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Abstract: The paper considers the time sampling of thea priori probability distribution
function of the state of a diffusion process by semigroup decomposition methods. We
approximate the semigroup generated by the evolution equation associated to the diffusion by
Trotter’s formula. We benchmark the approximation against an exact method,viz. the Wei-
Norman decomposition). We illustrate both methods through the discretization of the Fokker-
Planck equation associated with the PLL estimation error probability distribution function.
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1. INTRODUCTION

Diffusion models (Jazwinski, 1970; Lipster and Shiry-
ayev, 1984) find many important applications in di-
versified fields of science and technology. In Bi-
ology examples range from cell (e.g. ion currents)
(Smith, 2002) to population models (population dis-
persal) (Britton, 2003). Industrial processes with large
spatial dimensions provide also examples. In the class
of transport/reaction-diffusion processes (Grindrod,
1996), one or more variables with a space dependency
are described by a diffusion model or a degenerate
diffusion model as in the case of distributed collector
solar fields (Silvaet al., 2003). The classical problem
of course is heat diffusion in a bar heated at a central
point, whose temperature satisfies the well known heat
equation. Diffusion models in dynamic congestion
control protocols for communication networks allow
to address traffic variability (Mukherjeeet al., 1991).
Analysis of tracking properties of adaptive algorithms
for time varying systems, both for signal processing
(Benveniste, 1987) and control (Coitoet al., 1995)
relies on diffusion models. As a final example, dif-

1 Part of the work of J. M. Lemos has been done under the project
AMBIDISC, contract POSI/SRI/36328/2000.

fusion models are a basic starting point for signal
processing and communication problems. The phase
lock loop (PLL) estimation error verifies a diffusion
model (Viterbi, 1963) and will hereafter be taken as a
case study.

The time evolution of the state of a diffusion process
satisfies a stochastic ordinary differential equation,
and its probability density function (p.d.f.) is the so-
lution of the Fokker-Planck partial differential equa-
tion (Jazwinski, 1970). Computer based design and
implementation of estimation and control algorithms
require discrete time models that adequately represent
the system dynamics. When a probability distribution
(or other space functions such as temperature) is used
as a ”state,” this becomes the problem of time sam-
pling an infinite dimensional system.

The sampling problem consists of, given the state dis-
tribution at timetk, compute (eventually approximate)
the state distribution at the next sampling timetk+1.
Once the ”discrete time model” relating both space
functions is available, for the sake of illustration, it
may be applied to a control problem by selecting the
value of the manipulated value to apply to the plant
such that the state distribution attains some prescribed
value. This, together with a time varying sampling
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interval, is the path followed in (Silva, 2003; Silva
et al., 2003a) to design predictive controllers for dis-
tributed collector solar systems. In relation to esti-
mation problems, the Fokker-Planck equation corre-
sponds to the prediction step in optimal nonlinear
filtering problems where the message is continuous
and the observations are discrete. As such, addressing
the discretization of the Fokker-Planck equation sheds
light on the relation between continuous and discrete
optimal nonlinear filters.

To solve the sampling problem for infinite dimension
systems, we resort here to semigroup decomposition
methods. For the class of problems considered, a semi-
group is (McBride, 1987) a family of bounded (con-
tinuous) linear operators, indexed by time, which de-
scribe the time response of dynamic systems evolving
from an initial condition state.

Semigroups may be decomposed by expressing them
in simpler semigroups that can be exactly computed.
This paper considers two decomposition methods. The
Wei-Norman method (Weiet al., 1964; Ocone, 1980)
is an exact method (which may not always be applied),
relying on a change of time scale, given by the so-
lution of the so called Wei-Norman equations. The
second is an approximate method known as Trotter’s
formula (Trotter, 1959). Actually, Trotter’s formula
can be obtained as a first order Taylor’s expansion of
the solution of the Wei-Norman equations, whenever
these represent the underlying semigroup.

