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Abstract—We consider the design of the topology of the com- connectivity, leading to a complete graph, may not be possible
munication graph G = (V, E) supporting distributed decision pecause of communication constraints. This discussion shows
in sensor networks with N = |V| sensors. The numberM of a1 the inter-sensor connectivity network is an important

links connecting the sensors, i.e., the number of edge&| = M . . .. .
in the graph G, is fixed. We assume a simple binary decision design issue. We study the problem of designing the optimal

test where the data may be spatially correlated. The global Network topology (in the sense of the convergence speed of the
detector performs a threshold test on a weighted fusion of the decision fusion algorithm) when we constrain the number of
local likelihood ratios, which can be computed in a distributed  jnter-sensor communication links. In particular, we consider a
fashion using a consensus algorithm. The graph topology plays a gimpje pinary hypothesis test with spatially correlated sensor
central role in the convergence speed of the distributed detector. g ) . .
Exhaustive search over the class of possible communication measurements in a_GaUSS|an environment. Under such cir-
networks is unrealistic. Our solution is constructive. We first Cumstances, the optimal global detector performs a threshold
reduce this topology design to a spectral graph optimization test on a weighted average of the local (sensor) observations.
problem; specifically, to designing the topology that maximizes Using a distributed consensus algorithm (see [4], [5]) for
the ratio ~ of the algebraic connectivity to the largest eigenvalue computing averages on a graph, we show that each local
of the graph Laplacian. Borrowing results from spectral graph . . . ! -

theory, we show that for the class of non-bipartite Ramanujan sensor iteratively achieves the performance of the qptlmal cen-
graphs v > ymin. The importance of this inequality is that ymin, tr@lized detector. Thus, through local communication among
asymptotically, is an upper bound onvy for most classes of graphs. the sensors (defined by the connectivity graph), we attain
The paper discusses the commonly used explicit constructions of performance equivalent to the global detector using centralized
Ramanujan graphs and their impact on the convergence speed of f,si5n - The convergence speed of the detection algorithm

distributed consensus. In particular, it shows that these graphs . . .
perform much better even for finite values of N than highly S directly related to that of the consensus algorithm. We

structured networks, or small world type graphs, or Erdos-Reryi  have studied previously the problem of designing the optimal
random networks. network topology (under a given constraint on the number of

links) leading to the fastest convergence rate of the consensus
algorithm, see [6], [7], [8]. In this paper, we consider the
We consider the problem of distributed decision makingase of correlated sensor measurements and show that the
in sensor networks with spatially correlated sensor measuocenvergence properties of the local detector depends on the
ments. Each sensor computes a local statistic based on afgenratioy between the algebraic connectivity and the largest
observed data. The final decision is computed by fusing all thaplacian eigenvalue of the connectivity network. Specifically,
local statistics. Distributed detection is a well-studied problermaximizing the convergence speed is equivalent to finding the
and much work has been done on designing the optimatwork with largesty, which meets the constraint on the
global fusion rule for different detection scenarios (see [lhumber of links. Using results from spectral graph theory, we
[2], [3] for a detailed discussion on these.) Previous worstablish a significant lower bound gnfor the class of non-
on distributed detection assumes a parallel (centralized) lmpartite Ramanujan graphs, and through various arguments
sequential decision fusion architecture, which is unrealistamd numerical studies show that these graphs are essentially
in many applications. For example, a parallel architectumptimal with respect to the convergence speed.
assumes the existence of a central hub to which all the locdalbrief outline of the rest of the paper follows. Section Il
data are communicated directly and then a final decisismmmarizes elementary spectral graph theory concepts, needed
is made. Such a fusion scheme is prone to failures of thar the development of the paper. Section Il formulates the
fusion center or to communication bottlenecks that rendernitain distributed detection problem, while Sections IV and V
inoperative. Sequential architectures suffer from low converelate the convergence speed to the eigenratiSections VI
gence speed of the data fusion process, and is sensitiveamal VII discuss some results from spectral graph theory,
failure of any intervening node. On the other hand, all-to-alvhich motivate the use of non-bipartite Ramanujan graphs.
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Section VIII gives explicit constructions of Ramanujan graphshere, [(y) is the sufficient global statistic. Define =
available in the literature, while Section IX presents numerica;...wx|? as
studies. Finally, Section X concludes the paper. wl =2mT K1 9)

