
Decentralized Resource Management and Fault-Tolerance
for Distributed CORBA Applications*

Carlos F. Reverte and Priya Narasimhan
Electrical & Computer Engineering Department

Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213-3891

cfr@andrew.cmu.edu, priya@cs.cmu.edu

Abstract

Assigning an application’s fault-tolerance properties (e.g.,
replication style, checkpointing frequency) statically, and in
an arbitrary manner, can lead to the application not achiev-
ing its target resilience and performance. The resource
management infrastructure that we have developed trans-
parently determines a CORBA application’s resource usage
and its rate/pattern of invocation across a distributed sys-
tem. Using this information, our infrastructure makes more
informed decisions about the application’s fault-tolerance
properties, and dynamically adapts these decisions, as
faults occur, and as resources are added and removed from
the system. We have designed our prototype to be decen-
tralized so that it is scalable and does not itself constitute a
single point of failure.

1 Introduction
Middleware, such as CORBA and Java, have come to in-
corporate support for many “-ilities” (e.g., reliability, sur-
vivability, real-time). For CORBA middleware, there exist
the Fault-Tolerant CORBA [8] and the Real-Time CORBA
[10] specifications that aim to provide fault tolerance and
real-time, respectively, to CORBA applications. Unfortu-
nately, the CORBA middleware standard can only support
either real-time or fault tolerance in isolation.

While real-time requiresa priori knowledge of the sys-
tem’s temporal operation, fault tolerance necessarily deals
with faults that occur unexpectedly, and with possibly un-
predictable fault-recovery times. Our preliminary measure-
ments [11] demonstrate that faults can disrupt a Real-Time
CORBA application, and do lead to unbounded and variable
fault-detection and fault-recovery times. When both real-
time and fault-tolerance are required to be satisfied within

* This work has been partially supported by the NSF CAREER grant
CCR-0238381 and DARPA PCES contract F33615-03-C-4110.

the same system, it is rather likely that trade-offs [7] are
made during the composition.

Our research on the MEAD (Middleware for Embedded
Adaptive Dependability) system attempts to identify and
to reconcile the conflicts between real-time and fault toler-
ance in a resource-aware manner. Our previous experience
with Eternal [6] has led to our development of the MEAD
system in order to provide for more intelligent, resource-
aware tuning of the level of real-time and/or fault toler-
ance needed by the application. The MEAD infrastructure
aims to enhance distributed real-time CORBA applications
with new capabilities including (i) transparent, yet tunable,
fault tolerance in real-time, (ii) proactive dependability, (iii)
resource-aware system adaptation to crash, communication
and timing faults with (iv) scalable and fast fault-detection
and fault-recovery.

MEAD consists of several run-time and development-
time components, including theFault-Tolerance Advisor,
which allows the application deployer to select the right
reliability configuration settings for his/her application. In
most current systems, finding the appropriate settings for
these fault-tolerance properties is mostly ad-hoc, and usu-
ally involves an unsystematic series of guesses at “good”
fault-tolerance configurations, with the guesses improving
(and hopefully becoming more informed) over time. In-
stead, MEAD makes these property assignments through
the careful consideration of the CORBA application’s re-
source usage, the application’s structure, the user’s relia-
bility requirements, the desired recovery-time bounds, the
system’s resource limits, the number and kinds of faults re-
quired to be tolerated, etc.

This paper discusses (i) the development of MEAD’s
resource management/monitoring infrastructure, (ii) the is-
sues with designing this infrastructure to be decentralized,
scalable, and to avoid single points of failure, along with
(iii) measurements to quantify the overhead and the perfor-
mance of this infrastructure.



ORB

Local Fault
DetectorFactory

Server
Replica

Notifications

Server
ReplicaClient

Logging
Mechanism

Recovery
Mechanism

Logging
Mechanism

Recovery
Mechanism

Logging
Mechanism

Recovery
Mechanism

Global Fault
Detector

Fault
Notifier

Factory

ORB ORB

Replication
Manager

Fault
reports

is_alive()create_object()

create_object()

is_alive()

Local Fault
Detector

Figure 1. Architectural overview of the Fault-Tolerant CORBA standard.

