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Abstract-We have analyzed the simple case of an iso-
lated pulse with a single interfering pulse to get insight
into the practial cross-track interference problem. We treat
the problem in signal space to gain an intuitive geometric
interpretation. We derive the Maximum Likelihood detec-
tor, the Linear Minimum Mean Squared Error (LMMSE)
detector, and the minimum probability of error (mpe) lin-
ear detector. The mpe detector was found to closely ap-
proach the performance of the optimal ML nonlinear de-
tector, and to significantly improve on the performance of
the LMMSE detector as well a detector naively designed
to match a channel without cross-track interference. These
results provide insight and motivation to design equalizers
to improve detector performance in the presence of such
interference.

1 Introduction

Interference from information recorded off the track of
interest is a significant factor limiting the performance
of magnetic recording channels. This is especially true
of hard disk storage systems, where the interference
comes from adjacent tracks as well as “old informa-
tion” in the guard band. This interference is not Gaus-
sian, and so requires separate treatment from that of
other noise sources in the magnetic recording channel.
Cross-track or intertrack interference has been treated
before, but often is assumed to have the same channel
response as the on-track response[l]. In fact, the re-
sponse of the channel to adjacent tracks will be differ-
ent from its on-track response due to the side reading
properties of the head [4]. This is due to a broader
pulse response of the head when side reading.

The work reported here is an initial study of the
cross-track interference problem. We study the case
of an isolated pulse and a single interfering pulse with
distinct pulse shapes. We have derived three detec-
tion schemes, the Maximum Likelihood detector and
two linear schemes. These schemes are compared, at
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different interference levels and pulse shapes, to the
performance of a detector which lacks knowledge of
the interference.

2 Problem Formulation

The isolated pulse problem involves the detection of
a desired data symbol a from the observation z(t),
which includes the interfering symbol # and additive
white Gaussian noise n(t):

z(t) = ap1(t) + Bpa(t) + n(t). (1)

The noise is white with spectral density 2. The de-
sired symbol « takes on values {—1,1} with equal
probability, 8 takes on equally likely values {—p,p}
and a and g are statistically independent. Since «
and f are binary, the pulses p;(t) and p, (%) represent
the pulse, or dibit, response of the magnetic recording
channel. These pulses are characterized by their inner

product:

7=<pi(t),p2(t) > . (2)
In this problem all symbols are real-valued, so the in-
ner product is defined as:

<z(t),yt) >= /

—00

o0

=(t)y(t)dt.

The pulses are of unit energy, i.e. < p;(t),pi(t) >= 1.
The isolated pulse problem as stated is completely
characterized by three parameters: interference cor-
relation 7, interference amplitude p, and noise power
a’.

The continuous time problem of equation (1) can be
transformed to a two-dimensional detection problem
by passing the observed signal z(t) through sampled
filters which are matched to the pulse shapes p;(¢) and
pa2(t). This filtering operation is equivalent to taking
the inner product of z(t) with p;(t) and ps(t). The
familiar Gram-Schmidt procedure can be used to cre-
ate a vector of orthonormal basis functions ®(t) from

p1(t) and po(t):
- [ o]

B(t) = [ $i(8) o

pi(t) ]

®a(t) p2(t)



= A7IP(t).
P(t) is the vector of pulse functions and A~! is the
orthonormalizing transformation such that P(t) =
A®(t). The statistic x is formed as the result of the
inner product of z(t) and ®(t):

x =< ®(t),z(t) > .

()

The notation here is somewhat unusual: each element
of x is equal to the inner product of the corresponding
element time function of ®(t) with z(t).

The constituents of x, zy and z3, together form a
sufficient statistic for the detection of a. This is eas-
ily shown to be true by contructing a complete set of
orthonormal basis functions (3, p. 171] {¢i(t)} whose
first two members are ¢1(t) and ¢2(t). The statistics
formed by taking the inner product with the higher or-
der basis functions (z; =< ¢;(t),z(t) > for j > 2) are
independent of «, and therefore give no additional in-
formation for the detection of a. Thus, the continuous
time observation z(t) has been reduced to two dimen-
sions without loss of information. The resulting statis-
tic x is a function of the symbol vector ® = [a 8T
and the noise vector n: !

< &(t),PT(t)® +n(t) >
< 3(t), 8T (1)ATO > + < (1), n(t) >
ATO +n.

X

©)

The noise n is zero-mean and Gaussian with variance
o?I. The two noise components n; and ns are inde-
pendent as a result of the choice of an orthonormal
basis.

It is evident from equation (5) that the probability
distribution of x conditioned on @, p(x|@®), is Gaus-
sian with mean AT ® and variance 021. The detection
problem can be visualized in signal space, as shown in
Figure 1, with the conditional mean of x plotted for
all values of o and 8. The four different symbol pairs
{©:} shown in Figure 1 are defined to take on the fol-
lowing values of a and §:

-1
(6)

[lp] 02 = [i,,] 0o = [*”,96 [

The problem of detecting o« is reduced to drawing
a boundary in signal space to distinguish the region
where a = 1 is decided from the decision region for
a = —1. The detection schemes derived in the follow-
ing section differ only in the criterion for which they
draw this boundary.