The Wei-Norman method was originally developed
for finite dimensional operators and applied to ex-
press the solution of ordinary differential equations
as a product of exponentials (Wei, 1964). In Numer-
ical Analysis, this set of ideas was the subject of re-
cent interest within the context of geometric integra-
tion and discretization methods for differential equa-
tions on manifolds, based on the use of Lie group
methods (Celledoniet al., 2001). The method was
extended to infinite dimensional operators and ap-
plied to the discretization of optimal non-linear filters
(Ocone, 1980; Brockett, 1981; Cohen de Lara, 1997).
Trotter’s formula has been used in Quantum physics
to solve Schr̈oedinger’s equation (Weinholtz, 1982)
and is sometimes rediscovered to solve engineering
problems in a somewhat empirical way without any
reference to Trotter (Dresnack, 1968; Camachoet
al., 1988). In (Silva, 2003), a controller for a dis-
tributed collector solar field is designed on the basis
of a discrete time model obtained by the application
of Trotter’s formula. In (Neidhartet al., 1998) error
bounds for Trottter’s formula approximation are de-
rived (see also the references therein).

The contribution of this paper consists in showing how
semigroup decomposition methods may be applied
for sampling the Fokker-Planck equation associated to
diffusion processes and in relating the time propaga-
tion in this way and by sampling the original diffusion
model.

The paper is organized as follows: After stating the
paper’s purpose and placing its contribution in per-
spective in this introduction, basic concepts on semi-
groups including the Wei-Norman method and Trot-
ter’s formula are reviewed in section 2. The appli-
cation to diffusion systems is presented in section 3,
where the Fokker-Planck equation is sampled using
Trotter’s formula. In the case of linear diffusions, the
Fokker-Planck equation is solved by the Wei-Norman
approach and this is explored in order to shed light
on the type of approximation yielded by Trotter’s for-
mula. Furthermore, it is shown that Trotter’s formula
yields a probabilistic interpretation of the discretiza-
tion of the Fokker-Planck equation. Conclusions are
drawn in section 4.

2. SEMIGROUP CONCEPTS

This section presents basic concepts and results con-
cerning semigroups that will be used subsequently.

Consider the Banach space X of continuous functions
equipped with the supremum norm.

Definition 1 (McBride, 1987)

A semigroup of operators of classC0 is a family
of operatorsTt defined in X and indexed by the
parametert ∈ R (time) such that:

(1) Tt is defined∀t ≥ 0;
(2) Tt satisfyies thesemigroup condition: ∀s, t ∈ R

Tt+s = TtTs (1)

(3) Tt satisfyies the continuity condition

lim
t→∞

Ttx = x ∀x ∈ X

(4) Tt is bounded∀t ≥ 0:

∃c ∈ R : ∀x ∈ X ‖Tx‖ ≤ c‖x‖
Definition 2 (McBride, 1987)

The infinitesimal generatorof the semigroupTt is the
operator defined by

A = lim
t→0

t−1(Tt − I)

whereI is the identity operator.

Remark 1

The setB(X) of bounded linear operators in a Banach
space X is itself a Banach space with respect to the
norm induced by the norm defined in X:

‖Tt‖ 4= sup
{‖Ttx‖
‖x‖ : x ∈ X \ {0}

}

Under this norm, definition 2 states that the semigroup
Tt satisfies the following differential equation, known
as an evolution equation:

d

dt
Tt = ATt = TtA (2)

with the initial conditionT0 = I. The solutionTt of
(2) is referred to as the integral operator corresponding



to A or, by abuse of notation, as the ”exponential of
A.”

2.1 Trotter’s formula

Consider the situation in whichA is the sum of two
operatorsA1 and A2. Let T 1

t and T 2
t be the corre-

sponding operators (semigroups),i. e.assume that

d

dt
T i

t = AiT
i
t i = 1, 2 (3)

while Tt satisfies

d

dt
Tt = (A1 + A2)Tt (4)

In general, it it is not true thatTt results from the com-
position ofT 1

t andT 2
t . However, this is approximately

true for smallt, meaning thatTt can be approximated
by the iterated composition ofT 1

∆ andT 2
∆ over small

intervals of time∆. This is stated in the following
theorem:

