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ABSTRACT

The paper presents a low-complexity encoding algorithm
for cycle codes—low-density parity-check (LDPC) codes with
column weight ;7 = 2. For a cycle code of block length
n, the encoding complexity of the algorithm we present is
O(n) whereas the conventional encoding method has com-
plexity O(n?). We achieve the linear-complexity encoder
through graph analysis. First, we introduce particular Tan-
ner graphs named pseudo-trees and prove that any pseudo-
tree can be encoded in linear time. Second, we show that
any cycle code can be represented by the union of pseudo-
trees. We show that combining these two ideas, cycle codes
are linear-time encodable.

1. INTRODUCTION

LDPC codes [1] are excellent ervor-correcting codes with
performance close to the Shannon Capacity {2}. LDPC codes
of column weight § = 2 are known as cycle codes [3].
Though distance properties of cycle codes are not as good
as LDPC codes of columin weight j > 3 [1], reference [5]
shows that cycle codes have low decoding complexity and,
when concatenated with Reed-Solomon codes, show better
error-correcting performance than other LDPC codes. In
addition, reference [7] shows that cycle codes with Jarge
girth have good error-correcting performance. Hence, cy-
cle codes are promising in the data storage areas and other
applications.

The high encoding complexity prevents the application
of cycle codes. The conventional way to encode cycle codes
is to multiply the data words 3 with a matrix called gener-
ator matrix G, i.e., code words T = G - 5. Though the
parity-check matrix H for cycle codes is sparse, the asso-
ciated generator matrix G is no longer sparse. Assume the
block length of a cycle code is n, the encoding complex-
ity is O(n?), which is significant. It is known that by matrix
manipulation, the coefficient of the quadratic term in the en-
coding complexity can be made small [4]. In this paper, we
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prove that cycle codes can be actually encoded in exactly
linear time.

2. “LABEL-AND-DECIDE” ENCODING
ALGORITHM

LDPC codes can be described by a bipartite graph called
Tanner graph [6], in which each bit becomes a bit node and
each parity-check equation becomes a check node. If a bit
is constrained by a parity-check equation, there is an edge
connecting the associated bit node and check node.

Initially Tanner graphs were developed to explain the
decoding process for LDPC codes; in fact, they can be used
for the encoding of LDPC codes as well. Let Hbean m x n
parity-check matrix for an LDPC code C. To encode C,
we need to identify the bits that contain user data, namely,
informarion bits, from all the n bits contained in the code
word of C. The bits other than the information bits in the
code word are called redundant bits or parity bits. Given -
the values of all the information bits, the encoding process
is to compute the values of all the parity bits. We identify
information bits and parity bits through a labeling process
on the Tanner graph. When a bit node is iabeled as an in-
formation bit, we simply assign its numerical value to it;
when a bit node is labeled to be a parity bit, we simultane-
cusly compute its value. This encoding approach is named
Label-and-decide.

Example. Assume that the parity-check matrix H for
an (8, 3) lincar code is given by

11110000
H= 10001000
1 ¢600 0111
Its associated Tanner graph is cycle-free, as shown in Fig-

ure 1.

In Figure !, initially, all the bit nodes are unlabeled.
First, we randomly pick a bit node, say, x5, to be an infor-
mation bit. According to the parity-check equation ca, we
know that the value of the bit 21 depends only on the value
of the bit x5 such that 1 = x5. Therefore, z; should be 1a-
beled as a parity bit if we label the bit x5 as an information



Fig. 1. The Tanner graph for H

bit. After the values of the bits x5 and 1 are already fixed,
we can not vel determine the value of the bit xo. Therefore,
T2 ought to be labeled as an information bit. Similarly, the
bit 3 is labeled as an information bit. Next, we label the bit
I3 as a parity bit and compute its value as x4 = 2; Bra B X3
according to the parity-check equation ¢;. In a like manner,
" the bits z7 and x5 are labeled as information bits and the bit
xg 1s labeled as a parity bit such that g = z1 & 27 & Ts.
By the above labeling process, we decide the systematic
component of the codeword (z Ty T3 T4 T5 Tg T7 Tg) tO
be 3 = (z2 o3 z5 T+ 2g) and the parity component to be
7= {x1 3 %)

Fig. 2. Labeling bit nodes on the Tanner graph in Fig. |

The above example is for a cycle-free Tanner graph. In
the next section, we will apply it to cycle codes through
graph analysis.
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3. LINEAR COMPLEXITY ENCODER FOR
CYCLE CODES

We achieve linear-complexity encoding for cycle codes
as follows: In the first step, we propose particular Tanner
graphs named pseudo-trees and prove that any pseudo-tree
can be encoded in linear time. Second, we prove that any
cycle code can be represenied by the union of pseudo-trees.
We then show that combining these two ideas, cycle codes
can be encoded in linear-time.

