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Scaling Functions Robust to Translations

Steven A. BennoMember, IEEE and Jo8 M. F. Moura,Fellow, IEEE

_ Abstract—The discrete wavelet transform (DWT) is popular when the entire input signal is uniformly shifted. If there
in a wide variety of applications. Its sparse sampling eliminates are components within the input signal that are translated

redundancy in the representation of signals and leads to efficient q|ative to each other, these representations do not provide
processing. However, the DWT lacks translation invariance. This iti f lated let fficient
makes it ill suited for many problems where the received signal is a superpositon of transiated wavelet coetncients.

the superposition of arbitrarily shifted replicas of a transmitted In [6] and [7], the authors present a method for choosing

signal as when multipath occurs, for example. wavelets that minimize the worst-case approximation error for
“The paper develops algorithms for the design of orthogonal and representing all signals in a class at some prescribed scale.

biorthogonal compact support scaling functions that are robust Specifically, they consider the frequency domaihclass. To

to translations. Our approach is to maintain the critical sampling btai licit It ial i de in 6
of the DWT while designing multiresolution representations for obtain more explicit results, a crucial assumption made in [6]

which the coefficient energy redistributes itself mostly within each  and [7] is that the signals being analyzed are bandlimited. The
subband and not across the entire time-scale plane. We obtain paradigm of our work is related to [6] and [7] in that we are

expedite algorithms by decoupling the optimization from the also minimizing the approximation error in representing a class
constraints on the scaling function. Examples illustrate that the ot fynctions. In our case, however, we consider the class of
designed scaling function significantly improves the robustness of]c ti ted by the t lati f ther functi
the representation. unctions generated by the translations of a mother function.
) _ _ _ We address the issue of translation invariance explicitly. In a
_Index Terms—Multiresolution, robust representations, shift-  genge, as we look for robustness to shifts of the same signal,
invariant scaling functions, translation invariant, wavelets. . .
our problem is more restricted than the more general problem
studied in [7]. However, by considering this more restricted
|. INTRODUCTION framework and attacking directly the shift invariance, we do

HE DISCRETE wavelet transform (DWT) is popular in Jot r_equire the bandlimite_d gssumption _to get explicit design
T wide variety of applications. Its discrete subband decorﬁlgorlthms. Indeed, bandl|m|te_d constral_nts represent §pe0|al
position allows for a coarse-to-fine multiresolution analysf@@S€S Of our work and are discussed in the Appendix. We
(MRA) of signals, and its sparse critically sampled dyadiebta'” explicit al_gorlt.hms by minimizing a translation error
grid is computationally more efficient to compute than thB1€asure at a midpoint. o ,
fast Fourier transform (FFT). It is precisely this sparse grid, OUr approach to the translation-invariance problem is to
however, that causes the DWT to fail to be invariant even #PPly the concept oshiftability to the DWT. A signalg is
translations of the input by multiples of the sampling perioghiftable [8] if and only if, given 7, there exists a set of
As the input is translated in time, coefficient energy from orfdnctions ax(r) such that
subband of the DWT escapes into other subbands, even though
the spectral content of the signal does not change. vreR: gt-7)= Z ar(7)g(t — k). (1)

Strang [1] has commented on the DWT's lack of invariance k

as a major drawpgck in us.ing.orthogonal wavelet transforrm%te that the coefficients,(r) are a function ofr and
in pattern recognition applications. Several approaches h% computed by inner products wiga(¢), which is a dual
been developeql to_addr_ess this_problem. One approach isf&ﬁction of g(t), so thatax () = (g(t—1), Gi(t)), where(, -)
use the translation-invariant continuous wavelet transform [%, the inner product. In other words, a functigft) is said to

but this_representation is highly redundant and compu_tationaﬂg shiftable if an arbitrary shift of(¢) by 7 can be represented
expensive. Another approach is to compute the dyadic waveg)?,ta linear superposition of its integer shiftg(t — &)} xe 2.

transform at the full sampling density and to extract a SUbSWhen (1) holds, the set of functiorg( — k)}rc z generates
of samples from the overcomplete representation to form 8hiftable representation

orthonormal representation [3]. In [4] and [5], a library of By designing a shiftable MRA, the efficient sparseness of
shifted basis functions is used to achieve translation invarian{:r(f:-e critically sampled dyadic grid is maintained, whereas the
These approaches, however, are translation invariant offefficient energy in each subband is invariant to translations
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instead of a two-dimensional (2-D) interpolation in the time- We note that in this paper, thiength of supportof the
scale plane. scaling functions is kept fixed. In [13]-[15], we design ro-

In general, however, (1) will not be satisfied, i.e., a functiobust representations with an arbitrarily small translation error
will not be shiftable. For example, it is not possible for &(7) at the expense ahcreasing the suppordf the scaling
function to be shiftable and to have compact support [Glnctions.

The goal of shiftable MRA's is realized under appropriate We now provide a brief summary of the paper. In Section I,
bandlimited conditions. We discuss these conditions, and, fee formally describe the problem of translation invariance
the cases where these conditions are violated, we relax the heamd robust representations. The section presents a general
constraint of shiftability and consider instead the design ekpression for€(r) that is valid for unconstrainegd(¢). In
robustsignals for which, in (1), we have approximate equalitthe Appendix, we gain insight into translation invariance by

The goal becomes the design of signaldor which the looking at special cases that involve bandlimited assumptions.
mean square error in representing their arbitrary shifts by ithie general translation error expression presented in Section Il
integer translates is small, i.e., for small arbitrarily chosea used as the basis for designing robust representations in the
6 > 0, robustsignals satisfy remainder of the paper. In Sections Ill and IV, we apply the

notion of robust representations to the DWT for the orthogonal
9 case and biorthogonal case, respectively. For each case, we
present an algorithm for designing robust scaling functions
that are optimal w.r.t£(3). Finally, Section V concludes the

(2) paper.