Theorem 1(Trotter, 1959)

Let T 1
t andT 2

t satisfy thenorm condition:

∃ω ∈ R : ∀t > 0 ‖T i
t ‖ ≤ eωit i = 1, 2

and thatD (A1 + A2) = D (A1)∩D (A2) is dense in
X, whereD (A) denotes the domain ofA. Then, (the
closure of)A1 + A2 generates a semigroup of class
C0 iff (the closure of)R (λI −A1 −A2) is dense in
X for someλ > ω1 + ω2, whereR(A) denotes the
range ofA. If A1 + A2 (or its closure) generates a
semigroup of classC0, this is given by

Tt = lim
∆→0

(
T 1

∆T 2
∆

)dt/∆e
(5)

wheredt/∆e represents the greatest integer that does
not exceedt/∆.

Expression (5) is commonly known as Trotter’s for-
mula. The approximation embodied by Trotter’s for-
mula may be extended to a finite sum of operators.

Remark 2

Trotter’s formula is one of a family characterized
by the equality of the first derivative att = 0 of
the semigroup generated with its approximation. An-
other approximation formula is the semi-sum formula
(Weinholtz, 1981), given by

Tn∆ ≈
[
1
2
(T 1

2∆ + T 2
2∆)

]n

(6)

2.2 The Wei-Norman method

Since, in (4),Tt is in general not given by the com-
position ofT 1

t andT 2
t , one can ask whether there is

a change of time variable such that the composition
results in an exact equality. This is the approach of
the Wei-Norman method (Wei, 1964; Ocone, 1980).
The Baker-Campbell-Hausdorf (BCH) formula plays

here a key role. LetL be the Lie Algebra generated by
the linear operatorsA1, . . . , Am. This is the vector
space generated by all the operators, together with the
operators generated, in all possible combinations, by
the Lie product defined by

[Ai, Aj ]
4
= AiAj −AjAi ∀Ai, Aj ∈ L (7)

Theorem 2(Ocone, 1980; Lara, 1997)

Assume thatL is of finite dimension and denote
by eAit the integral operator corresponding to the
infinitesimal generatorAi. The following equality,
known as the BCH formula, holds forA, B ∈ L:

eABe−A = B + [A, B] +
1
2!

[A, [A, B]] +

+
1
3!

[A, [A, [A, B]]] + . . . (8)

Remark 3

Remark that for commuting operators,i.e. when
AB = BA, the formula reduces to

eABe−A = B (9)

In order to explain the Wei-Norman method, consider
the evolution equation (4) in the situation in which
A1 andA2 form a basis of the Lie algebra that they
generate, with the commuting rule

[A1, A2] = γA2 (10)

whereγ ∈ R is a known parameter.

An example is provided by the PDE

∂

∂t
p(x, t) = −u(t)

∂

∂x
p(x, t) + R(t) (11)

which provides a simple model for a distributed col-
lector solar field (Silva, 2003). Herep(x, t) is the
temperature of a moving fluid (oil) at positionx and
time t, u is the oil flow andR is a continuous func-
tion modelling incident sun radiation. Defining the
infinitesimal generators

A1p(x, t)
4
= −u(t)

∂

∂x
p(x, t) (12)

A2p(x, t)
4
= R(t) (13)

equation (11) is associated to the evolution equation
(4), whereTt is the integral operator transferring the
temperature spatial distribution at timet = 0 to
the temperature spatial distribution at timet > 0.
An abuse of notation is made because the operators
depend ont.