1Again, the inner product here is applied to each ele-
ment time function in the vector of time functions. Thus,
< B(t), ®(t)T(t) >= I, the identity matrix

3)
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Figure 1: Signal space representation of isolated pulse
detection

3 Detector design

The ideal detector has the minimum probability of
error among all detection schemes. For the case of
equally likely symbols, this detector is the Maximum
Likelihood (ML) detector. The ML detector provides
an upper bound on detector performance.

The decision boundary for the ML detector is drawn
by comparing the likelihood ratio A(x) to zero:
A = BXle=1D s %

p(x|a = -1)
Since this is a binary detection problem, there is only
one decision threshold and the problem can be reduced
to a single dimension. This problem is a composite
problem because the interfering symbol 3 is an un-
wanted parameter. In composite problems, the effect
of the unwanted parameter is averaged out by sum-
ming over all values of the parameter. In this case,
there are two equiprobable values for 8. The likeli-
hood function is the ratio of two sums of two Gaussian
functions:

(x]@,) + p(x|©2)
(x|93) + p(x|O4)

The likelihood ratio is clearly a nonlinear function of
x. The ML detector is impractical for this reason, but
its probability of error is important to bound the per-
formance of other detection schemes. The probability
of error can be computed numerically by integrating
the likelihood ratio over the decision region in the two-
dimensional signal space:

A(x) = ﬁ ®)

P(e) = A(x)>0p(x[a = —1)dx. (9)

3.1 Linear detectors

Although the signal space of Figure 1 is two dimen-
sional, only one dimension is required to detect a. If
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Figure 2: Linear detector signal space

the resulting scalar signal is a linear function of the
statistic x, then the detection scheme is linear. Specif-
ically, the statistic x is reduced to the statistic y by
the weight vector w:

y=wix ST (10)
and then y is compared to a threshold T to decide
a. The decision boundary of a linear detector is the
straight line whose equation is y = wTx = 7. Another
interpretation of the linear detector is that it projects
each point in the two-dimensional signal space onto a
line perpendicular to the decision threshold, as shown
in Figure 2.

A major advantage of linear detectors is that they
require just one inner product, while nonlinear detec-
tors require two. This can be shown by interchanging
the order of the weighting and the inner product op-
erators:

wT < ®(1),z(1) >
<wT&(t),z(t) > .

i

(11)

Thus two filters with impulse responses ¢, (t) and ¢2(t)
can be replaced by a single filter whose impulse re-
sponse is a weighted function of the matched filters:
wT®(t).

The probability of error of a linear detector is a func-
tion of the weight vector w. The derivation is straight-
forward and relies on the fact that y is a linear function
of z, so y given symbols © is Gaussian. Specifically,
y|® has the distribution N(wTAT®,02wTw). The
problem was structured such that there are two sym-
metric symbol pairs: ©; = —04 and ©; = —0O3. The
signal space for y is just a line, with the four con-
ditional means representing the four possible symbol
pairs. For the linear detector, the conditional means
{wT AT©;} are correspondingly grouped into symmet-
ric pairs, as shown in Figure 2. For the purpose of
this derivation, we assume that w7A470; > 0 and
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wTATO; > 0. ? In this case the optimum (ML)
decision threshold will be zero. This threshold can be
derived by constructing the likelihood ratio and noting
that p(yla = 1) = p(—yla = —1). The probability of
error for a linear detector is therefore a simple function
of the conditional means. Formally, the probability of
error is equal to:

Pe) = P(el81) + 5P(cl8s)

2
1 wTATe, 1 _wTATo,
e AP A

where Q(z) is an error function:

Q(z) = \/—li;-/ e""’ndy.

Equation (12) follows from the assumption of equi-
probable symbols and the observation that P(e|©,) =
P(e|®©4) and P(e|®©2) = P(e|O3) due to symmetry.

(13)

3.2 LMMSE detector

The derivation of the LMMSE weight vector follows
from the Orthogonality Principle, which states that
the error signal is orthogonal to the observations for
the optimal w. For the linear detector of equation
(11), y functions as the estimate of a, and therefore
the error signal is equal to y — a. The Orthogonality
Principle states that:

E{(y — a)x}
E{yx}

0
E{ax}

or (14)
The optimal weight vector w is derived by substituting
the definitions for y (11) and x (5) into equation (14):

(ATE{00T} + 6’I)'w = ATE{a®}  (15)
This equation follows from the assumptions that all
symbols and noise are independent with zero mean.
The final expression for w is found by substituting the
statistics for & and § and solving the linear equations:

VAR T
(16)

_ 1 [02+(1+72)p2}
S ot (14 p%)02 +p2(1-9?)

2This assumption does not contrain our solution unduly. If
one of wTATO; and wTATO, is negative and the other pos-
itive, the detector will have poor performance; this case is not
of interest. If they are both negative for a given w, the detec-
tor performance is identical to the case with weight vector ~w
where they are both positive.