This translation error is a measure of the representation’s
robustnessto continuous translations. The design swaling
functions that minimize£(7) is a constrained minimization, . L
for example, scaling functions satisfy the two-scale equation'Ve develop the notions of shiftability and of robust repre-
constraint [9]. This constrained optimization problem is, i§€ntations. In the sequel, we will deal with which is the
general, difficult. To obtain explicit algorithms for designinget of integers,L*(R), which is the space of finite energy
robustorthonormal and biorthogonal scaling functions, rathdginctions defined on the real line, a#(Z), which is the set
than solving directly the problem in (2), we minimizg3), of finite square summable sequentgs: & & 7) indexed by
i.e., £() atT = 1/2. In our experience, and as also reportefi® integers. _
in the literature [3], [10], with many lowpass signals and 1) Representation Subspacket g € L*(IR). We associate
many scaling functions¢(%) is the maximum ofé(r) for with this ¢ Fhe following subs_pace? tha'F we refer to as its
0 <7 < 1so0 that in these cases, minimizifig ) does solve representatlorsubspace. The integer shlfteq verspng;@fre
(2). In general, we need to check that indeed, this holds; whgfitten asg(- — k) to emphasize that the integéris fixed.
it does not, our algorithms only design the scaling functioh"® representation subspages the closed linear span of all
that minimizesS(2). In the sequel, unless otherwise specifiedt€ger shifted replicas of, i.e.,
when we refer to the design abbustsignals, we refer to the

sup E(r) = sup < 6.

0<7<1 0<7<1

gt —=7) = > ar(r)g(t — k)

k

Il. ROBUST REPRESENTATIONS

minimization of £(3). G =spar{g(- — k)} 3
We will consider the design of robust scaling functions .

(usually represented in the literature by the symfjohamely, - {f: f= Z Frg(- — k) with the sequence

the design of robust orthonormal and robust biorthogonal K

scaling functions that minimize£($). In the orthonormal ke e 27 4

case, we seek functionsg(t) that are as robust as possible (fuskeZ)et(2) . @

with respect to (w.r.t.)¥(3) while satisfying the constraints
of orthonormality and the two-scale equation. By imposing (3) and (4), we have used the common notation of omitting
the additional constraint of compact support, we present e limits of the summation when summing over the set of
elegant strategy to take advantage of the parameterizatintegersZz.
by Zou and Tewfik [11] to find that scaling function whose Wheng is a scaling functionp, in multiresolution analysis
corresponding translation err6(3) is smaller than any other (MRA) parlance,G is the central space of the MRA usually
for a given length of support. In this sense, our algorithm findepresented by.
the orthonormal scaling function with compact support that is Clearly, the subspacé is invariant to integer translations,
optimally robust with respect to (w.r.té)(%). ie.,

In the biorthogonal case, we parallel the orthogonal case
but exchange the orthonormality constraint for the less strict if feg, thenvk e Z, f(-—k) €G.
biorthogonality constraint. Once again, we utilize a characteri-
zation of biorthogonal scaling functions with compact suppoktowever, for generay € L?*(IR) and arbitrary real valued
[12] to find the pairss(t) and ¢3(t) that are optimally robust nonintegerr € IR, we will usually have that the arbitrarily
wrt 8(%). We show that the extra freedom gained by goinghifted replicay(- —7) ¢ G. When, for arbitrary real valued,
from the orthonormal case to the biorthogonal case leadsdgio — 7) € G, the functiong is said to be shiftable. The next
more robust representations. paragraph introduces more formally the notion of shiftability.
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2) Shiftability: A function ¢ € L?(IR) is shiftable [8] if different metrics, in particular the gap metric [16], [17] or its

and only if generalizations [18].
Before we address the problem of designing robust repre-
VreR,  g(t—7)=) a(r)g(t—k).  (5) sentations, we compute, in the next subsection, an alternative
k form for the translation error, which will be useful in later

Equation (5) states that the arbitrarily shifted repliga— 7) sections.

is in the representation subspage

We note that the integer translatesggpan theG but are
not necessarily orthogonal. Therefore, the coefficients) We rewrite the translation error given by (6) in the Fourier
in the expansion (5) are usually computed with the help dbmain
a biorthogonal functiory [9], which is associated witlg. In
particular,a,(7) = (g, gr), where(., -) is the inner product  £(7) =
defined inG, ¢,(-) = g(- — 1), andgx(:) = g(- — k) is the kth
translate of the biorthoghonal.

In summary, the definition in (5) states that a functio
is shiftable iff its representation subspageis invariant to
arbitrary real valued translations € R, i.e.,

A. Translation Error

2

(7)

G(f)e 9297 - <Z f) ()
k

whered is the Fourier transform of. If the integer translates
I~?g(t — k)}xez are not an orthonormal basis &f it is well
known that the coefficient§a;} of the representation that
minimizes the translation error are computed by inner products

forany f € G and for anyr € R: f(- —7) € G. with the integer translates of a dual functigrof g, i.e.,

3) Robust Representationghere may be extra require- ag = / gt —m)gt — k)dt (8)
ments ong besides finite energy that prevent (5) from being _ (T_OO i) ©)
satisfied with equality, i.e.g from being shiftable. We intro- T\Eg LRI
duce thetranslation error =(E; G, ExG). (10)

2 In (9), 7 is the translation operatdf’ g = g(t — 7). In

E(r) = (6) (10), G is the Fourier transform of the dugl , and E. is
the modulation operatoE, G = G(f)ec72*/7, Writing (10)

- explicitly, and then invoking the Poisson summation formula,
where the explicit dependence®f on ~ has been dropped forWe obtain successively

convenience. When this mean square error is bounded above
by a small threshold > 0, the representation is robust to Zake*ﬂﬂf’“
translations. A reasonable design criterion is then to minimize %

glt—7) = arg(t— k)

supg<,<1 £(7). This, however, does not lead in general to +o0 . '
explicit algorithms without introducing additional constraints =/ G(w)G(w)e™72™T Zeﬂ?ﬂf_w)k dw
on the functiong, such as restrictings to be bandlimited; - k

explicit algorithms for the design of robust orthonormal and =
biorthogonal scaling functions, we consider a more limited
version of this problem. More precisely, the explicit algorithms = ¢ 927/ Z G(f + k)G(f + k)e 7277, (11)
developed in the next two sections design scaling functipns k

that minimize£(3). For many lowpass functions and many, (11), the sum on the right-hand side is identified as the Zak

scaling functions, we have experimentally observed, and Oﬂ?FarnsformZ _(f,7) of the productG(f)G(f) In general
G I - 1

see the Appendix as well as [6] and [7]. In order to obtain /+°<> —_—

G(w)G(w)e 92T <Z §(f—w+ k)) dw
k

— o0

authors have noted [3], [10], that the minimum mean square G . o

translation erro€(7) is maximum at- = 1/2. In other words, the Zak transform of a function(z) is given by (see [19])
the leakage of the signal energy to higher scale levels is Zn(z, y) = Zh(erk)e—jwak. (12)
a maximum when a signal that is an element of the MRA x

subspacé/|, = G is shifted by 1/2. Thus, for classes of scalin
functions for which the maximum of (+) does occur at 1/2,
it is sufficient to work with£(3) to characterize the behavior[zol' - : .