Assume that the exact solution of (4) can be written as

Tt = eA1g1(t)eA2g2(t) (14)

and look for conditions satisfied by the real valued
functionsg1 andg2. To find these, differentiate (14)
and use (3) and the special case (9) of the BCH
formula to get

d

dt
Tt = ġ1e

A1g1A1e
A2g2 + ġ2e

A2g2A2 =



=
[
ġ1e

A1g1A1e
−A1g1+

+ġ2e
A1g1eA2g2A2e−A2g2e

−A1g1
]
eA1g1eA2g2 =

=
[
ġ1A1 + ġ2e

A1g1A2e
−A1g1

]
Tt (15)

From (8) and (10), it follows that

eA1g1A2e
−A1g1 = eγg1(t)A2 (16)

and hence, combining (15, 16) and equating to (4))

A1 + A2 = ġ1A1 + ġ2(t)eγg1(t)A2 (17)

SinceA1 andA2 form a basis, the corresponding co-
efficients should be equal and the Wei-Norman equa-
tions for the case at hand follow:

ġ1(t) = 1 (18)

ġ2(t) = eγg1(t) (19)

SinceT0 = I, the initial conditions must be

g1(0) = 0 g2(0) = 0 (20)

This ODE initial problem has the solution

g1(t) = t (21)

g2(t) =
1
γ

(
eγt − 1

)
(22)

Hence, the Wei-Norman decomposition of the semi-
group that represents the exact solution of (4) is

Tt = eA1teA2( 1
γ (e−γt)−1) (23)

The integral operators corresponding toA1 andA2 are

exp(tA1)p(x, 0) = p(x−
∫ t

0

u(σ)dσ, 0) (24)

exp(tA2)p(x, 0) = p(x, 0) +
∫ t

0

R(σ)dσ (25)

Their composition according to (23) yields the solu-
tion of (11) as

p(x, t) = p(x−
∫ t

0

u(σ)dσ, 0) +
∫ t

0

R(σ)dσ (26)

THis is the formula used in (Silva, 2003) as a basis for
control design. Although (26) can be obtained using
the standard Laplace’s method, it is derived here as a
simple application of the Wei-Norman method.

In general, the Wei-Norman equations always have
a solution, although it may not be global. It should
also be remarked (Brockett, 1981) that the functions
gi only depend on the constantsγ that define the
commuting rules of the infinitesimal operatorsAi and
not on the actual form of the operators. Thus, by
solving the Wei-Norman equations, a whole family of
linear evolution equations is solved.

2.3 Error bounds

Whenever the Lie algebra generated by the partial
operators is finite, the Wei-Norman method can be
used to establish error bounds on approximate semi-
group decomposition methods such as Trotter’s for-
mula. Consider again the example of section 2.2, in

which the Wei-Norman decomposition is given by
(14), while Trotter’s formula approximation, denoted
TT

t is given by

TT
t = eA1teA2t (27)

The norm of the error over a small interval∆ is given
by

‖T∆ − TT
∆‖ = ‖eA1g1(∆)eA2g2(∆) − eA1∆eA2∆‖

(28)
where ‖ · ‖ denotes the operator norm defined in
Remark 1. Expandg1(∆) andg2(∆) in Taylor series
around ∆ = 0 and assume that (as for bounded
operators) the following series expansions converge

eAi∆ = I + Ai∆ +
1
2!

A2
i ∆

2 + . . . (29)

By expanding the error operator in (28), it is possible
to obtain the following bound:

‖T∆ − TT
∆‖ ≤

1
2
‖ [A1, A2] ‖∆2 + O(∆3) (30)

Remark 4

Trotter’s formula equates terms up to first order and,
if the operators commute, it is exact. This is a conse-
quence of the fact that the first order expansion of the
solution of the Wei-Norman equations is

gi(∆) ≈ ∆ (31)

Actually, Trotter’s formula corresponds to the high-
est order Taylor’s approximation of the solution of
the Wei-Norman equations that does not imply the
computation of the Lie brackets of the infinitesimal
operators. For error bounds for unbounded operators
see (Neidhardt, 1998).

3. THE FOKKER-PLANK EQUATION

The semigroup decomposition methods reviewed in
the previous section are now applied to sample the
PDE that propagates in time the p. d. f. of the state
of a diffusion model.