Then, from eqgn.(8), it follows that the global statistic can be

Il. ELEMENTARY SPECTRAL GRAPH THEORY written as an average of local statistics. In other words,

We define a grapiG = (V,E) as a 2-tuple, wherd’ 1 X
denotes the set ofV vertices andE the set of M edges. )= > () (10)
There exists an edge between verticesind [, if they can n=1
communicate with each other directly, and denote it by th,ehereln(yn) = wpYn, @ =1,..., N, are local statistics.
unordered pair(n,l) € E. The connectivity pattern of the
graph is given by anV x N symmetric matrix, called the

adjacency matrix4, defined as IV. DISTRIBUTED AVERAGE CONSENSUSALGORITHM
1 if (nl)eFE o
Apg = { 0 otrger\/\aise (1) Let x(0) € RN*! be the vector of initial sensor measure-

_ _ ments or states. We define the vector of averages as
We define the neighborhodd,,, of noden as

Xavg = T1 11
Q,={leV: (nl) e E} 2) g =" (11)

_ _ _ ~where1 € RV*! is the vector of ones andl = +;17x(0).
The degree of a node is the number of its neighbors and isthe distributed average consensus algorithm computes the

given by averager at each sensor, starting from an initial stai{@®) =
dn = [0 ) [21(0)...25(0)]7, using linear distributed iterations of the
We define the Laplaciad of the graph as form (see [4])
I—D_4 @ onl(i+1]) = Wanan(D)+ > Wumi(i), n={1,..,N} (12)
leQ,

Where,D_ - d'?.g(dl’”"le).' !t can b_e shown thal is a Collecting theN equations in (12) in matrix-vector form
symmetric positive semidefinite matrix (see [9]), and hence

we can arrange its non-negative eigenvalues as x(i+ 1) = Wx(i) = W' x(0) (13)

0=X(L) <L) <...<An(D) (5) where the sparsity pattern & is determined by the under-

. . . lying connectivity network. In particular, for £ [, W,; = 0,
The multiplicity of the zero eigenvalue is equal to the numb (3 )¢ E Y P 7 !

of connected components 6fand thus, for connected graphsTrhe consensus algorithm converges if
A2(L) > 0, see [9]. Unless otherwise stated, every graph in
this paper is assumed to be connected. lim || x(2) — Xavg ||2=0 (14)

for any initial state vectorx(0) € R™V*1. In other words,
convergence occurs if
We consider a simple binary hypothesis testing problem ) 1

with spatially correlated sensor measurements. Specifically, Jim W* = oJ (15)

we assume a shift-in-mean Gaussian detection problem, with T ,

equal covariance matrices on both hypotheses. Thus, denoﬁ‘ﬂ%‘?re‘] = 11°. It turns_ out t_hat, for a given netwqu, the

by y € R¥*! the vector of sensor measurements, we havethoice Of the edge weights in eqn.(14) plays an important
role in determining the convergence rate of the algorithm. We

I1l. PROBLEM FORMULATION

underH,: y=m,+¢, p=0,1 (6) consider the case of optimum equal weights (see [4]) in this
paper in which the weight matrix is
where we assumm; = —my = m and
W=1I-aL 16
£ ~ N(O.K) ™ (19
where,0 € RV¥*! is the vector of all zeros and( is a with B 2
positive definite covariance matrix. For simplicity, we consider a= A2(L) + An (L) an

a minimum pr.o_bablllty of error detection problem, with equ.a\}vhereL is the network Laplacian matrix (see [4] for other
prior probabilities. It can be shown from standard detection . . :
eight design techniques.)

theo_ry (?ee [10]) that, in such a situation, the optimal gIob\ﬁW can be shown that (see [6]) with such a weight assignment
test is given by we have

_ 2 T —1 H1 . .
y) = ym K7y 254, 0 (8) Ix() — Xaglla < o' | X(0) — Xawg |2 (18)



wherep is given by where the maximization needs to be carried out over the class
1= (I)/AN(D)  1-7 of networks meeting the given constraint on the number of

o= T D = Tra (19) links.

