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Abstract

In this paper we propose an identification algo-
rithm for ARMA processes. Given a finite lenght
sample drawn from an ARMA(po, go) model, the
technique provides the estimated values of the or-
ders py and qo, as well as the AR and the MA co-
efficients. They are obtained from the reflection co-
efficient sequence estimated directly from the data.
The order selection scheme is based upon the mini-
mization of a functional that measures the mismatch
of the data to any ARMA(p,q) assumed as its model.

Introduction

The estimation of autoregressive moving-average
(ARMA) processes has been an area of increasing
interest in the last few years. In contrast with the
linearity displayed by the AR processes, the ARMA
estimation is a nonlinear problem. Several optimiza-
tion techniques based on the Maximum Likelihood
method have been developped for the simultaneous
evaluation of the AR and the MA coefficients, 2],
[9]. These techniques require a large amount of com-
putation power and are not guaranteed to converge.

Several nonoptimal linear techniques have been
presented in a three step sequential procedure based
on the Modified Yule-Walker (MYW) algorithm,
(see e.g.; [6], [7], {9], [11]). Prior to the AR estima-
tion, obtained as the solution of a system of linear
equations, the data is processed by an autocorrela-
tion estimator. On the third step of the algorithm,
the MA coefficients are evaluated as a function of
the previously estimated AR component.

A common feature of these approaches is that the
estimated values of the MA coefficients depend on
the AR component estimation. Techniques explor-
ing the opposite dependence are presented in [3] 8],
[10], where, implicitly or explicitly, the sequential
estimation procedure starts with the MA compo-
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nent.

A dual algorithm for ARMA parameter estima-
tion has been proposed in [12], [13], [14]. The AR
and the MA components are obtained in dual, inde-
pendent procedures, as the solution of two systems
of linear equations. These procedures depart from
the reflection coefficient sequence estimated from
the data using the Burg technique, [5]. This lin-
ear ARMA estimation algorithm does not rely on
any sample autocorrelation estimator.

In any identification scheme going from data to
a model, the structure of the model (e.g., the num-
ber of poles and zeros) is to be determined prior
or within the estimation procedure. Two standard
criterions for model order selection of ARMA pro-
cesses, the AIC, [1] and the BIC, [2], [16], obtain
the number of poles and zeros as the pair (p,q) that
minimizes a functional that accounts for the residual
power and for the overparametrization.

In this paper we present an alternate order selec-
tion scheme for ARMA processes. It is based on
the minimization of a functional, d, that measures
the mismatch between the data and the ARMA(p,q)
that is assumed to model it. For each pair (p,q), d is
evaluated from the solution of two systems of linear
equations and two sets of linear algebraic relations.
Both pairs are constructed from the reflection co-
efficient sequence estimated directly from the data
using the Burg technique, [5]. When the orders have
been decided, the algorithm simultaneously provides
an estimate of the AR and the MA coefficients.

The paper outline is the following. In section 2
we briefly recall the main points of the dual ARMA
estimation algorithm presented in [12}, [13], [14] for
known orders, p = py and ¢ = ¢y. The order selec-
tion algorithm is presented in section 3. For each
pair (p,q), we assume an ARMA(p,q) model for the
data and implement the set of relations derived in
section 2 as if this was the correct model. In sec-
tion 4 we present simulation results for the two cases
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where the model orders are known and not known
a priori. Finally, section 5 concludes the paper.

Estimation Algorithm

Let {y.} be a scalar, Gaussian process satisfying
the recursion

Po ‘o

Yn +7Y_ GilYn_i = en + Zb.‘en-f,

i=1 i=1

(1)

where {e,} is a Gaussian, zero mean, white noise
. . ” .
with variance ¢°. The polynomials,

qu

B(z) = Zb;z_i, bo =1
i=0

pn

Az) = Zaiz'i, ap =1

1=0

(2)

(3)

are assumed to be stable and having no common
roots.

Throughout this section we will assume that the
number of poles, pg, and the number of zeros, go, of
the ARMA(po, q0) process are known. Define
]T

a=laar ... a,

b=[b1b'_1 b

(4)
(5)
as the AR and the MA components of the ARMA

process.

The ARMA estimation algorithm presented in
[12] [13], [14] and briefly reviewed on this section
obtains the AR and the MA components as the so-
lution of systems of linear equations built from the
coefficients of the prediction and the innovation fil-
ters associated with the process.