3.1 Diffusion models

Consider the diffusion process with statex given by
the solution of the stochastic differential equation

dxt = f(xt)dt + σdwt (32)

whereσ is a constant parameter, the initial condition
x(0) = x0 is a random variable with p.d.f.px0 and
wt is a standard Wiener process. Fort > 0 the
probability density functionp(x, t) of the statex of the
diffusion process satisfies the Fokker-Planck equation
(Jazwinski, 1970), given by

∂p

∂t
= −fx(x)p− f(x)

∂p

∂x
+

σ2

2
∂2p

∂x2
(33)



with the initial condition

p(x, 0) = px0(x) (34)

and the boundary conditions

p(±∞, t) = 0, ∀t > 0 (35)

Two particular cases of interest to be considered here-
after are the linear case, in which

f(x) = ax (36)

and the PLL error dynamics (Viterbi, 1963), in which

f(x) = ax−KPLLsin(x) (37)

Here,a ≤ 0, andKPLL are constant parameters.

3.2 Applying Trotter’s formula

To apply Trotter’s formula to the Fokker-Planck equa-
tion (33), define the infinitesimal generatorsL1, L2,
andL3 by

L1p(x, t) = −fx(x) · p(x, t) (38)

L2p(x, t) = −f(x)
∂

∂x
p(x, t) (39)

L3p(x, t) =
1
2
σ2 ∂2

∂x2
p(x, t) (40)

The Fokker-Planck equation (33) is written

∂

∂t
p(x, t) = (L1 + L2 + L3) p(x, t) (41)

The following proposition summarizes a number of
facts needed for applying Trotter’s formula. The proof
is readily done using standard techniques.

Proposition 1

A) The semigroupsT i
t generated by the infinitesimal

generatorsLi, i = 1, 2, 3, are given by

T 1
∆p(x, t) = p(x, t) · exp (−fx(x)∆) (42)

T 2
∆p(x, t) = p(α−1(α(x) + ∆), t) (43)

with

α(x) = −
∫ x dξ

f(ξ)
(44)

α−1 denoting the inverse ofα, and

T 3
∆p(x, t) = p(x, t) ∗G(x, ∆) (45)

where∗ stands for convolution andG is a Gaussian
kernel given by

G(x, ∆) =
1

(2πσ2∆)1/2
exp

(
− x2

2σ2∆

)
(46)

B)By using a Taylor series development, the following
approximations are seen to hold for small∆:

T 1
∆p(x, t) ≈ 1

1 + fx(x)∆
p(x, t) (47)

and
T 2

∆p(x, t) ≈ p(x− f(x)∆, t) (48)

C)The operatorsT i, i = 1, 2, 3 satisfy the conditions
of Definition 1 as well as the norm condition of
Theorem 1.

  Continuous
state equation

    Discrete
state equation

 Fokker-Planck
     equation

Operators for
discrete time
pdf propagation

  Discretize in
time (first order)

Trotter's formula

Propagate the
a priori pdf of
the state
(discrete time)

  Propagate the
   a priori pdf of
      the state
(continuous time)

Fig. 1. Probabilistic interpretation of sampling the
Fokker-Planck equation using Trotter’s formula.

Remark 5

Instead of using the expressions (42-45) or the approx-
imations (47, 48), the semigroupsT i, i = 1, 2, 3 may
be approximated by applying finite differences to each
of the equations

∂p

∂t
= Lip (49)

The semi-sum formula (6) reduces then to the explicit
method for the discretization of the PDE and Trotter’s
formula to the scheme proposed heuristically in (Bella
et al., 1968).

Proposition 2

Given the operators defined in Proposition 1, Trotter’s
formula yields the following approximation of the
semigroup generated by the Fokker-Planck equation
(33):

p(x, t + ∆) ≈ T 1
∆T 2

∆T 3
∆p(x, t) (50)

3.3 Probabilistic interpretation

The following proposition states a probabilistic inter-
pretation of the application of Trotter’s formula to the
Fokker-Planck equation.

Sample the diffusion model (32) to obtain the stochas-
tic difference equation:

xk+1 = xk + f(xk)∆ + σ(wk+1 − wk) (51)

wherexk := x(k∆), wk := w(k∆) and ∆ ∈ R
is the discretization step. As∆ → 0 the solution of
(51) converges to the solution of (32) in mean square
(Jazwinski, 1970).