of the scaling functions under fractional translations, and ourSl“_'bSt'tu_tlng (11) and (12) into (7), we obtain, after some
algorithms do lead to theptimal robust scaling function that manipulation

minimizes the supremum & (7). If, for the class of scaling ) ! 2

functions, this is not true, then our algorithms only provide &) =llgll +/0 ‘ZGE(f’ T)‘ Zig=(f, 0) df

the scaling function that minimize§(3). In practice, once 1

we have designed &, we plot the value of£(r) for that ¢ - 2/ Zig(f, T)ZGE(f, 7) df. (13)

and verify that the maximum of(7) for 0 < 7 < 1 stays 0

below a desired thresholfl In work published elsewhere, weEquation (13) expresses, via the Zak transform, the translation
consider the design af under different setups [13]-[15] anderror in terms of the Fourier transforms of the autocorrelation

% similar object is also referred to as the Weil-Brezin mapping
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03 . — - . A. Minimax Design of Robust Orthonormal Scaling Functions
025k Let ¢(t) be a scaling functiochand V; its representation
| subspace, i.e.,
0.2}
T Vo = spar{¢(t — k)}rez. (15)
€ 0.15
& Becausey(¢) is a scaling function, it satisfies the two-scale
0.1f 1 equation
0.05} 1 P(t) = hup(2t — k). (16)
o . , . . k
0 0.2 0.4 0.6 0.8 1 . . . 1
DFI AY ~ (SF(C) Designing functionsy(t) to be optimally robust w.r.(5) to

translations is now constrained by the two-scale equation. In
other words, the design @f(¢) that minimizes the translation
error is constrained by (16).

the Optimization problems with functional constraints are hard.

Z%Eemfymg{hk} completely determines its corresponding scal-
ing function ¢(¢). References [11], [21], and [22] discuss
unconstrained parameterizatiofsfor all possible sequences
{h1(©)} that generate orthonormal scaling functions with

Fig. 1. Translation errof(7) for the Daubechies D8 scaling function.

function of ¢ and of the cross-correlation @f with its dual
g. In deriving (13), we made no assumptions regarding
dual except that it exists. Furthermore, we see that the
transform arises naturally in this error expression.

In the special case wherfgy(t — k)}rez is orthonormal,

9 = 9, and compact support. We follow Zou and Tewfik [11]. By express-
Zyqp(f, 0 Z |G(f + k)l ing the cost function in terms df;(©)} instead ofp(¢), we
can solve the optimization problem directly in terms of the
Equation (13) reduces to free parameter® = {6,} and drop the constraint imposed
by (16). Other authors [23], [24] who have addressed similar
E(r)y=1 —/ |Z|G|2 T | df. (14) design issues regarding scaling functions have found limited

success in expressing their cost functions directly in terms of

Equation (14) shows that for orthogonglfor eachr, £(r) is  only the two-scale coefficient§hs }.
given in terms of the integral along the frequency axis of the 1) Minimization Strategy:In the example seen in
magnitude square of the Zak transform of the energy spectgaction 11, the translation errdi(r) in the intervalr € [0, 1]
density of g. Intuitively, from (14), we see that the erroris a concave downward function symmetric abeut= 1/2,
E(7) is smaller when|Zz(f, 7)| is less dependent on. where it attains its maximum value. This suggests that we
In [15], we have developed algorithms that iteratively reshapevelop a strategy to minimize the translation eifdr) at
|Z\cp2 (f, 7)| to designg with small £(7) and present figures - = 1/2. By restricting attention t&€(3), we can express
that illustrate tha{Z=(f, 7)| tends to become independent (1) in terms of the coefficients of the two-scale equation
of 7. only. We can then take advantage of the unconstrained

Fig. 1 is a plot of the translation error for the Daubechigsarameterization mentioned above to develop an algorithm
D8 scaling function. The error is zero when= 0, 1, which that designs orthonormal scaling functions that minimize
corresponds to the scaling function being perfectly aligne‘ﬁ{%).
with the lattice. When the scaling function is shifted halfway 2) Cost&(3): We first derive an expression for the transla-
between grid points, the translation error attains its maximugion error £(7) at 7 = 1/2 for orthonormal scaling functions.
value of 0.255, i.e., 25.5% of the coefficient energy escapest ¢(¢) be the orthonormal scaling function aril f) its
the representation subspa@efor D8 whenr = 1/2. Fourier transform. From (14), the translation errorat 1/2

In the next two sections, we reduce this error by aps
propriately choosing a scaling function that minimizes the
translation erroré‘(%) for a given filter length. In Section lIl, % =1 —/ |Z|<p|2 | df. a7)
we design optimally robust with respect to (w.r.€)3)
orthonormal scaling functions. In Section IV, we relax th@he Zak transform of a Fourier pai(t) and G(f) satisfies
orthonormality condition and look for optimally robust w.r.t. j2mr s
£(%) biorthogonal representations. Zag(f, 7) =" Zy(—7, f). (18)

This property enables us to relate the Zak transforriéf) |

to the Zak transform of its Fourier paf,(t), which is the
We now consider discrete wavelet transforms that are astocorrelation ofs(¢). Using (18) and the fact that,, is real

robust as possible ooptimally robustw.r.t. 8(%). We first and even, we obtain, for = 1/2

derive an appropriate expression for the translation error for ) )

orthonormal scaling functions at= 1/2 and then minimize |ZR¢, (%, f)| = |Z|<1>|2 (f7 %)| .

this translation error value within the class of orthonormal 1Scaling functions are usually represented in the literature byhich is

scaling functions with compact support. why we use in this section rather thary.

I1l. ROBUST ORTHONORMAL SCALING FUNCTIONS
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Substituting this into (17)&(

e=1-[

1 _ 12
=1 2}; |R¢(k + 2)| ’ (20) B. Robust O.N. Scaling Functions with Compact Support

) becomes that simultaneously satisfy the two-scale equation. All of the
5 degrees of freedom available in the minimax strategy for
—ion fk designing the scaling function can be dedicated to reducing
1\ ,—j2rfk
;RMI{ +3)e ¢ (19) £(%). We show how to do this next.