2 The Fault-Tolerant CORBA
Standard

The recent Fault-Tolerant CORBA [8] standard describes
minimal fault-tolerant mechanisms to be included in any
CORBA implementation, as well as interfaces for support-
ing more advanced fault-tolerance. Fig. 1 shows the ar-
chitecture of the FT-CORBA specification. The Replica-
tion Manager replicates objects, and distributes the replicas
across the system. Although each server replica has an in-
dividual reference, the Replication Manager fabricates an
object-group reference that clients can use to contact the
replicated server. The Replication Manager’s functionality
is achieved through the Property Manager, the Generic Fac-
tory and the Object Group Manager.

The Property Manager allows the user to configure each
object’s fault-tolerance properties, such as the such as the
replication style (stateless, active, cold passive, or warm
passive replication), the list of factories (locations where
replicas can be created), the initial number of replicas, the
minimum number of replicas to be maintained, the check-
pointing frequency and the fault-detection frequency.

The Generic Factory allows users to create replicated ob-
jects in the same way that they would create unreplicated
objects. The Object Group Manager allows users to con-
trol directly the creation, deletion and location of individual

replicas of an application object, and is useful for expert
users who wish to exercise direct control over the replica-
tion of application objects.

The Fault Detector is capable of detecting node, pro-
cess and object faults. Each CORBA object inherits a
Monitorable interface to allow the Fault Detector to de-
termine the object’s status. The Fault Detector communi-
cates the occurrence of faults to the Fault Notifier. The
Fault Detectors can be structured hierarchically, with the
global replicated Fault Detector triggering the operation of
local fault detectors on each node. On receiving reports of
faults from the Fault Detector, the Fault Notifier filters them
to eliminate duplicate reports. The Fault Notifier then dis-
tributes fault-reports to all interested parties. The Repli-
cation Manager, being a subscriber of the Fault Notifier,
can initiate appropriate recovery actions on receiving fault-
reports. To support state transfer and recovery, every repli-
cated object must inherit theCheckpointable interface
that defines operations for the retrieval and the assignment
of the state of the object.

3 Fault-Tolerance Advisor
The Fault-Tolerant CORBA standard merely defines the
fault-tolerance properties listed in Section 2, but does not
discuss, or provide advice on, how the end-user should



choose the right settings for these properties. Thus, in most
fault-tolerant CORBA systems, values are assigned to these
properties with little regard for the system configuration, the
object’s state size, the object’s resource usage, the occur-
rence of faults, etc.

The problem is that the choice of values for an object’s
fault-tolerance properties really ought to be a decision based
on the object’s resource usage, the system’s resource avail-
ability, and the object’s reliability and recovery-time re-
quirements. In the absence of assistance in deciding the
appropriate values of these properties, (for each object, and
holistically for the entire system), the resulting arbitrary,
and often inappropriate, choice of these properties could
cause the system to miss the mark in terms of its target reli-
ability and performance. In addition to a development-time
tool to assist in these critical choices, there needs to be a
run-time feedback framework that allows the development-
time tool to re-learn and to re-adjust its decisions, dynami-
cally, based on run-time events such as the removal or ad-
dition of resources, introduction of new applications, up-
grades to the nodes or the network, fault patterns,���.

The novel aspect of the MEAD Fault-Tolerance Advisor
is that, given a CORBA application, the Advisor profiles the
application for a specified period of time to ascertain the ap-
plication’s resource usage (in terms of bandwidth, CPU cy-
cles, memory, etc.) and its rate/pattern of invocation. Based
on this information, the Fault-Tolerance Advisor is then in
the position of making suitable recommendations to the de-
ployer on the best possible replication style to adopt for the
specific application. For example, the Advisor might rec-
ommend the use of active replication, rather than passive
replication, for objects which have a large amount of state,
but fairly little computation.

The Advisor also pays attention to other fault-tolerance
properties beyond the replication style. For instance, in pas-
sive replication, the checkpointing frequency is crucial in
deciding the performance of the replicated object; higher
checkpointing frequency involves trading off the benefit
of faster recovery��� the disadvantage of the increased
bandwidth/CPU used in frequent state retrieval and trans-
fer. Based on the application’s resource usage and its speci-
fied recovery-time bounds, the Advisor decides on the most
appropriate value for the checkpointing frequency. Yet an-
other tunable parameter is the fault-detection frequency.
If the fault-detection frequency is higher, a fault can be
detected faster, and fault-recovery can be initiated more
quickly at the expense of the resulting higher resource usage
(in terms of CPU and and bandwidth). The Advisor takes
into account the system’s fault rate, system’s resource lim-
its, the application’s resource usage and the desired bound
on recovery time, and produces the appropriate value of the
fault-detection frequency for each object.