Proposition 3

For ∆ small the diagram of fig. 1 is valid,i. e., the
operators which propagate in discrete time the p.d.f. of
the state of the discrete model are the same as the ones
obtained by applying Trotter’s formula to the Fokker-
Planck equation.

Proof of proposition 3

Since the random variable

ζ = θ(xk) = xk + f(xk)∆ (52)



is independent of the incrementwk+1 − wk of the
Wiener process it follows that

px(k+1) = pζ ∗ N (0, σ2∆) (53)

whereN denotes a Gaussian kernel andpz denotes
the p. d. f. of the random variablez. Furthermore

pζ(ζ) = px(k) ·
1∣∣∣dθ(xk)

dxk

∣∣∣
|x(k)=θ−1(ζ) (54)

From (52)

1∣∣∣dθ(xk)
dxk

∣∣∣
=

1
1 + fx(xk)∆

(55)

and the action of the operatorT 1
∆ is recovered (com-

pare with (47)). Furthermore, again from (52)

xk = ζ − f(xk)∆ (56)

When∆ is small,xk ≈ ζ and

xk ≈ ζ − f(ζ)∆ (57)

i.e. by (48) the change of variable in (54) is seen to
be approximately the same as the one defined by the
operatorT 2

∆.

In conclusion, computing the p.d.f. ofxk+1 from
the p.d.f. ofxk involves the operations defined by
Trotter’s formula approximated up to first order in∆.

Remark 6

For (54) to be valid, the functionθ(xk) must be
monotonous,i.e., its total derivative must be either
strictly positive or strictly negative in all its domain.
This is true in the linear case (36). For the PLL error
dynamics (37)

dθ

dxk
= 1 + ∆a−KPLL∆cos xk (58)

SinceKPLL > 0 (Viterbi, 1963) anda ≤ 0, the
monotonicity conditions are then either

1
KPLL − a

> ∆ (59)

for positive derivative or, for negative derivative

1
−KPLL − a

> ∆ and KPLL > −a (60)

or

1
−KPLL − a

< ∆ and KPLL < −a (61)

3.4 The linear case

Although in the linear case the Fokker-Planck equa-
tion may be solved exactly by standard methods, it is
interesting to apply the Wei-Norman method and com-
pare the exact decomposition thereby obtained with
the approximation resulting from Trotter’s formula.

Assuming therefore that (36) holds, the infinitesimal
operatorsLi, i = 1, 2, 3 defined in (38-40) are a basis
for a Lie Algebra with the commuting rules

[L1, L2] = 0 (62)

[L1, L3] = 0 (63)

[L2, L3] = 2aL3 (64)

Let Tt be the integral operator expressing the solution
of the Fokker-Planck equation. According to the Wei-
Normal method, assume a decomposition of the form

Tt = eL1g1(t)eL2g2(t)eL3g3(t) (65)

By following the procedure described in section 2.2,
the functionsgi(t), i = 1, 2, 3 are seen to satisfy the
set of ODE’s with zero initial conditions:

dg1(t)
dt

= 1 (66)

dg2(t)
dt

= 1 (67)

dg3(t)
dt

= e−2ag2(t) (68)

(69)

Therefore

Tt = exp(L1t) exp(L2t) exp(L3
1− e−2at

2at
t) (70)

Observe now that the integral operator defined by

Ut = exp(L3g3(t)) (71)

is to be interpreted as the solution of the evolution
equation

d

dt
Ut = L3ġ3(t)Ut (72)

Therefore, the integral operator

exp
(

L3
1− e−2at

2at
t

)

is to be obtained by solving the PDE

∂

∂t
p(x, t) =

σ2

2
e−2at ∂2

∂x2
p(x, t) (73)

with the initial condition

p(x, 0) = p0(x) −∞ < x < +∞ (74)

This problem can be solved by applying the Fourier
transform inx to both sides of (73). The resulting in-
tegral operator is a convolution of the initial condition
with the Gaussian kernel

Q(x, t) =
exp

[
− x2

σ2
a (1−e−2at)

]

[
π σ2

a (1− e−2at)
]1/2

(75)

Assume that the initial condition isp(x, 0) = δ(x)
whereδ is the Dirac impulse function. Eq. (70) ex-
presses therefore the solution of the Fokker-Planck
equation in the linear case by the following operations:

1.A convolution with the Gaussian kernel (75). Since
the initial condition is an impulse, the Gaussian kernel
is left unchanged.
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Fig. 2. Time evolution of the variance of the solution
of the Fokker-Planck equation for the linear case.