For connected graphsp| < 1 and we have convergence VI. SPECTRUM OFREGULAR GRAPHS ANDRAMANUJAN
(see [6]). From eqns.(18 and 19) it follows that, for faster GRAPHS

convergencep should be as small as possible, which in turn
implies thaty should be as large as possible. In other Wmdﬁ‘l

In this section, we state a few results from spectral graph
eory, which motivate the use of non-bipartite Ramanujan

fast convergence=- smallp = large~y (20) graphs as a candidate for optimal topology.
A regular graphG with N vertices and degréeis a graph with
V. PERFORMANCEBOUNDS FORDISTRIBUTED number of verticesV, where all vertices have the same degree
DETECTION k. We now state some well-known facts about the spectrum of

From eqn.(10), we note that the global sufficient statistiegular graphs. Let/ v be ak-regular graph onV vertices.
is an average of local statistics. This means that the gloddlen, we can arrange the eigenvalues of its adjacency matrix
statistici(y) can be computed using the distributed averaging as (see [11])
algorithm. For this, we set the initial state vector to the local
S . ) = > > .. > > -
statistics, i.e., we start the consensus algorithm with k=2(4) 2 X(4) 2 . 2 An(4) 2 —k (28)
In particular, the multiplicity of the eigenvalug is equal

— T
x(0) = [li(y1)--.In(yn)] (1) {5 the number of connected components of the graph, and
The state update is given by An(A) = —k iff the graph is bipartite (see [11].) From
] ) eqgn.(28) it follows that
x(i+ 1) = Wx(3) (22)
. o i INj(A)| <k, Vje{l,..,N} (29)
whereW is given by eqn.(16). At any timg we consider the
following test at senson, It can be shown that, fok-regular graphs, the Laplacian
My eigenvalues (see eqn.(5)) are related to those of the adjacency
zn(i) 2 0 (23) matrix by
o A(L) =k — \i(A) (30)

wherez,, (i) is then-th component ok(¢). Let P*(i) denote
the probability of error of the corresponding test. Also, Ret
be the probability of error of the optimum global test (s
eqgn.(8).) Then, from Section 1V, it follows

We call an eigenvalue of magnitude a trivial eigenvalue.
eWe now state a well-known theorem by Alon and Boppana
?see [12]).

Jim PI(i) = Pey n=1,... N (24)  Theorem 1Let {Gn(m)x}m>1 be a family of k-regular
. _ graphs, where the number of vertic¥$m) — oo asm — oo.
The convergence speed Bf'(i) is determined by the conver- g4 et \(A,,) denote the magnitude of the largest non-trivial
gence speed of , (i) to the global statistid(y), and thus by gjgenvalue of the adjacency matris,, in absolute value.

the factory. Then
For the simplified case ofn = p1 and K = 021, we now ’ liminf A(A,,) > 2vk — 1 (31)
establish a bound o/ (i) in terms of~. It can be shown m—oo "=
that (see [6]) Thus, assuming that the limit exists, we have, for any family
P, = erfc (NVN) (25) of k-regular graphs, where the number of verticés— oo,
g

Jim A(4) = 2vE—1 (32)
where erf¢z) = - [ ¢=="/24z. Also, it can be shown that -

(see [6]) Var Jz A k-regular graph is called Ramanujan if (see [13])

,Uf\/N 26 AMA) <2vVEk -1 (33)
o/1+ p%(N —1) It follows from eqns.(28 and 30) that for a (connected) non-
bipartite Ramanujan graph of degrkdsee [6])

where p is given in egn.(19). Egn.(26) shows that the lo-
cal detector achieves the performance of the optimal global Ao(L) >k —2vVk—1 (34)
detector ifp < 1, and, further, that the smalley is, the —

faster the convergence. From eqn.(20), it follows that for fast AN(L) <k +2VE—1 (35)
convergencey = \»(L)/An (L) should be as large as possibleHence, for (connected) non-bipartite Ramanujan graphs,
and hence the topology design problem may be stated as (D) N PN |

maximize~y (27) 1= AN(L) T kE+2VE—1

P, <PI'i)< erfc(

(36)




In the sequel, whenever we mention Ramanujan graphs, the procedure of Cayley graph construction, which provides a
actually refer to connected non-bipartite Ramanujan graphg&y of constructing regular graphs using group theory.