Of course, at run-time, multiple different applications
might perturb each other’s performance, leading to erro-

neous development-time advice. Recognizing this, the
MEAD Fault-Tolerance Advisor incorporates a run-time
feedback component that updates the development-time
component with run-time profiling information in order to
provide corrections to the original “advice”.

4 Decentralized Resource
Management

We had a number of objectives in mind when designing the
architecture of MEAD. Constraining the number of objects,
processes or nodes would limit the scope and applicability
of our solution. Furthermore, we want to avoid single points
of failure, not just for the application, but for the MEAD
infrastructure itself. Through its decentralized resource-
management architecture, MEAD supports both scalability
and true fault-tolerance.

Resource management in a distributed fault-tolerant sys-
tem necessarily involves handling the possibly degraded re-
silience of the system following a fault. Because a fault
can temporarily take a node out of action, MEAD needs to
account for the loss of the node (and any replicas of ob-
jects or processes that it might have hosted) in figuring out
the system’s fault-tolerance. It might be possible for the
system to continue to operate, albeit at a reduced level of
resilience, while fault-recovery is ongoing. The challenge
here is to determine the appropriate level of dependability
while the system is undergoing recovery in a gracefully de-
graded mode. MEAD needs to discover the loss or addition
of system resources rapidly enough to re-compute and re-
enforce the system’s new level of resilience, and to adjust
the system’s end-to-end guarantees and recovery strategy
appropriately.

We note that, while we target CORBA applications for
this research,the MEAD architecture and infrastructure are
independent of CORBA, and can be equally used for non-
CORBA applications. In the context of this paper, we make
the follwing general set of assumptions:

� Operation in a distributed, asynchronous system,

� Deterministic, reproducible behavior of the CORBA
application and the ORB,

� Independent failures across distinct nodes and pro-
cesses, and

� Fault model encompassing node-crash, process-crash
and message-loss faults (the other kinds of faults that
MEAD tolerates are not discussed in this paper).

4.1 Architecture
We implement the Fault-Tolerance Advisor over a fully de-
centralized infrastructure. As shown in Figure 2, on each
node in the distributed system, there exists a MEAD Man-
ager component and a Fault-Tolerance Advisor component.
In addition to launching CORBA application programs, the



Interceptor

Factory

8

5

Replicated
Applications

Interceptor

Interceptor

Operating System

Group Communication

/proc

Fault-Tolerance Advisor

Resource
Monitor

Fault
Detector

System State

6

7

43

2

1

Node

Interceptor

Factory

8

5

MEAD
Manager

Interceptor

Factory

8

5

Replicated
Applications

Node

Interceptor

Interceptor

Interceptor

Operating System

Group Communication

/proc

Fault-Tolerance Advisor

Resource
Monitor

Fault
DetectorFactory

System State

68

7

4

5

3

2

1

MEAD
Manager

6

8

7

4

5

3

2

1

Network

Bootstrapping
Fault-Tolerance
Configuration

Interceptor

Factory

8

5

Replicated
Applications

Node

Interceptor

Interceptor

Interceptor

Operating System

Group Communication

/proc

Fault-Tolerance Advisor

Resource
Monitor

Fault
DetectorFactory

System State

68

7

4

5

3

2

1

MEAD
Manager

Monitoring
Console

Network

s

Capture of CPU and memory resource usage Reflexive process re-spawn (fault-recovery)

Capture of network resource usage Fault-notification broadcast to MEAD Managers

Push fault-monitoring State synchronization of MEAD Managers

Pull fault-monitoring Update of local system state

Figure 2. The MEAD decentralized resource management architecture and the Fault-Tolerance Advi-
sor.

MEAD Manager is responsible for fault-detection and re-
source monitoring of its local processes, and for effect-
ing the fault-tolerance properties specified by either a static
fault-tolerance configuration or the Fault-Tolerance Advi-
sor.