1
2

] ) . MRA's based on compactly supported wavelets are compu-
Equation (20) expresses the translation efi¥) in terms of y4tionally efficient. Daubechies [25] was the first to provide
the samples Ry (k + 3)}. _ _a characterization of all orthonormal compactly supported
We now relate the samples of the autocorrelation functiQajing functions in terms of the coefficients of the two-
Ry(k+ ;) to the coefficients of the two-scale equation. SinCg:ale equatior,, }. Alternative parameterizations are in [11],
R,(t) is the autocorrelation function of the scaling functloT21], and [22]. We use the results in [11] that provide an

¢(t), it also solves the two-scale equation unconstrained parameterization of thig,} in terms of a set
Ry(t) = %Zh%}%(% —n) 1) of angle_s@ = {9i}. We apply1 this pa_rameterizatior_1 _to the
— expression found in (23) fof(3). In this way, the difficult

s . o Froblem of finding robust functions that minimiZ¢3) subject
where{h;,} is the autocorrelation sequence of the coefficients the constraint of satisfying the two-scale equation becomes
from the original two-scale equation that determig¢s), i.e.,

an unconstrained parameter optimization problem.
Bo— Z BBk 1) Robust Compact Support O.N. Scaling Functiodsu
" " and Tewfik [11] provide a parameterization for all possible

orthonormal scaling functions and wavelets with a given length

Using (21) to expres®,(k + 3), we have 2N. The coefficients;, are functions of sines and cosines of
angles® = {6;}. It is easy to express the autocorrelation

Ry(k+3) = %Zh%}%(% +1-n) sequence%(i)) ];;15 a function of@. In turn, the maximum
" translation erro€(1) in (23) becomes
Since{¢(t—k)}rc z are orthonormal, we have successively

1 —1_1 / 2
R¢(2/€ +1-— n) :52k+1,n 8(2’ 6) 1 1 zk: |h2k+1(@)| (25)

Ry(k+ %) =3hhpa:- (22)
¢( 2) 272k where we have indicated explicitly the dependenced.omhe
In other words, the sampleB,;,(k + %) are equal to the odd gradient with respect t® is

samples of the autocorrelation sequencé/qf} divided by 2.
Substituting (22) in (20), we obtain, for the translation error ~ Ve&(3, ©) = -1 Z Ry 1(©) Vel 1(O). (26)
k

2
E(3) =1- 3D Moy (23)

k The examples that follow show that for a givew, it is
relatively straightforward to find closed-form expressions for
ﬁ?) and (26). These are then used in optimization algorithms,
ike gradient descent, to find the minimal value &f3, ©).

1 : o
We now investigate what constraints, if any, the two—sca| gener:lzll,g(ﬁ,_@) may have rgulnple local mlnlmg, andd q

equation (16) imposes on the odd samples of the autoc:t ¢ usua tt(ra]ctrllr(]]ues t(e.g.,fran cim r.;e;tarft.s)dm?g ebnelete

relation sequencdhy,, }. Let H(z) = ¥, hoz—* be the (© ensure that the optimization algorithm finds the absolute

Z-transform of the sequenchy}. Similarly, let B/(z) = Minima.

H(z)H (=) be the Z-transform of{#/ }. Recall from [25] flTinaII)r/], i;tvshould bebnoted]c tr:]at sir;%e the valid secfmlencehs
that {¢(t — k) }re z being orthonormal is equivalent td'(z) of length 2/ are a subset of the valid sequences of lengt
satisfying 2(N 4 1) (recall that all valid sequences are of even length),
then in a trivial way, the minimal valug; v, ,(3) < &5y (3)-
H'(z) + H'(—z) = 2. (24) In other words, the minimum erraf*(%) is monotonically
The left-hand side of (24) is an even polynomialzinwhich decreasing with the_ humber of coe_ff|C|ents. Consfequently_, we
pect that the minimum error attainable by scaling functions

is constrained to equal a constant equal to 2. Since (24), ~ . . . . o
. , . with infinite extent in the time domain will have a smaller
involves only the even samplgg,, }, the orthogonality of . . . : .

- 2k error than is possible by any scaling function with compact

the scaling function is equivalent to constraining all of thé . )
even lags of the autocorrelation sequer(dd} to be zero fsupport. Indee.d, we have demonstrlated that the sinc function
except for the zero lag, which equals the energy@). On is perfectly shiftable in the Appendix.

the other hand, the two-scale equation does not constrain the

odd lags{/};}, which, by (20), completely determine theC- Design Examples

translation erroE(%). This states that there is no fundamental In this section, we present results of the theory developed in
conflict in designing orthonormal functions minimizigy3) the previous subsections. We consider first scaling functions

The error is expressed in terms of the energy of tul
samples of the autocorrelation sequence of the coefficie
{h} of the original two-scale equation.



3274 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 12, DECEMBER 1998

TRANSERROR versions of the same filter because they have the same au-
N tocorrelation sequence. The value ®f= 57/12 coincides
with the Daubechies D2 scaling function [25].
2) Two Parameter CaseThe length-6 sequence is param-
eterized by® = {6y, 6-}, which is given by
ho 1 1-1-1 1 -1 -1 1 -1
hy 1 -1 1-1 1 1 -1 -1 -1
ha| {12 0 0 2 0 2 0 -2 2
ha| 42 0 0 2 0-2 0 2 2
hy 1 -1 1 -1-1-1 1 1 -1
hs 1 1 -1 -1-1 1 1 -1 -1
_ 1 i,
03 ; ; ; ; H i ; i i COS(QI)
[+] 0.05 0.1 0.15 0.2 Mgngl) 0.3 035 04 045 05 cos ( 92)
Fig. 2. Maximum translation erro‘f(%, #) for the single parameter case. COS(Q_I) COS(QQ)
sin(f;)
with N = 2, which are parameterized by one parameter and Sm(e,l) cos(62)
then with NV = 3, which are parameterized by two parameters. sin(6>)
1) Single Parameter Caseln this example, we use the cos(fy) sin(62)
parameterization for the four coefficient scaling function. From Lsin(f;) sin(62) |