Also, as mentioned earlier, all the graphs considered in tr}_{s Algebraic C N
paper are connected. - Algebraic Loncepts

There exist explicit constructions of infinite families of non- We start with the definition of a group (see [17].)

bipartite Ramanujan graphs (see [13]), and each graph of the

family satisfies the lower bound om given in eqn.(36). It Definition 2 (Group): We define a groupX to be a non-
follows from eqn.(31) that this lower bound is in fact arfMpty set of elements, equipped with a binary operation “,
asymptotic (in the number of node¥) upper bound ony Satisfying the following properties:

for families of k-regular graphs (see [6]), and hence the classl) a.b € X, Va,b € X (closure property)

of non-bipartite Ramanujan graphs are optimal asymptotically

among the class of-regular graphs. This suggests that the2) a.(b.c) = (a.b).c, Va,b,c € X (associative property)
non-bipartite Ramanujan graphs are suitable candidates for

topology design in large sensor networks. 3) There exists an element € X, called the identity

element, such that.e = e.a =a, Vae X
VIl. REGULAR VS NON-REGULAR GRAPHS

In this section, we present an inequality relatingo the ~ 4) For eactu € X, there exists an 9'”??‘“1 € X, called
degree distribution of graphs, which shows that heterogeneity the inverse ofs, such thata.a™ =a ".a=e

in the degree distribution does not favor large values.aive \We are now in a position to describe Cayley graphs as follows.
recall two results from spectral graph theory. For any graph

G with N vertices, let us define Cayley Graphs We start with a groupX, consisting of

dmin = min(d;, j € {1,...,N}) (37) N elements and &-element symmetric subsef, C X (by a
. ] symmetric subset we mean,c S = s~ ! € 5. The setS
where,d; is the degree of thg-th node (see eqn.(3).) AlsO, ig often called the set of generators in the literature. We now
dmax = max(d;, j € {1,...,N}) 38) form a graphG = (V, E) from X, by choosing the vertex
o _ setV = X, and (u,v) € E iff vu=! € S. It follows that the
In other wordsmin anddmax are the minimum and maximumgraph @, formed in this way, ist-regular (see [18]).
degrees of7 respectively. Then, we have (see [14])
N We now summarize some number theory concepts, required
A2(L) £ = dmin (39) in the sequel.
N -1 q
and Definition 3 (Congruence) The statement: = b mod (n)
implies thata — b is divisible byn.

N
A (L) 2 57— dmax (40)

From eqns.(39) and 40) it follows that, for any graph Definition 4 (quadratic Residue) We call a is a quadratic
Y= Ao(L) _ dmin (41) residue modulob, if there exists an integer, such that
AN(L) T dmax c? = amod (b).
Eqn.(41) shows that, for graphs with large heterogeneiB/ o i
(large spread) in degree distribution, the valueyols small Definition 5 (Legendre Symbol) We define the Legendre
and hence such networks are not good from the point of vigymbol (%) for an integera and a primep as
of consensus algorithms.

a 0 if p dividesa
() = 1 if a is a quadratic residue modujo
p —1 if a is a quadratic non-residue moduyto
VIIl. EXPLICIT CONSTRUCTIONS OFRAMANUJAN (42)
GRAPHS

For the LPS-I construction, we also need to describe the
In this section, we provide constructions of Ramanujarojective Special Linear group PSLEgZ).

graphs available in the literature. Explicit constructions of

infinite families of Ramanujan graphs exist for the cas®SL(2Z/¢Z): The setZ/qZ = {0,1,..,q — 1} is the

wherek — 1 is a prime (see [13], [15]) or a prime powerfield of integers modula;, whereq is a prime. We start by