Let {v,} be the innovation sequence associated
with the ARMA(po, g0) process,

lT

qu

(6)

and define the coefficients of the prediction error
filter of order n, {al*, 1 < < n} as

Un = Yn — Elynlyﬂx Yi, <oy yu-l]

(1)

n
J— n n _
Up = 2 @' Yn—i, ag =1.
i=0

From the definition of the innovation sequence, it
follows that [4],

Un:yn“E[yn |Uo, Uiy -« - (8)

L) Un—-l.]y

leading to the innovation representation of {y,}

n
Yn = Z W,'nun—i) 0” = (9)
1=0
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The set {W, 1 <1 < n} will be designated as the
coefficients of the innovation filter of order n.

Note that a? = ¢, is the reflection coefficient of
order n associated with {y,}. The prediction and
the innovation filter coeflicients of increasing orders
are computed from the sequence of reflection coef-
ficients {c1,c2, ... cn}. In fact, the lines of the

matrix
-1 __ 1
Wy = |
aj 1
2 2
a; a1 1 (10)
a% ax_l af’ 1

are obtained from {c,c2,...,cn} through the
Levinson algorithm and, a recursive inversion of {10)
yields, [4]

Wy=| 1
wi 1
wi w1 (11)
w§ wi_, wy¥ o1

The following results relate the AR and the MA
components of the process with the increasing order
innovation and prediction error filter coefficients, as-
suming the exact knowledge of those coefficients.
They are the basis for the dual estimation proce-
dure and for the order selection scheme proposed in
section 3.

We assume that,
abk =WF=0, for <0, orj>k. (12)

Result 1: For all k£ € [pp + qo, N|, the AR compo-
nent satisfy the system of k — ¢y linear equations,

k—p k=pi T
Wk - :Q] qu —Py]o +1 Apo
- k-2
W’;:_zj P “
W, o
T
=-[WEwWi, .. we] . (13)
Proof: in [13], [14].
a

Result 2: For each k € [py + go, N|, there exists a
vector (k) = (Q,(k),...,Q,, (k)] € R that sat-
isfy the system of & — pg linear equations,

k—qu k—qu T _
ak"‘lu apo —qu+1 Q’]n(k) -

k=2 k-2
ll,l:_z U.En_l Q](k)

-1 -
Gp—y apy

k k T
= - [ak Qp_y .- ‘lxm+1} ) (14)



and
lim (k) =b

k— o0

Proof: in [13], [14].

(15)

0

For the sake of compactness, let us rewrite the
systems of equations (13) and (14) as

M7, (k)J,,a =

NZ(k)3, (k) =

—ml(k)r Vk,po+qo <k < N(lﬁ)
—ny(k), potqu<k<N(17)

where J. is the circular permutation matrix of order
k and Mo, m{ and Noy, n{ are defined according
to the Results 1 and 2. Note that these matrices are
blocks of W;,l and Wy respectively.

The systems (13) and (14) display a dual and in-
dependent behavior of the AR component, a, and
of the vector £2(k), that converges to the MA com-
ponent. However, as the solution in (16) does not
depend on k, we may write it as

MT(N)],.a=—m(N) (18)
M(N) = [Maipo+go)]|...| May(N)] (19)
mT(N) = [m'f(pn +qu)| ... mT(N)]T. (20)

When the prediction and the innovation filter co-
efficients are exactly known, a and {1(k) may be ob-
tained as the solution of any set of pg and go linear
equations arbitrarily chosen among (18) and (17),
respectively. However, when those coefficients are
estimated from the data, the use of overdetermined
systems of equations has the statistical advantages
reported in [6].

If po and go are known a priori, the dual esti-
mation algorithm is based on the Results 1 and 2,
or equivalently on (18) and (17), with the matrices
MT,m,MZ, and m, replaced by suitable estimates.
When po and gp are not known, the order selection
scheme uses the set of coupled algebraic relations
expressed in Result 3.

Result 3: For each value of k € [po + go, V], the

vectors €1(k) and a satisfy the linear algebraic rela-
tions,

k~py

qu —po u‘P(l +
0 .
W,Z’—_zg 1 az
Wq‘)__ll . W:‘_l 1 ay
k T
+[We o WEWE]T = (Qg, (k) .0 (k)]T, (21)

po+qo <k <N,
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and
o ORI
: 0 :
a’io-fz .. 1 Q2(k)
- L Q. (k)
+[ak, b af]T =gy a2 al]T, (22)

pn+QuSkSN-

Proof: in (13}, [14].
a
Again we will represent (21) and (22) using a com-
pact matrix notation,

M2, (k)J 2 + ma(k) =
NT(k)J,, 0(k) + no(k) =
po+qu k< N

3., Q(k),

Jpoa,

(23)
(24)

where Mgg,mg and Ngg,ng are block matrices of
W' and Wy defined according to (21) and (22).