[11], all length-4 sequences are given by

ho,1 =V'2 sin 0 sin(f T 7 /4)

and the odd terms of its autocorrelation sequence are

hi 10 0 4 4 4 -2 —4 -2 2
ha, 3 =2 cos 0 sin(f + 7 /4) A :% 5 —4 -2 -2 _2 1 6 1 -3
. . . 1 -2 4 -2-2 1-2 1 1
where ¢ is the unconstrained free parameter, and the coef- h ) )
ficients are normalized so th3t, hx = 2. £(3) is given 1
by the energy in the odd coefficients of the autocorrelation cos(61)
sequence of 2 }. Taking advantage of the autocorrelation’s cos(fz)
even symmetry, we calculate only the positive odd terms cos(fy — 6)
Wy =3+ % sin(26) + § cos(46) : COS(QEQZ fz)
Wy =1 —1sin(20) — L cos(46). costety
s ® cos(26; — 69)
The error is given by the trigonometric polynomial cos(262)
E(L,6) =1—2[|KL(O) + |5 (0)]?] Lcos(261 — 26,) |
=15 — § sin(26) — § sin(66) — 35 cos(86) from which its gradient can be calculated. Fig. 5 shows the

. - ) _ error surface for this example. Black and white correspond to
and IS shown in Fig. 2 foé € [0, 7/2]. Th? SC,a"”Q functions large and small values &f(3), respectively. The minimizing
for this range oft are smooth. Wg provide in F.IgS. 3 and _ASequences are f = (0.38, 1.64) and (1.64, 0.38), which
several scaling functions and their corresponding tranSIa“eBrrespond to the light spots in the upper-left and lower-right

functions £(7). These£(r) all exhibit a concave behavior ners of Fig. 5, respectively. These correspond to time-
with the maximum occurring af(3). We are not stating, yoyersed versions of the same sequence. The minimum value
however, that this is true for every scaling function. A closeqz - 1,4 two-parameter casedg (L) = 0.226, which is smaller
form expression for the derivative of the error is readily foun{;}]&m £1(L) = 0.359 from the sir%gle pararr,leter case

4\2/ — V- .

to be Clearly, as N increases, the closed-form expressions for
dé (%, 0) 1 3 1 . {n},} and £(3) quickly become tedious but are otherwise
= —7 cos(26) — 1 cos(66) + 1 sin(86). straightforward and easily computed numerically by software

de 4
. . . packages like Matlab or symbolically with the help of Maple
Its zero crossings are candidates for local minima of thg mathematica.

shiftability erroré‘(%, ). Alternatively, the gradient can be
used in numerical methods to find the valué dfiat minimizes
£(L). First, notice thaté(3, 6) has multiple maxima and
minima, and care must be taken to ensure that an absolute
minima is found. Second, the absolute minima occurs at twoln the previous section, we used the parameterization of

values ¢ = = /12 and 57 /12) that produce time-reversedcompactly supported o.n. scaling functions to design o.n.

IV. RoBUST COMPACT SUPPORT
BIORTHOGONAL SCALING FUNCTIONS



BENNO AND MOURA: SCALING FUNCTIONS ROBUST TO TRANSLATIONS 3275

. Scaling Function (theta = 0.2800 Pi) Scaling Function (theta = 0.3280 P})
M T T T T 25 T T T

[} 05 1 1.5 2 25 3 “o 05 1 1.5 2 25 3
time (t) time (t)
Scaling Function (theta = 0.3520 Pj) Scaling Function (theta = 0.4167 Pj)
25 T T v T T 14 T ; T v ;

time {8 time (8

1 T T T T T T v T T 21:
0.9 k|
08 1 32
(4]
A -
2

0 1!/ o 2 21t
A4

Fig. 5. Maximum translation errof?(%,, {61, 6>}) for the two parameter
0.7 08 0.9 1 case.

04 05 06
DELAY (SEC)

Fig. 4. Eighte(7) curves for scaling functions corresponding to different - ; ;

6 values. From top to bottom? = 0.2567; § = 0.287; § = 0.304m; Requiring a CgmpaCtly SUP_p(_)rted scaling functlc_m_to be

6 = 0.3287; 6 = 0.352m; 6 = 0.376m; 6§ = 0.47; 6 = (5/12)7. orthonormal is highly constraining. For example, it is not
possible to have one that is symmetric. Dropping the orthonor-

mality constraint, we have greater freedom in designing a

scaling functions with compact support that minimigel ). scaling function and its nonunigue biorthogonal dual to satisfy
Key to our development was the strategy of expressing tAaultiple design criteria. Because nonorthogonal representa-
translation erroré?(%) in terms of the odd samples of thetions are redundant, the redundancy will allow for more robust
autocorrelation of the coefficients of the two-scale equation. ¥apresentations. This is supported by the following trivial
this section, we extend these results to the case of biorthogoagument. Since o.n. scaling functions are contained within
scaling functions. the class of biorthogonal scaling functions, the minimum
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translation error obtainable by a biorthogonal representation = % lelier_liikl (31)
is at least as small as the minimal value obtained by an k1
orthonormal representation, i.65;(3) < £x.(3), where&* =Llpna (32)

represents the minimal value &ffor a given length of support.

where{ps1—1} are the odd coefficients of the cross-correlation

sequence betweefih;} and {h;}. Hence, R ;(k — ) is

. .readily expressed in terms &h;} and {h;}.
The approach for the blorthogqnal case pgrallels the mini 2) R,(k) and R,(k — 1) and the Two-Scale Coefficients:
max strategy for the o.n. case. First, we derive an expressign 1 2 :
1 fis(k) and R,(k — 5) can also be calculated in terms of
for the error atr = 5 and then demonstrate how each termt\ﬁO 2

that expression can be expressed directly in terms of the h—’“.}. in a straightforward way. We assume th.} is .
e{sflmte sequence. As seen before in (21), the correlation

scale coefficients that determine the scaling function and . L ’ .
, . : . . iunctlon R, (t) satisfies the two-scale equation. We find the
dual. Without loss of generality, we restrict the discussion 10

. : . Integer sampledi,(n) following the algorithm outlined by
the spacéd/} given in (15) generated by the integer translat . ) )
of ¢(t). Starting with the definition fof(%), we have e§’trang [1]. A scaling function)(t) with support ont &

(0, 2N — 1) is defined via the two-scale equation by a se-

2 quence{hy} of length2N. The corresponding autocorrelation
function R, (t) has support ort € (—(2N — 1), 2N — 1),
and {h}} has length4N — 1. Define R, = [R,(2N —