We will say that a Tanner graph that satisfies conditions
(B) through (iii) is a pseudo-iree.

(i) Itis composed of 2P+1 tiers where P 1s a positive in-
teger. We number these tiers from 1 to 2P+1, starting
from the top tier to the bottom tier. The (2 — 1)™ tier
(i =1,..., P+ 1) contains only bit nodes while the
(20)™ tier (! = 1,..., P) contains only check nodes.

(i1) Each bit node in the first tier has degree one. Each of
them is connected to one and only one check node in
the second tier. '

(i} For each check node C, in the (20)™ tier where [ can
take any value from 1 to P, there is only one bit node
z, in the (20 — 1)™ tier that connects to C, and there
are no other bit nodes in the upper tiers that connect
to C,. We call z, the parent of C, and call C, the
child of x,.

Figure 3 on the left shows a pseudo-tree Ty with seven tiers.

Lemma 1 Any LDPC code represented by a pseudo-tree is
linear time encodable.

Proof: Let a pseudo-tree contain 2P + 1 tiers, n bit nodes,
and m check nodes. Condition (iii) guarantees that each
check node has one and only one parent in the immediate
upper tier, so there are m parents for the check nodes. We
label these m parents as parity bits and the other n—m bit
nodes as information bits.

The inputs of the enceder provide the values for all the
informaticn bits. The task of the encoder is to compute the
values for all the parity bits. Let x, be an arbitrary parity bit
and C, be the child of z,. The tier that contains x, is the
(2¢ — 1) tier. The value of x, is determined by the parity-
check equation represented by C,. According to conditicn
(iii}, all the bit nodes contained by €, except for x, are
in tiers below the (2i — 1)™® tier. Therefore, the value of
x, depends only on the values of the bit nodes below the
(2i — 1) tier. We compute values of the parity bits tier by
tier, starting from the (2P — 1)™ tier. This encoding process
is repeated until the values of all the parity bits in the 1* tier
are known.

Let k&, L = 1,2,...,m, denote the number of bits con-
tained in the ["™ parity-check equation. When the I'® parity-
check equation is used to determine the value of a parity bit,



(ki —2) XOR operations are needed. Therefore, overall Tanner graph for C. G can be decomposed into ¢ disjoint
S (k; —2) XOR operations are required to obtain the subgraphs: Gi,...,G,. Eachsubgraph G, i =1,...,4q,

values for all the m parity bits. Hence, the encoding pro- is a connected graph in the sense that every two vertices in
cess above is accomplished in linear time. This completes G; are connected to each other by at least one path. Now we
the proof. restrict our attention to G. Let G contain r; bit nodes and

m; check nodes. Each of the n; bit nodes in Gy is of degree
2 since each column of H contains exactly two 1’s. Each of
the m; check nodes represents a row of H. The sum of all
the m; rows in the binary field is a vector of all 0’s because
each of the n; bits appears exactly twice in the summation.
Therefore, at least one of the m; rows is linearly dependent.
We can remove the linearly dependent row without chang-
ing the underlying code structure of C. Say, we remove the
™ row of H. Correspondingly, the associated check node
C; and all the edges that are incident on C; are removed
from G; while the remaining Tanner graph still represents
Y the code C. Let zt, 2%, ..., =} be the k bit nodes that con-
N nect to €y in Gy After removing C; from Gy, each z!,
e =1,2,...,k, connects to only one check node in the sub-
Pseudo-tree T, Pseudo-tree T, graph G;. We place z},z5,...,z} in the first tier and put
the check nodes that connectto 2}, z}, . .., =4, in the second
o  Bitnode that labéled as an #yformation bit tier. Edges connect bit nodes in the first tier and their asso-
ciated check nodes in the second tier, The bit nodes other
than =}, z}.. ...z} that connect to the check nodes in the
second tier are put in the third tier. In a like manner, ex-
cept for the check nodes in the second tier, the check nodes
8 Checknode that connect to the bit nodes in the third tier are placed in
the fourth tier. Successive tiers are constructed in similar
manner. As G; is a connected graph, the construction goes
Fig. 3. The associated pseudo_lrees of the Tanner graph on until all the n; bit nodes and al! the my check nodes but
shown in Fig. 4 : the removed check node C| in G; have been included in the
constructed multi-layer structure. -
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Fig. 4. Tanner graph for a cycle code 3
Lemma 2 relates general Tanner graphs for cycle codes 3
10 pseudo-trees.
Lemma 2 Any cycle code can be represented as the union Fig. 5. A multi-layer structure but not a pseudo-tree { C7
of pseudo-trees. has two parents: xg and 3 )
Proof: Let C represent an LDPC code of column weight 2. )
H denotes the parity-check matrix for C and G denotes the Up to now, the multi-tier structure constructed conforms
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Fig. 6. The pseudo-tree that evolves from the multi-layer
structure shown in Fig. 5

