to the coefficients
and .

1) and the Two-Scale Coefficients:Using the
definition of a cross-correlation function, the two-scale equa-
tions satisfied by and , and the fact that and are
biorthogonal, becomes

(29)

(30)

(31)

(32)

where are the odd coefficients of the cross-correlation
sequence between and . Hence, is

readily expressed in terms of and .
2) and and the Two-Scale Coefficients:

and can also be calculated in terms of
in a straightforward way. We assume that is

a finite sequence. As seen before in (21), the correlation
function satisfies the two-scale equation. We find the
integer samples following the algorithm outlined by
Strang [1]. A scaling function with support on

is defined via the two-scale equation by a se-
quence of length . The corresponding autocorrelation
function has support on ,
and has length . Define

and

The integer values of can be expressed as

(33)

Matrix is . The equation
shows that is the eigenvector of corresponding to the
eigenvalue 1. Once the integer samples of the autocorrelation
function are known, the half integer samples are found by
iterating the two-scale equation once and subsampling to keep
only the odd samples

(34)

Hence, by substituting the results of (32)–(34) into (27), the
translation error at the midpoint is expressed directly in
terms of the autocorrelation and cross-correlation sequences
of the coefficients of the two-scale equations for the scaling
function and its dual.

B. Review of Perfect Reconstruction Filter Banks

Now that we know how to express in terms of
and , we need a characterization of all valid sequences

and that lead to a biorthogonal multiresolution
analysis. Extensive work has been done on this subject by con-
necting MRA’s to perfect reconstruction filter banks (PRFB’s)
[12], [25], [26]. The following is a summary of the relevant
results.

In order for two sequences and to generate a
biorthogonal multiresolution, they must satisfy two conditions.
The first is the regularity condition that each sequence must
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satisfy in order to guarantee that the infinite products

(35)

both converge pointwise to continuous functions. The regular-
ity condition given in [25] for orthonormal scaling functions is
applicable to the biorthogonal case. Reference [27] provides
two different regularity conditions adapted for biorthogonal
scaling functions. Convergence of (35) depends, in part, on
both filters and having a sufficient number of
zeros at .

Assuming and are sufficiently regular, the
second condition we impose is that the limiting functions of
(35) are biorthogonal to each other, which is equivalent to
requiring

(36)

The sequence corresponding to is
the cross-correlation sequence between and

whose odd terms appear in (32). Analogous to (24) for the
orthonormal case, (36) constrains only the coefficients of the
evenpowers in to equal zero except for the zeroth lag,
which is constrained to equal 2. Since the expression in (27)
for depends on , i.e., theodd
coefficients of , there is no conflict in designing optimally
robust w.r.t. functions and satisfying the constraints for
constructing biorthogonal scaling functions.

1) Parameterization of Biorthogonal Scaling Functions:
Equation (36) is a special form of a Bezout identity. Given one
of the filters, say, , the minimal length complementary
filter can be found by continued fraction expansions (Euclid’s
algorithm) or by solving a system of linear equations [28]. The
complementary filter is not unique. After solving for a valid
minimal length complementary filter, we can parameterize all
other complementary filters with increased length using the
procedure presented in [12], which we outline now.

If there exists a polynomial such that

then we can define a new complementary filter by

that still satisfies (36). The following proposition adapted from
[12] gives a characterization for .

Proposition IV.1: All filters of length that are
complementary to a length- filter have the form

(37)

where , is a length- comple-
mentary filter, and is a polynomial of degree

of the form

(38)

The parameter changes the location of the single nonzero
even coefficient, whereas increasing increases the length
of the new complementary filter . Hence, Proposition
IV.1 provides a characterization of all possible higher order
complementary filters.

From (36), it follows that any valid polynomial that
satisfies (36) can be factored into and its complementary
filter to produce a PRFB. Equation (36) depends only
on the product of the two filters; therefore, we have additional
design freedom in the way the zeros of are assigned to
either or , as long as our factorization yields two
filters that are sufficiently regular to allow (35) to converge.

C. Robust Biorthogonal Scaling Functions
with Compact Support

Using (27) and (32)–(34) to express the error in terms
of the coefficients of the two-scale equations in (28) and
with the above characterization of the biorthogonal two-scale
coefficients, we are ready to design representations that are
optimally robust w.r.t. .