“ Ry(1)Ry(0)Ry(1) -+ Ry(2N - 2)]" and

A. Maximum Translation Error for
Biorthogonal Scaling Functions

£(1) - Hw— =S et )

The {¢; } are found by inner products with the biorthogona%) ’
dual {&(t — &)}
- hy A hy O 0O O

_ W d ) — B (n L
Ck—<¢(t_§)7¢(t_k)>_R¢¢(k_§)' H =1 - hy By Ry O 0 O -
The functionR,;(7) is the cross correlation betwegnand o hy by By O -

its biorthogonal duatp. Substituting this into the expression
L : .
for £(3) and expanding, we obtain The integer values oR,(t) can be expressed as

() =117+ DY Ryalbe — 3) Ryj(kz — 35) R, = HR,. (33)
k1 ke
Ry(ky — k) — QE:RM(/€ — DRy (k- 1). (27) Matrix H' is (2(_2N—2)_+ 1) x (2(2N —2)+1). The_equation
& shows thatR,; is the eigenvector ofl’ corresponding to the

eigenvalue 1. Once the integer samples of the autocorrelation
unction are known, the half integer samples are found by
[f%rating the two-scale equation once and subsampling to keep
&rg}/ the odd samples

In (27), Ry is, like before, the autocorrelation functio
of ¢(t). In the special case of the previous section, whe
{o(t — k)}rez are orthonormalR 5 = Re, Rg(ki — k2) =
0., 1, and the above expression becomes the same as
derived in (20). ) R _1y_1 W R —1—k 34

Next, we take advantage of the fact tiaand¢ each satisfy +(n=3) 22,; Kt (2n ) (34)

a two-scale equation
Hence, by substituting the results of (32)—(34) into (27), the

B(t) =Y hap(2t — k) translation error at the midpoigi(1) is expressed directly in
k terms of the autocorrelation and cross-correlation sequences
P(t) = had(2t — k). (28) of the coefficients of the two-scale equations for the scaling
& function and its dual.

We use these equations to reldtg}) to the coefficientg .}

an(lj)%k}@ 1) and the Two-Scale Coefficienttlsing th B. Review of Perfect Reconstruction Filter Banks
s5(k2 — 3) and the Two-Scale Coefficienttising the 1y

definition of a cross-correlation function, the two-scale equa—NOW that we know how to expres¥(3) in terms of {7 }

tions satisfied bys and ¢, and the fact thaty and ¢ are and {I}, we need a characterization of all valid sequences
biorthogonal, R , (k2 — 1) becomes {hx} and {h;} that lead to a biorthogonal multiresolution
L 2

analysis. Extensive work has been done on this subject by con-

e ~ necting MRA's to perfect reconstruction filter banks (PRFB'’s)
Ryp(k—3) = /_Oo St + k= 3)o(t) dt (29) [12], [25], [26]. The following is a summary of the relevant
. results.
=300 iy, /¢(2t +2k—1— k) In order for two sequence§i;} and {/;} to generate a
ki ks biorthogonal multiresolution, they must satisfy two conditions.

P2t — ko) dt (30) The first is the regularity condition that each sequence must
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satisfy in order to guarantee that the infinite products 2(m — 1) of the form
i—1 m—1
. 1 w2 —2i

@) = Jim || 5 HE) B(z) =) iz (38)
k=1 1=0

. o=l )2t The parametek changes the location of the single nonzero

(w) = ihj{}o H 9k Hie ) (35)  even coefficient, whereas increasing increases the length
k

=1 of the new complementary filteH* (). Hence, Proposition

both converge pointwise to continuous functions. The reguldM.1 provides a characterization of all possible higher order
ity condition given in [25] for orthonormal scaling functions iscomplementary filters.
applicable to the biorthogonal case. Reference [27] providesFrom (36), it follows that any valid polynomiaP(z) that
two different regularity conditions adapted for biorthogonadatisfies (36) can be factored intfY z) and its complementary
scaling functions. Convergence of (35) depends, in part, &ifler H(z) to produce a PRFB. Equation (36) depends only
both filters H(z) and H(z) having a sufficient number of on the product of the two filters; therefore, we have additional
zeros atz = —1. design freedom in the way the zeros B{~) are assigned to

Assuming H(z) and H(z) are sufficiently regular, the either H(z) or H(z), as long as our factorization yields two
second condition we impose is that the limiting functions dflters that are sufficiently regular to allow (35) to converge.
(35) are biorthogonal to each other, which is equivalent to
requiring C. Robust Biorthogonal Scaling Functions
with Compact Support

. Using (27) and (32)—(34) to express the error in terms
The sequencépy } corresponding td’(z) = H(z)H(z~ ') is of the coefficients of the two-scale equations in (28) and

H(»)H(z )+ H(—2)H(—»"1) =2. (36)

the cross-correlation sequence betwgép} and {7 } with the above characterization of the biorthogonal two-scale
. coefficients, we are ready to design representations that are
e = Z Pegnlin optimally robust w.r.t.£(3).

The previous subsection provides a method for finding

whose odd terms appear in (32). Analogous to (24) for t@mplementary filters when we agiven H(z), but given a
orthonormal case, (36) constrains only the coefficients of tgean slate, how should we commence? Since we require both
evenpowers inP(z) to equal zero except for the zeroth lag# (z) and H(z) to converge to a scaling function according
which is constrained to equal 2. Since the expression in (2P)(35), @ minimum number of zeros at= —1 is required.
for £(%) depends onR,;(k — §) = 3pa_1, i.e., theodd Hence, by choosing(z) = Hy(z) = 2((1 +27h)/2)N, ie,
coefficients of{py. }, there is no conflict in designing optimallythe binomial filter, we are guaranteed that our system will
robust w.r.t.£(3) functions and satisfying the constraints fofontain a minimum number of zeros at= —1. Because we
constructing biorthogonal scaling functions. are free to assign the zeros Bfz) = H(z)H(z7") to H(2)