2.A replacement ofx by xe−at (corresponding to
operatorT 2).

3.Multiplication bye−at.

The resulting solution is the Gaussian function

p(x, t) =
1√

2πσ2
x(t)

exp
{
− x2

2σ2
x(t)

}
(76)

with the variance

σ2
x(t) = −σ2

2a

(
1− e2at

)
(77)

Remark 7

The approximation yielded by Trotter’s formula is
obtained by replacingg3 = (1 − e−2at)/2a in (70)
by its first order Taylor series development and hence
must be only a local approximation. This may be
evidenced by observing that the approximation given
by Trotter’s formula is a Gaussian as in (76) but with
the variance replaced by

σ2
T (t) = σ2te2at (78)

Fig. 2 compares the exact varianceσ2
x(t) with σ2

T (t).
As it is apparent they are close only for small values
of t. Hence, Trotter’s formula must be used iteratively,
over a small time interval each time. The reason for
this is apparent from (49). Trotter’s formula implicitly
assumes that the r.h.s. of the third equation in (66) is
1, neglecting the influence of operatorT 2. In general,
Trotter’s formula neglects the interaction between the
operators along the intervals during which it is ap-
plied.

3.5 Numerical example – The PLL error dynamics

In the cases in which the Lie algebra associated to the
infinitesimal generators is not of finite dimension, the
Wei-Norman decomposition cannot be computed and
one has to resort to numerical methods. Trotter’s for-
mula is then a possibility, being particularly useful if a
control application of the sampled model is planned.
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Fig. 3. Time evolution of the solution of the Fokker-
Planck equation for the PLL, as computed by
Trotter’s formula.

The numerical implementation of the sampling algo-
rithm defined by (50) raises a number of issues con-
cerned with space discretization. The first difficulty
relies on the computation ofT 2

∆p(x, t) since this re-
quiresp(x − f(x)∆, t), whose value is usually not
available in the computer memory (because it does not
exactly correspond to one of the points of the spatial
grid). Although a time varying sampling interval can
be used such as to match the space and time grids
(Silva, 2003), interpolation is needed if the time incre-
ment∆ is required to be constant. Linear or cubic in-
terpolation may be used. Cubic interpolation provides
a better approximation but has the drawback of not
ensuring the positivity of the solution. Furthermore,
the use of interpolation induces an undesirable effect
referred in (Dresnack, 1968) as ”pseudo-diffusion”
and which amounts to not preserving space impulse
functions, but instead spreading them over different
grid points.

Another important issue are the stability conditions to
be respected when approximating the different opera-
tors with a discrete grid. ForT 3 (convolution with a
Gaussian kernel) this amounts to

h2 < C ·∆ (79)

whereC is a constant andh is the spatial step (length
of the interval between two grid points). This means
that, for a given spatial resolution, the time step cannot
be lower than a certain interval.

Fig. 2 shows the time evolution of the solution of
the Fokker-Planck equation for the PLL, as computed
by Trotter’s formula whena = 0 and KPLL =
1. In this case, the error will diffuse along the real
line, spreading over wider and wider intervals. In
order to reduce the computational burden, the space
grid is gradually increased by adding more and more
intervals of length2π.



4. CONCLUSIONS

The paper considers semigroup decomposition based
methods for time sampling of diffusion models. When
the associated Lie algebra is finite, it is possible to
use the Wei-Norman method, which yields an exact
decomposition. Otherwise, one can resort to Trotter’s
formula, which yields a first order approximation, that
can be iterated over small time intervals. The rela-
tion between both methods is discussed. The methods
considered are illustrated through application to the
Fokker-Planck equation.
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