The previous subsection provides a method for finding
complementary filters when we aregiven , but given a
clean slate, how should we commence? Since we require both

and to converge to a scaling function according
to (35), a minimum number of zeros at is required.
Hence, by choosing , i.e.,
the binomial filter, we are guaranteed that our system will
contain a minimum number of zeros at . Because we
are free to assign the zeros of to
and as desired, without fear of destroying the PRFB
property, we can divide the zeros at between
and to satisfy the regularity condition. Proposition 4.4
in [12] guarantees the existence of a complementary filter to
the binomial filter so that this starting point is guaranteed to
produce a valid PRFB.

1) Robust Biorthogonal Scaling Function Design:The pro-
cedure for designing and in order to minimize

is as follows.

1) Define an initial binomial filter with a specified
number of zeros at .

2) Find its minimal-length complementary filter by
any of the techniques available. See [9] for a closed-
form expression to the filter complementary to the
binomial filter. Once is found, determine

.
3) Calculate for all possible factorizations of

such that and both satisfy the
regularity condition. If the minimum value is suitable,
stop here.

4) If a smaller error is desired, increase the degrees of
freedom via Proposition IV.1. Starting with ,
optimize w.r.t. , and factor subject
to the constraint of the regularity condition. If the
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Fig. 6. Translation errorE( 1
2
) for all valid factorizations of the D8 auto-

correlation sequence.

resulting minimal value of for this value of
is not acceptable, increment by one, and repeat
the optimization and factorization procedure until the
translation error is acceptably small.

Although the PRFB constraint is independent of how the zeros
of are factored, the expression for is not. On
the contrary, experimental results have shown considerable
differences in the translation error for different factorizations.
This is demonstrated in Example 1 below.

This factorization problem, as well as the eigenvector prob-
lem in (33), make it difficult to express and, hence,
directly in terms of the parameters . If, however, the
problem statement were different and we were given ,
or if was selected according to some other criteria, as
in [11], then the problem would be reduced to finding only

to minimize . In this case, the combinatorics of
factoring the zeros of between and and the
eigenvector problem are avoided because is now fixed,
and the translation error and its gradient can be expressed
explicitly in terms of the unknown parameters .

D. Design Examples

Example 1: We demonstrate the effect of assigning factors
to and on . The translation error is
affected by how the factors of are assigned to and

. We demonstrate this effect by starting with
, which is the autocorrelation sequence of

the Daubechies D8 coefficients. We calculate for each
valid factorization of such that and satisfy
the regularity condition in [25, Prop. 3.3]. Fig. 6 shows the
translation error for each valid factorization of
plotted in descending order. Factorizations 9 and 10 corre-
spond to the orthogonal cases where
with , whereas the optimal factorization w.r.t.

has a translation error of ; this is a 2-dB
improvement over the D8 scaling function. There are also valid
factorizations that produce very large translation errors, where
the worst is nearly 6 dB above . This example demon-
strates that the factorization of into and
has a profound effect on the resulting translation error .

Example 2: This example illustrates the design procedure
outlined in the previous subsection. We start with the same

Fig. 7. Translation errorE( 1
2
; �) for the optimal factorizations ofP (z; �)

as a function of�.

Fig. 8. Optimally robust w.r.t.E( 1
2
) scaling function (left) and its biorthog-

onal dual (right) from Example 2.

as in the previous example, which is the same as starting
with the binomial filter

and its minimal length complementary filter . Taking
and in (37) of Proposition IV.1, we

extend the length of the minimal length complementary filter

We determine the factorization that minimizes

into and for each value of .
Fig. 7 is a plot of as a function of . The optimal

value occurs at , and the
corresponding optimal scaling function and its biorthogonal
dual are plotted in Fig. 8. The discontinuities in are
due to two phenomena. First, continuously varyingdoes not
always correspond to a continuous trajectory of the roots of

in the complex plane. Abrupt changes in the zeros of
as a function of lead to discontinuities in .

The second is due to the fact that for each value of, we
are minimizing with respect to the factorization of

. Different factorizations can cause abrupt changes in
, as demonstrated in the previous example.
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V. CONCLUSION

We have described the issue of subspace representations that
are robust to translations of the input signal. We measured
robustness in terms of the mean square error in repre-
senting a signal and its arbitrary delays in terms of the integer
shifts of a mother function. We derived, in the Appendix,
expressions for this translation error under various bandlimited
assumptions, and for each case, we determined under what
conditions the translation error goes to zero. We also derived
a general expression for without imposing bandlimited
constraints.