1) Parameterization of Biorthogonal Scaling Functions@nd H(z~*) as desired, without fear of destroying the PRFB
Equation (36) is a special form of a Bezout identity. Given ori@operty, we can divide the zeros at= —1 betweenH ()
of the filters, say,H(z), the minimal length complementaryand H(z) to satisfy the regularity condition. Proposition 4.4
filter can be found by continued fraction expansions (Euclidi§ [12] guarantees the existence of a complementary filter to
algorithm) or by solving a system of linear equations [28]. Th&e binomial filter so that this starting point is guaranteed to
complementary filter is not unique. After solving for a valicProduce a valid PRFB.
minimal length complementary filter, we can parameterize all 1) Robust Biorthogonal Scaling Function Desigithe pro-
other complementary filters with increased length using ti§@dure for designingd(z) and H(z) in order to minimize

procedure presented in [12], which we outline now. £(3) is as follows.
If there exists a polynomiali(z) such that 1) Define an initial binomial filterH, (=) with a specified
o S number of zerosV at » = —1. R
H(2)ARE) + H(=2)A(=27") =0 2) Find its minimal-length complementary filtéf,(2) by

any of the techniques available. See [9] for a closed-

then we can define a new complementary filter b
P y y form expression to the filter complementary to the

H*(z) = H(z) + A(z) binomial filter. Oncef, () is found, determine(z) =
o . iy Hy(2)Hy(2).
that st_lll satisfies (36). '_I'he_ following proposition adapted from 3) Calculateé‘(%) for all possible factorizations aP(z) =
[12] gives a characterization fod(z). H(z)H(z) such thatH(z) and H(z) both satisfy the

Proposition IV.1: All filters of length N + 2m — 2 that are

, regularity condition. If the minimum value is suitable,
complementary to a length- filter H(z) have the form

stop here.
Ifl*(z) _ Z72k£~[(z) + 2 LE(x)H(-2) (37) 4) If a smaller error is desired, increase the degrees of
N freedom via Proposition IV.1. Starting witl = 1,
wherek € {0, 1, ---, m}, H(z) is a length’V — 2 comple- optimize £(3) w.r.t. {3;}, and factor P(z) subject

mentary filter, andE(z) = E(—z) is a polynomial of degree to the constraint of the regularity condition. If the
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FACTORIZATION COMRINATIONS

Fig. 7. Translation errof(%; ) for the optimal factorizations oP(z; 3)

Fig. 6. Translation errof(%) for all valid factorizations of the D8 auto- 54 5 function of 3.

correlation sequence.

resulting minimal value of(%) for this value ofm 0.8 2
is not acceptable, increment by one, and repeat
the optimization and factorization procedure until the 0.6 15 F
translation error is acceptably small. 1
Although the PRFB constraint is independent of how the zeros 04
of P(z) are factored, the expression féi(3) is not. On 0.5
the contrary, experimental results have shown considerable 92 0
differences in the translation error for different factorizations. JU
This is demonstrated in Example 1 below. 0 0.5
This factorization problem, as well as the eigenvector prob-
lem in (33), make it difficult to expres&, and, hence& (%) =02, 5 0 Yo 10 20
directly in terms of the parameters3;}. If, however, the TIMF (SFC) TIMF (SFC)

prqblem statement were dlﬁere.nt and we were glﬁfk).' Fig. 8. Optimally robust w.r.tf(%) scaling function (left) and its biorthog-
or if H(z) was selected according to some other criteria, @sal dual (right) from Example 2.

in [11], then the problem would be reduced to finding only
H(z) to minimize £(1). In this case, the combinatorics of ) , . .
factoring the zeros of () betweenH (=) and H(») and the P'(z) as in .the previous example, which is the same as starting
eigenvector problem are avoided becausg) is now fixed, with the binomial filter

and the translation error and its gradient can be expressed 14 271\®
explicitly in terms of the unknown paramete{s; }. H(z) = 2( 2 )

D. Design Examples and its minimal length c02mplementary filte, (z). Taking
Cxampe ;e demonsiate te et o assining aco o) SROEC) L (L5 D n G of bropoaton e
to H(z) and H(z ') on £(1). The translation erro£(1) is 9 9 P y
affected by how the factors dP(z) are assigned téf(z) and H (% B) = 2 2Hy(2) + 2 Y1 + B2 ) Hy(—2).
H(z~1). We demonstrate this effect by starting wit{z) =
Hps(2)Hps(2~1), which is the autocorrelation sequence ofVe determine the factorization that minimiz&é; )
the Daubechies D8 coefficients. We calculdtg)) for each b g1,
valid factorization of P(z) such thatH(z) and H(z) satisfy Pz f) = B Hi(="" )
the regularity condition in [25, Prop. 3.3]. Fig. 6 shows thinto H(z; 3) and H(z; /3) for each value of3.
translation error£(3) for each valid factorization ofP(z) Fig. 7 is a plot of£(3; 3) as a function of3. The optimal
plotted in descending order. Factorizations 9 and 10 corfgalue £*(3; 8) = 0.0694 occurs at3 = —18.56, and the
spond to the orthogonal cases whéféz) = H(z) = Hpg(#) corresponding optimal scaling function and its biorthogonal
with SDS(%) = 0.255, whereas the optimal factorization w.r.t.dual are plotted in Fig. 8. The discontinuities&r@%; B) are
£(1) has a translation error @*(3) = 0.140; this is a 2-dB  due to two phenomena. First, continuously varyihdoes not
improvement over the D8 scaling function. There are also valiivays correspond to a continuous trajectory of the roots of
factorizations that produce very large translation errors, wherg(z; 3) in the complex plane. Abrupt changes in the zeros of
the worst is nearly 6 dB abovg*(3). This example demon- P’(z; ) as a function of? lead to discontinuities if'(%; 3).
strates that the factorization @?(z) into H(z) and H(z~!) The second is due to the fact that for each valugipfve
has a profound effect on the resulting translation eﬂ@). are minimizing 8(%; ) with respect to the factorization of
Example 2: This example illustrates the design procedur®’(z; /3). Different factorizations can cause abrupt changes in
outlined in the previous subsection. We start with the sand¢3; 3), as demonstrated in the previous example.
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V. CONCLUSION A. g Bandlimited and: Bandlimited

We have described the issue of subspace representations thdfe considerh, g € B. We seek to see when
are robust to translations of the input signal. We measured
robustness in terms of the mean square efir) in repre- vr e, h(t—7) =) arg(t—k). (40)
senting a signal and its arbitrary delays in terms of the integer k
shifts of a mother function. We derived, in the AppendixThe Fourier transform of (40)
expressions for this translation error under various bandlimited
assumptions, and for each case, we determined under what H(f)e 9277 = <Z ake—ﬂwfk) G(f)
conditions the translation error goes to zero. We also derived T
a general expression f&(7) without imposing bandlimited .