3.3 Mpe linear detector

The LMMSE detector minimizes the probability of et-
ror if the only interference is Gaussian noise. It does
not minimize probability of error for this case, because
the interfering symbol 8 is not Gaussian. The linear
detector which minimizes probability of error can be
derived by making a few simple observations about
equation (12). The probability of error is a sum of two
error functions. For most cases, P(e) will be domi-
nated by the error function with the smaller (less neg-
ative) argument. Therefore a simple approximation to
the minimum probability of error receiver is to max-
imize the minimum amplitude of the two arguments.
That is, the weight vector w is chosen according to:

m“a,.x{min(wTATOLWTATOg)}. (17)
A second observation about the arguments is that they
are both of the form YA

Py which is a simply a
projection of ATO; onto the line w¥x = 0. These
arguments are therefore independent of the magnitude
of w, and so also is the probability of error. Therefore
we can assume that the magnitude of w is one and
that it takes on the form:

|

where ¢ is the angle which the projection line makes
with the x-axis. Therefore the optimization problem
is reduced to one dimension: choose ¢ to maximize
equation (17). In fact, an exact value for ¢ can be
computed by taking the derivative of the probability
of error equation 12 with respect to ¢, and setting it
equal to zero. Equation (17) provides a more intuitive
solution, which we will follow.

We have restricted ourselves to the case where both
error function arguments are positive. When the two
arguments are plotted as functions of ¢, as shown in
Figures 3 and 4, it is apparent that there are two re-
gions of the plot:

cos ¢

sin ¢ (18)

: —(1+p7) -
Region]: ——== < tan¢<
¢ pV1-7? 1-9?
where wTAT@y > wlaTe; >0
. tl 1-py
Region II : —— < tan¢g < ————
V1i-7? pV1—7?
where wTAT@]_ > WTATGZ >0 (19)

The value of ¢ that solves equation (17) will either oc-
cur at the intersection of the two argument functions,
or at the maximum of one of the two functions. Since
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Figure 3: Case 1: distance metrics vs. ¢

Figure 4: Case 2 distance metrics vs. ¢

the arguments are projection funcitions, each is max-
imized when w is aligned with AT®;. A little bit of
analysis shows that the maximum of w7 AT ©, always
occurs in region II, and therefore is never the minimum
of the two arguments. The maximum of the second ar-
gument, wT ATO,, will occur in region Il if p < 7. So
the design of the minimum probability linear detector
follows one of two cases. In case 1, the optimal weight
vector maximizes w7 AT©;. In case 2, the optimal
weight vector occurs where the two error functions are
equal. Specifically,:

p>1 W = [V1_72]

it 4

1 1-py ]
<7 = 20
L \/1—2p7-+—;72[\/1"72 (20)

The distance metrics from equation (12) are plotted
for these two cases in Figures 3 and 4.

4 Performance Comparison
The probability of error for each of the three detec-

tion schemes, the ML, the LMMSE, and the minimum
probability of error (mpe) detectors, were computed
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for varying values of ¥ and p. In addition, the perfor-
mance of a fourth detector was computed for compari-
son. This detector, referred to in figures as the “naive”
detector, consists of an input filter with response p;(t)
and an optimal slicer. Thus, it lacks knowledge of the
cross-track response.

The performance of the mpe detector as plotted on
the scale of Figures 5 and 6 is indistinguishable from
that of the ML detector, so the ML detector was not
included in the plots. This signifies that a linear de-
tector is sufficient to achieve near-optimal performance
for cases of interest to magnetic recording. Only when
correlation vy approaches zero does the mpe perfor-
mance diverge from the ML detector. The perfor-
mance of the three schemes is plotted as a function
of the interference correlation coefficient p in Figure 5,
where ¥ = .7 and 62 = .03. Note the surprisingly poor
performance of the LMMSE detector, which is out-
performed by the naive detector at moderate levels of
interference (p < .3). Figure 6 compares the detector
performance as a function of v, with p = 3. Again,
note the poor performance of the LMMSE detector,
which is outperformed by the naive detector at high
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interference correlation (y > .7).

5 Summary

This study is a simplification of the cross-track inter-
ference problem. There may be more than one in-
terfering track, for example when the head reads in-
formation form both the guard band and an adjacent
track. The level of interference and its pulse shape
will be neither known nor constant. Also, we have ig-
nored intersymbol interference to focus on intertrack
interference. Nonetheless, in reducing the problem
to its essentials we have gained insight. We demon-
strated that the LMMSE equalizer is suboptimal in the
presence of intertrack interference. This is significant,
since the MMSE criterion is commonly used to de-
sign adaptive filters and equalizers[2]. We also showed
that significant improvement can result from incorpo-
rating knowledge of the cross-track response into the
equalizer design. And finally, we characterized the in-
terference problem concisely in terms of pulse shape
and amplitude and gained an intuitive geometric de-
scription of intertrack interference in signal space.
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