(see [16]). In this paper, we consider two constructions abnsidering the set &fx 2 matrices with entries from the field

non-bipartite Ramanujan graphs based on Lubotzky-Phillipg/¢Z, such that determinants are non-zero quadratic residues

Sarnak (LPS) (see [13]), and call them LPS-I and LPS-II. Firgtodulo q. We then can define an equivalence relation on

we summarize some concepts from algebra, needed for this set, where two matrices belong to the same equivalence

development of the rest of the paper. We also briefly outliritass, if one is a non-zero scalar multiple of the other (here



scalar refers to an element of the fieftdqZ.) The set of all
these equivalence classes is the group RSL(¢Z), see [19].

We are now in a position to give the non-bipartite Ramanujan
graph constructions as follows.

B. LPS-I Graphs

Let us take two unequal primgs and ¢, congruent to 1
modulo 4, such that the Legendre symt(cg) =1 Let X
be the Projective Special Linear group, PSIA2;Z). It can
be shown thatX| = 42-1 (see [13].) The LPS-I graph
is a Cayley graph over the grouff of order N = |X|
and degreg: = p + 1. The set ofp + 1 generators for this
construction is given as follows. We choose an integauch
that 2 = —1 mod (q) (the fact thatg is a prime congruent
to 1 modulo 4 guarantees the existence of such.pilso,
let 8 = (ao,a1,a2,a3) be a solution of the equation of the
diophantine equation

af +al+a3+az=p (43)

It can be shown from a theorem by Jacobi (see [13]) that there
arep + 1 solutions of this equation, withy > 0 and odd, and

a; even forj = 1,2,3. To each such solutiof we assign a

2 x 2 matrix, 3, in PSL(2Z/qZ) as

vvvvv

~_ a0+ia1 a2+ia3 44
p= —ao +ia3  ag — iaq ( ) Fig. 1. LPS-II graph with number of vertice8 = 62 and degreé = 6
(figure generated using software Pajek.)
Thesep + 1 matrices form the generator s€t and the LPS-|

graph is produced by the action 6fon PSL(2Z/qZ). The
graph G produced in this way is a connected non-bipartite
Ramanujan graph, with number of verticAs= @ and
degreek = p + 1. As an example of an LPS-I construction
we may choose = 13 andqg = 17. It follows thatp andq are

Methods for the explicit construction of infinite families of
Ramanujan graphs constitute an active research field and there
are constructions for arbitraryf and &, which are Ramanujan
with very high probability. As an example see [20], which

congruent to 1 modulo 4 an(ij—’> = 1. In this case, we get yses a new type of graph product to construct good expander
a connected non-bipartite Ramanujan graph of degreel4  graphs.

and orderN = 2448.

The only drawback with the LPS-I graphs is that the number IX. NUMERICAL STUDIES

of vertices grows a®)(¢®) and becomes very large even for In this section we present numerical studies on the con-

moderatey. We now consider another construction from [13]yergence properties of different networks, with respect to the

which we call LPS-II, for which the number of vertices growslistributed detection problem. In Section V, we have shown

only linearly. that the local probability of errorP(i), at each senson,
converges to the global probability of erraf,. We define

C. LPS-Il Graphs T. to be the number of iterations (averaged over all nodes)

Starting with two unequal primes and ¢, with (%) =1, required to converge to within0% of the global probability

we form the Projective LineP!(F,), as of error. The comparison metric among different probabilities
is then the convergence speéfl, given by
PY(F,) ={0,1,...,q¢ — 1,00} (45)
Se = 1 (46)
which contains the field of integers modude with an ad- CT,

ditional symbolco. The LPS-II graph is produced by thegyr 5 graphiy with IV vertices andM edges, we define the
action of the setS of p + 1 generators (considered in theaverage degrekayg as

LPS-I construction) o (F,) in a linear fractional way. The
graphs, thus obtained, are connected non-bipartite Ramanujan M

. ! ’ . . ka\/g Bl (47)
with degreek = p+1 and number of vertice® = ¢+1. Fig. 1 N
shows an LPS-II graph wittv = 62 andk = 6 (obtained by It is to be noted that, fok-regular graphs, the average degree,
choosingp = 5 andgq = 61.) kavg = k. We now compare the convergence properties of the



non-bipartite Ramanujan graphs (in particular LPS-II graphs)
with those of regular ring lattice networks, random &sd
Reryi networks, and small world (Watts-Strogatz) networks.