constraints. needs to be satisfied only foif| < 5 because of the

We addressed the design of scaling functions with comp&@ndlimited assumptions oh and g. Hence, for a given
support that are robust to translations. We are motivatédE B, We can represent the arbitrary translak¢s — 7) by
by the lack of translation invariance of critically sampledd(t — k)}rez if the ratio H(f)/G(f) can be expressed as
dyadic wavelet transforms. We define and design the robdRg fundamental period of a Fourier series
scaling functions as the minimizers 6f%). The strategy of ' —j2nfr
minimizing £(1) enabled us to express the error in terms only [fI< %, > ape I = % (41)
of the coefficients of the two-scale equation. Taking advantage k
of the parameterizations for orthonormal and biorthogongl 41) holds, the erro(r) is zero. If we can choosg, an
scaling functions with compact support, we proposed efficieghyious choice is to pick = h. This shows that bandlimited
algorithms for finding scaling functions that are optimallyynctions are translation invariant. A second possibility is

robust with respect t&€(3) for a given length of support. g(t) = sind®). In this caseG(f) = 1, |f| < 1/2; therefore
In future work, it will be important to determine under what

conditions on the scaling functios, £(3) maximizes€(r) VfeR, > are ¥ * = H(f)e 27> 8(f + k)
and to extend our algorithms to the cases where the maximum k k
may occur at other values of the translation parametekn . ax(r) = h(k — ), which, due to the delay parameter

alternative is to extend the algorithms presented in the PaREL  extension of the sampling theorem [29]. Because of the
Fo a different translation error metric like the integral&fr) bandlimited assumptions anand, there is no aliasing, and
in the interval [0, 1]. the general shiftability condition in (40) is satisfied.

Although the discussion is based on bandlimited lowpass
functions, the results can be extended to include bandpass
functions that are modulations of bandlimited lowpass func-

In this Appendix, we consider the effect of bandlimitedions.
constraints on robust representations. Because bandlimited
constraints simplify the expression for the translation erroB. ¢ Bandlimited andk Nonbandlimited
we explore in this Appendix a more general version of the
problem presented in the main body of this paper.

Let » € L*(IR) be given. We consider the representatio
of h by translates of another function to be designed. In
general, we look for robust representations, i.e., fgr such
that the translation error of the representation 00

o=/

APPENDIX
BANDLIMITED ASSUMPTIONS

Let g € Bandh ¢ B. We derive an appropriate expression
for £(r) given by (39) and determine conditions gtthat min-
[ize the translation error for a giveln Applying Parseval’s
Identity to (39), we have

H(f)em 7207 <Z f) G(f)
k

B / |H(f)e 727 — A(HG(f)P df
|fl<1/2

2

df

2

—o

E(r) = (39)

h(t—7)— Zakg(t —k)

is small. We consider the case whehg ¢, or both are

bandlimited. n / \H()2 df (42)
1) Bandlimited Subspads: Let 5 be the subspace of lf1>1/2

L?(IR) of bandlimited functionsz(¢) with bandwidth 7.

We normalize its bandwidth to the intervat 3, 1], i.e.,

B={a(t): X(/)=0 for|f]>3} A(f) = zkj ape Ik, (43)

wf;erngf) Is the Foarie]rc tlrlansform Gf(t).' he th The last term in (42) is the out-of-band energy/inand is
n the discussions that follow, we examine the three COml%'dependent ofZ(f). Itis fixed for a givem:, regardless of the

nations of bandlimited assumption's; g € B g € B, h ¢ B, cpp5ice ofg. The first term in (42) is made zero by choosing,
andh € B, g ¢ B. For each scenario, we derive an expressiqfla pefore in (41)

for the translation error and consider conditionsydhat make '
E(r) as small as possible. Ifl< 3. ASHG) =H(f)e >, (44)

where



3280

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 12, DECEMBER 1998

If ¢ is given, this equation determine$(f). If ¢ is to be where||-||4 is the Ls-norm, and|-|| is the L,-norm. A strategy
determined, a choice is

If1 < 3,
2

G()=1 and A(f) = H(f)e 72",

This corresponds tg(¢) = sind¢). A second possibility is

Ifl < 3,
2

G(f)

The minimum obtainabl&€(r) is

H(f) and A(f)=e 277,

to minimize (46) is to choosel(f) and G(f) so that (44) is
satisfied A(f) is smooth, and the bound (48) is minimized.
Equation (48) goes to zero as the tafis(f) go to zero,
which implies that ideally, we wantto be bandlimited. Iy is
constrained to be in some class of signals, for example, signals
of finite duration7’, then minimizing&(r) is a constrained
optimization problem. The desired¢) should be the element
within the allowable class that is as close as possible to being

gmin T)= 2d .
(1) /|f|>l/2|H(f)l 7

Hence, for the case wheh is not bandlimited butg is
bandlimited, there is a minimum error for the representatiorﬁl]
of arbitrary translates ok by the integer translates gf The
minimum error is given by (45), and the alternativeg @fiven
by (44) that achieve it are well understood.

(2]

(3]
C. g Nonbandlimited and: Bandlimited

Let g ¢ B andh € B. The translation errof () becomes

E(r) = / H()e207 — A(NG(I? df
[fl<1/2

(4]
(5]

L NG RCE (46)
lf1>1/2 (6]
where A(f) is given in (43). The first integral is made zero by
choosingA(f) to satisfy (44). Unlike the previous case, the
choice of A(f) now affects the second term as well.
Define the fundamental periad, (/) of the periodicA(f)

and the tailG,(f) of G(f) as (8]

A(f), Ifl <3
A(f) = f 9]
07 |f| > 2 [10]
0, If1<3
Gi(f) =
G, If1> 5 )
Define the energy spectral densities [12]
Ea, (f) =14,(H
Ec(f) =1G(H)I [t3]
and
[14]

Eg,(f) =1G(N)I*.

Then, by application of the Schwartz inequality, we bound thes)
second integral in (46) as

[ amrGwrd
[fI>1/2

(47)

[16]
_ / Ea (f)Ec,(f)df [17]
[fI>1/2
> / O B () Ee () df g
TS e T [19]
oo kt1/2 V2 p jg1/2 1/2
< < / Ea(f) df) < / Ea(f) df) (20}
k=1 \/k—1/2 k—1/2 [21]
— 1B+, (D] [1Ee. (Pl
— 1A (DIEIGHI2 (49)

(45) bandlimited.
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