We addressed the design of scaling functions with compact
support that are robust to translations. We are motivated
by the lack of translation invariance of critically sampled
dyadic wavelet transforms. We define and design the robust
scaling functions as the minimizers of . The strategy of
minimizing enabled us to express the error in terms only
of the coefficients of the two-scale equation. Taking advantage
of the parameterizations for orthonormal and biorthogonal
scaling functions with compact support, we proposed efficient
algorithms for finding scaling functions that are optimally
robust with respect to for a given length of support.
In future work, it will be important to determine under what
conditions on the scaling function, maximizes
and to extend our algorithms to the cases where the maximum
may occur at other values of the translation parameter. An
alternative is to extend the algorithms presented in the paper
to a different translation error metric like the integral of
in the interval [0, 1].

APPENDIX

BANDLIMITED ASSUMPTIONS

In this Appendix, we consider the effect of bandlimited
constraints on robust representations. Because bandlimited
constraints simplify the expression for the translation error,
we explore in this Appendix a more general version of the
problem presented in the main body of this paper.

Let be given. We consider the representation
of by translates of another function to be designed. In
general, we look for robust representations, i.e., for asuch
that the translation error of the representation

(39)

is small. We consider the case where, , or both are
bandlimited.

1) Bandlimited Subspace: Let be the subspace of
of bandlimited functions with bandwidth .

We normalize its bandwidth to the interval , i.e.,

for

where is the Fourier transform of .
In the discussions that follow, we examine the three combi-

nations of bandlimited assumptions: ; , ;
and , . For each scenario, we derive an expression
for the translation error and consider conditions onthat make

as small as possible.

A. Bandlimited and Bandlimited

We consider . We seek to see when

(40)

The Fourier transform of (40)

needs to be satisfied only for because of the
bandlimited assumptions on and . Hence, for a given

, we can represent the arbitrary translates by
if the ratio can be expressed as

the fundamental period of a Fourier series

(41)

If (41) holds, the error is zero. If we can choose, an
obvious choice is to pick . This shows that bandlimited
functions are translation invariant. A second possibility is

sinc . In this case, , ; therefore

or , which, due to the delay parameter,
is an extension of the sampling theorem [29]. Because of the
bandlimited assumptions onand , there is no aliasing, and
the general shiftability condition in (40) is satisfied.

Although the discussion is based on bandlimited lowpass
functions, the results can be extended to include bandpass
functions that are modulations of bandlimited lowpass func-
tions.

B. Bandlimited and Nonbandlimited

Let and . We derive an appropriate expression
for given by (39) and determine conditions onthat min-
imize the translation error for a given. Applying Parseval’s
Identity to (39), we have

(42)

where

(43)

The last term in (42) is the out-of-band energy inand is
independent of . It is fixed for a given , regardless of the
choice of . The first term in (42) is made zero by choosing,
like before in (41)

(44)
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If is given, this equation determines . If is to be
determined, a choice is

and

This corresponds to sinc . A second possibility is

and

The minimum obtainable is

(45)

Hence, for the case when is not bandlimited but is
bandlimited, there is a minimum error for the representation
of arbitrary translates of by the integer translates of. The
minimum error is given by (45), and the alternatives ofgiven
by (44) that achieve it are well understood.

C. Nonbandlimited and Bandlimited

Let and . The translation error becomes

(46)

where is given in (43). The first integral is made zero by
choosing to satisfy (44). Unlike the previous case, the
choice of now affects the second term as well.

Define the fundamental period of the periodic
and the tail of as

Define the energy spectral densities

and

(47)

Then, by application of the Schwartz inequality, we bound the
second integral in (46) as

(48)

(49)

where is the -norm, and is the -norm. A strategy
to minimize (46) is to choose and so that (44) is
satisfied is smooth, and the bound (48) is minimized.
Equation (48) goes to zero as the tails go to zero,
which implies that ideally, we want to be bandlimited. If is
constrained to be in some class of signals, for example, signals
of finite duration , then minimizing is a constrained
optimization problem. The desired should be the element
within the allowable class that is as close as possible to being
bandlimited.
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