We first give a brief description of these graphs. 90
A. Regular Ring Lattice (RRL)
These are highly structuretregular graphs where thy 800
vertices are arranged on a circle, and each vertex is connected
to its k/2 nearest neighbors on either side. 0.
B. Erdds-Regi graphs (ER)
These are obtained by randomly choosing (uniformily)= J 56007
% edges out ow possible edges (see [21]). I
C. Watts-Strogatz (WS-I) ésoo
These are small-world networks. A WS-I graph withh ”’[;
vertices and average degrég, is constructed by randomly
rewiring the edges of an RRL graph witN vertices and 400
degreéekayg, With a rewiring probabilityd < p,, < 1 (see [22].)
All the comparison studies are based on a detection environ-
ment with the following parameters (see Section V): 300F
m=ypl, K=dI (48)
. o . R _ . . 200 1 1 1 1 1
with a —25 dB SNR (signal-to-noise ratio). 1000 1200 1400 1600 1800 2000 2200
Fig. 2 compares the convergence properties of LPS-II N

graphs with RRL graphs. We plot the ratio of the convergence

speeds, i.e.,%, for different values of the number

of vertices N, keeping the average degrég,y = 18. It

follows from the plot that the LPS-II graphs perform ordersig 2. Ratio of convergence speed of LPS-II graphs to RRL graphs for
of magnitude better than the RRL graphs, and, in particulaifferent values ofV andk = 18.

the relative performance of the LPS-Il graphs over the

RRL graphs increases steadily with increasiNg In Fig. 3
we compare the LPS-II graphs with the BsdReRi (ER)
graphs. Here, also, we keép,q = 18 and vary the number
of nodes. Since the ER constructions are random, for each
N, we generate 250 different graphs, and plot the maximum,
average, and minimum. We note that the LPS-Il graphs
perform much better than these random graphs, even foin this paper, we study the problem of topology design
finite values of N, and the performance becomes better witfor distributed detection in sensor networks. We reduce the
increasing N. Finally, in Fig. 4 we compare the LPS-llconnectivity network design problem to a spectral graph
graphs with WS-I small world graphs. Specifically, we fixdesign problem, which shows that optimizing convergence
the number of vertices aV = 6038 and average degree atspeed is equivalent to maximizing the eigenraio Using

kavg = 18 and generate WS-I graphs for different rewiringesults from spectral graph theory, we show that the class
probabilities p,,. Here, also, we note that the LPS-II graplof non-bipartite Ramanujan graphs are essentially optimal,
performs better than the best WS-I graph (see [6] for mome an asymptotic sense (in the number of sensors.) We also
detailed numerical studies.) analytically establish the fact that a large heterogeneity
These numerical studies show that the non-bipartile degree distribution does not favor good convergence
Ramanujan graphs (in particular, the LPS-Il graphsates. Hence, random networks with Poisson or power-law
outperform topologies with nearest neighbor connectivitdegree distributions are not optimal from the point of view
completely random networks, and graphs with small-worlof convergence speed. We supplement these facts through
type of connectivity, in terms of convergence speed. Weaumerical studies, which show that, even for finite values of
see that the relation betweenand the degree distribution,the number of sensot¥, the non-bipartite Ramanujan graphs,
given in eqn.(41), plays an important role in explaining theutperform topologies with nearest neighbor connectivity,
superiority of Ramanujan graphs over the random networksmpletely random networks, and networks with small-world
Specifically, it points out that graphs with heterogenoysroperties.

degree distributions (for example, Poisson, power-law tailed),

cannot have very high values of

X. CONCLUSIONS
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