Order Selection

In this section, we propose an order estimation al-
gorithm for ARMA processes. Given a finite sample
drawn from an ARMA(po, go) model, this method
obtains the estimated values, po and §o, from the
reflection coefficient sequence estimated from the
data. When the orders are decided the algorithm
simultaneously provides the AR and the MA com-
ponent estimates.

For each pair (p,q) € N x N, we assume an
ARMA (p,q) model for the data and test the validity
of this hypothesis. The validation relies on a func-
tional that provides a measure of the mismatch of
the assumed model to the data. Tne pair (po, o)
minimizes this functional.

Through the section we will consider the exact
knowledge of a second order characterization of
{y.} given by the sequence of reflection coefficients,
{c1,ca,...,cn}. We will discuss how to relax this
assumption in section 4 in the context of several
simulation examples.

For each pair (p,q) and value of N, the functional
d(N,p,q) is introduced by Definitions 1 to 5. Let

N'Zl(ky p, Q). N?'}(kl p, q)r nl(k) P, q)v n'Z(kl P, q)
M'L’l(kx 12) Q), M(N) P, q),Mgg(k,p, q),ml(k,p, Q))
m(N! P, q)y m'_’(k) D, ‘Z)



be defined for the pair (p,q) as the corresponding
matrices for (po, go) (see section 2).

Definition 1 '§(k, p, ) € R? is the minimum norm
vector x that minimizes,

| NI, (k,p, 9)J,x +ny(k,p,q) ||z,
p+q<k<N

(25)

O
Definition 2 !v(N, p, q) € R? is the minimum norm
vector y that minimizes,

| MT(N,p, @),y + m(N,p,q) |2, N > p+q  (26)

[

For the model ARMA(p,q), (25) and (26) coincide

with (17) and (18) if this were the correct model. In
fact,

lé(k,Po, CI())
4(N, po, g0)

Q(k),po + g0 < k< N (27)
a, N > po + go. (28)

1l

In the general case, the minimum errors associated
with the Definitions 1 and 2 are not zero. We will
represent them as,

**ear(k,p,q) = NIi(k,p,q)3, *6(k,p,q) + ni(k,p,q)

(29)
and
2 T
eA\/IA(Ni b, Q) = ["p+qe?\‘4A(N,P:‘I) | e lz-N ez:lA(vayq)]
where,

**era(N,p,9) = M3, (k,p,0)J, "1(N,p,¢)+m.(k,p,q)

(30)

due to a block partition of M(N, p, g) and m(N, p, q)

similar to (19}-(20). For the correct model, these
€ITOrsS are zero, i.e.,

**e s r(k, po, q0) =

0, po+g<k<N (31)
g‘keMA(Na pO)qO) = 0)

N 2po+qo0. (32)

For the ARMA(p,q) model and the corresponding
vectors 1§ and !+, the next definitions establish two
sets of linear algebraic relations that coincide with
(22) and (21) if the assumed model was the correct
one.

Definition 3: >*4(k,p, ¢) € R is given by

3,2 9k pq) = NL(k,p,q)3, *5(k,p,q) +

na(k,p,q), p+q¢<k<N. (33)

0
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Definition 4: >*¥§(N, p,q) € R" is given by,

M'-’T’L’(kyp:q)JP l’Y(N,P,Q) +
+ma(k,p,q) p+q< k< N.(34)

Jq 2'k5(N:Py(I) =

a

For p = py and ¢ = gqo, replacing (27) and (28

in (33) and (34), and comparing with the linear al-

gebraic relations obtained for the correct model in
section 2, yields,

(35)
(36)

2lk’7(kv Po, qO)
Q.ké(N: Po, Q(l)

a,
(k)
po+qo <k<N.

We finally define the functional d(N, p, q).
Definition 5: The functional d(N, p, q) is given by

d(N,p, q) = dAR(vav Q) + dMA(N)px q)
with,

dar(N,p,q) =Y, i, I' 1N p,9) 2% v(k,p,q) I3

37)

2

** ear(k,p,9) I3,

+1i (38)

dua(N,pq) =25, I' 6(kipig) =% 5(N.p, o) I3

+17* ema(N,p,9) 113 - (39)

0

The order selection scheme is based upon the val-

ues of d(N,p,q) for each pair (p,q) and increasing

values of N. The following properties, proved in [14],
show what some of those values are.

Properties

P1. d(N,p,q) #0 for p < po, ¢ < g0, N > pg + qo.
P2. d(N,p,q) #0for p > po, ¢ < q0, N > p+ go.
P3. d(N,p,q) #0for p < po, > qo, N > po +g.
P4. d(N,p, q0) =0 for p > po, N > p+ qo.
P5. d(N,po,q) =0 for g > qo, N > po+gq.