to the conditions (i) and (ii), however, condition (iil) may
not be satisfied. For example, in Figure 5, the check node
C7 in the 4' tier is connected to two bit nodes zg and 713
in the 3™ tier, which violates condition {iii). To satisfy con-
_dition (iii), we further adjust the positions of the bit nodes.
I a check node in the (27} tier is connected to d bit nodes
in the upper tiers. We randomly pick one bit node from the
d bit nodes and leave its position unchanged. Next, we drag
the other ¢ — 1 bit nodes from their initial positions t¢ the
(2i + 1)™ tier. To illustrate, let us focus on Figure 5 again.
We drag the bit node x5 from the 3™ tier to the 5 tier. The
newly formed graph is shown in Figure 6, which follows the
conditions (i), (i1), and (iii). Hence, a pseudo-tree is formed
in Figure 6. By tuning the positions of the bit nodes in this
way, we can transform the multi-tier graph constructed into
a pseudo-tree. Therefore, each G;, i = 1,...,¢q, corre-
" sponds to an equivalent pseudo-tree. Since the code C is
represented by the union of G, ..., up to G4, C can also
be represented by the union of g pseudo-trees. This com-
pletes the proof.

We now show that the encoding complexity of a cycle
code is O(n). If the Tanner graph for the cycle code C is
represented as g pseudo-trees: Ty,..., T, C contains n
bits and T;, 7 = 1,2,...,q, conlains n; bit nodes. Then
n= z;’:l n;. Lemma 1 guarantees that the encoding com-
plexity for T; is O(n;}. Therefore, the complexity to en-
code Cis 37, O(ny} = (327 ni) = O(n), i.e., linear
complexity.

O(n) Encoding Algorithm

We illustrate by an example the O(n) encoding algo-
rithm. Figure 3 shows two pseudo-trees T and T for the
Tanner graph in Figure 4. According to T}, the bit nodes
11, Te; Tg. T1,.-Tay T3, and x4 are labeled as parity bits;

According to T, the bit nodes za24, Z19, T17, and xa3 are
labeled as parity bits; The other bit nodes are labeled as in-
formation bits. Then we encode as follows:

a. Compute x1; by the equation ;3 = 14 9 T15 D T16
(The symbol & denotes addition in the binary field);

b. Compute xg and g such that 2 = T19 B T15 D 1y
and £g = T12 B T1e D T13:

¢. Compute x, z2, r3, and z4:
Ty = T5 @ Te D 12, L3
Ty =2 P Te P T13;

T1 = 210D T5 D X7,
7 @ x13 & rg, and

d. Compute To4: Zog = Toa B 18 B Tas;

e. Compute 19, T17, and Z23: T19 = To1 B T158 P T26.
T17 = T2 D L24 D Too, T2z = T20 B T2 D T25.

We sumimarize our results in the main theorem:
Theorem 1 Any cycle code can be encoded in linear time.

Proof: By Lemma 2, any cycle code can be represented by
the union of several pseudo-trees. Let C be a cycle code and
C=T,U---UTgwhere T, =1,....q, is a pseudo-
tree. Further, let T; contain m; check nodes and the average
number of bits contained in the m; parity-check equations
be %;. According to Lemma 1, the computational complex-

ity to encode T is m;(%; — 2). Therefore, the complexity

_to encode all the g pseudo-trees is 7, m;(k; — 2). For
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an (n, 2. k) regular LDPC code, the encoding complexity is
(3% — q)(k — 2) = 2n. Therefore, any cycle code can be
encoded in linear tme. This completes the proof.

It is of interest to relate Theorem 1 to the parity-check
matrix of the code. This is done in the following corollary:

Corollary 1 The parity-check matrix H of a cycle code can
be transformed into an equivaglent upper-triangular matrix
Hupper simply by permuting the rows and colunms of TL

Fig. 7. The parity-check matrix for a (200, 2, 8) LDPC code

For example, by permutation of rows and columas, we
transform the parity-check matrix shown in Figure 7 to an
upper-triangular matrix shown in Figure 8. Corollary 1 im-
plies that any cycle code can be viewed as a causal system.




Fig. 8. An equivalent upper-triangular matrix for the LDPC
code in Figure 7

4. CONCLUSION

In this paper, we propose an efficient encoding algerithm
named “iabel-and-decide” for cycle codes. By introducing
a hierarchical Tanner graph called pseudo-trees and an algo-
rithm to transform Tanner graphs of cycle codes into union
of pseudo-trees, we achieve linear encoding. This is quite
desirable in many applications.
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