The values of the functional d referred in P1-P5
are represented in Fig. 1 for a fixed value of N (N >
Po + go) and for all the pairs (p,q) with p+¢ < N.
The symbol %% accounts for a nonnull functional,
whereas O represent the locus of d = 0.

On Fig. 1 we identify an orthogonal pattern
L(p, q) with d = 0,

Lp,g) ={(p,9): (pP=P0,9 2> q0)V(P > Po,q = q0)}
(40)
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Figure 1: Locus considered in P1-P$

The following result gives close expressions for the
six vectors in (38) and (39) for (p,q) € L(p, q)-

Result 4: For p > py and q = qq,

l,\/(N’ b, ‘ZO): ’:V;Chf(ky P QO)= a )

(41)
Ol’_l'“
Lé(k:P»QO) = ’Z.k&(k’ b, qo) = ﬂ(k): (42)
z‘keAR(k,P» qO) 0) (43)
ZlkeMA (N)pr qO) = 01 (44)
p+q <k<N.
Proof: in [14].

O

From Result 4, we conclude that for p > pg, each
assumed ARMA(p, go) model has py poles at the
same locations as the poles of {1), the remaining
p = po poles being at the origin. From (42) the two
models have the same zeros. A dual conclusion holds
for p = po and ¢ > go. Thus, all the models corre-
sponding to pairs (p,q) at the orthogonal pattern in
Fig. 1 have the same spectrum. Among them, the
order selection algorithm chooses the one with the
smallest number of parameters.

Selection
Define

I(N,pg) = {(p,q) : d(N,p,q) =0V N < p+gq}.
(45)
For an interpretation of this set, see [14] or [15].
From P1 to P5, the orthogonal pattern £(p, q) is
given by ’

ﬁ(an) = n I(Nrplq): (46)
N2>1
where [ stands for set intersection.
The selection scheme chooses (po, go) as,
Po = ar min + 47
(po; o) 8 i Ap+al, (47)
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When the order is decided, the algorithm simulta-
neously provides the corresponding AR (vector 'v)
and MA (vector '§) components.

Simulation Results

In this section we present simulated results con-
cerning both the order selection scheme and the dual
ARMA estimation algorithm.

The examples displayed refer to two distinct
ARMA(4,2) processes, with pole zero locations
shown in Table 1 and 62 = 1. Case 1 was presented
in {10] for the performace evaluation of an ARMA
estimator considering known orders.

ARMA(4,2) Zeros Poles
Case 1 0.7ezp{+j0.5m} | 0.9ezp{£;j0.3x}
Case 2 0.9ezp{£50.57} | 0.95ezp{+;0.7x}

Table 1

For the processes in Table 1, we perform 100
Monte-Carlo independent experiments, generating
a sample function of lenght T for each run. The or-
der estimation was implemented based on (45)-(47)
with the zero in (45) replaced by a small constant,
¢ = 0.05 and using the first 15 reflection coefficients
estimated from the data.

For three values of T, the Table 2 represents the
number of correct (po = po, J0 = qo) estimates over
the 100 independent runs, showing the influence of
the zero location on the performance of the order
selection algorithm.

Number
of correct | T=500 | T=1000 | T=1500
estimates
Case 1 30 82 96
Case 2 22 77 94
Table 2

In Fig.2, we represent the estimated pole zero lo-
cation for Case 2, T=500, and 10 runs for which the
selection scheme chooses the corrrect orders.

In Fig.3, we represent the estimated pole zero lo-
cations for Case 2, T=500 and the 6 runs when an
ARMA(4,3) model was chosen by the order selection
algorithm, i.e., an extra zero was estimated.

From Fig.3, we conclude that the extra zero is
close to the origin, as stated in Section 3.

Additional order selection simulation results for
processes with a smaller number of poles and zeros
are presented in [14] and [15].
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Figure 2: Estimated pole zero location for correct
order selection. Case 2, T=500

[ f
Figure 3: Estimated pole zero location for
o =4, §o = 3. Case 2, T=500.

Conclusions

This paper presents an identification method for
ARMA processes. The number of poles and zeros
and the AR and the MA components are estimated
from data through a linear algorithm that dualizes
the roles of both components. The estimation pro-
cedures are easy to implement and have good per-
formance.

The full development of the algorithm, its statis-
tical analysis and extended examples are presented
in [14]. Additional results on the order selection
algorithm will be presented elsewhere.
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