MEAD managers are symmetrically replicated1 across
the nodes of the distributed system. They act as
synchronized-state peers with no central controller and,
therefore, no single point of failure. The synchronization
is made possible through the use of the underlying Spread
group communication system [1]. By exploiting the reli-
able delivery and the ordering guarantees provided by the
Spread system, we are assured of every MEAD Manager in
the system receiving the same set of messages in the same

1The MEAD Managers in the system use a symmetric, rather than an
active, style of replication because they have the same state through their
periodic synchronization, but do not perform the same set of actions; this
avoids unduly high network overhead.

order, thereby facilitating synchronization and consistency
both for MEAD and its supported applications. Of course,
this implies that there must exist a Spread daemon and a
MEAD Manager on each node that we wish to consider as
a resource for the purposes of replication.

Apart from synchronizing their states, the MEAD Man-
agers on the different nodes perform their duties without re-
quiring coordination, and therefore, with minimal network
communication. This provides for a low overhead fault-
tolerant infrastructure with scalability as the load and the
number of nodes increase.

4.2 Resource Monitoring
On each node, the MEAD Manager’s resource monitoring
component collects system load data. For each local appli-
cation process, the resource monitor collects statistics such
as the fault rate, CPU usage, memory usage, network us-
age and invocation rates. The local MEAD Manager shares



this resource-usage data with the MEAD Managers on the
other nodes through periodic broadcasts over the Spread
system. By construction, the network overhead incurred
in broadcasting the resource-usage data scales linearly with
the number of nodes and number of processes per node, and
can be as low as tens of bytes per application process per
broadcast. As the system load and fault rates change, the
MEAD system varies this broadcast rate dynamically.

For each local process, the Linux kernel [2] maintains re-
source consumption statistics, such as CPU usage and mem-
ory consumption. The MEAD Manager’s resource moni-
tor collects this kernel data periodically by accessing the
/proc filesystem [3]. Because this data gathering is a
polling type of activity, it does not capture data updates
whenever they happen; however, this is acceptable due to
the granular nature of process execution in a multitasking
operating system. Data updates are inexpensive and have a
fixed overhead per process as the load increases; thus, it is
possible for MEAD to use data-collection rates that are low
in overhead but that are high enough to track these resource
parameters with a precision that is sufficient to enable fault-
tolerance advising. The overhead of collecting and process-
ing the resource statistics on each node scales linearly with
number of processes running on that node.

Network traffic statistics for individual processes are not
automatically maintained by the Linux kernel, but multiple
approaches are possible for the accounting of network us-
age. One simple method is to use wrapper functions for
system network calls that count the network traffic (num-
ber of bytes sent and received) over those calls. This would
give us a good picture of network activity with the minimum
possible overhead; unfortunately, it also requires recompi-
lation of the application, and may require additional effort
on the part of the application programmer. Another option
would be to use a network proxy to serve as a gateway that
logs incoming and outgoing network data. Proxies can pro-
vide accurate traffic accounting transparently to the appli-
cation programmer, but are expensive in terms of overhead,
because they require context switches for every network-
related operation, and might increase latency depending on
buffering.

4.3 Use of Interceptors
The best compromise between transparency and overhead
for monitoring network traffic is achieved by using intercep-
tors to capture network calls and to count the number of in-
coming and outgoing bytes. CORBA incorporates support
for interception through the Portable Interceptors mecha-
nism [9]. However, these are restricted to monitoring only
CORBA’s IIOP messages, and do not capture all other kinds
of network communication that the application might em-
ploy, and that really ought to be accounted for. Furthermore,
the application needs to be modified, and to be recompiled,
in order to use the Portable Interceptor mechanisms.

Library interposition is our preferred method to inter-
cept a process’ network system calls by using the dy-
namic linker’s run-time support [5] to load the MEAD In-
terceptor (a shared object library) into the process’ address-
space, ahead of all of the other dynamically linked libraries
(DLLs). MEAD’s Interceptor contains overridden defi-
nitions of common network-related library routines; each
time the CORBA process or the ORB invokes a network-
related library routine, the loader’s symbol-resolution finds
(and transparently forces the intercepted process to use) the
first symbol definition in the Interceptor, rather than in the
default DLL provided by the operating system. In turn,
each overridden library routine in the Interceptor can find,
and invoke, the corresponding routine in the default DLL,
using dynamic linking calls such asdlsym anddlopen.
The Interceptor overrides specific network-related functions
(read, write, sendmsg, recvmsg, ����) to calculate
the incoming and outgoing bytes at each instance of net-
work communication, before invoking the default imple-
mentation of the function.

This form of interception allows us to insert the MEAD
infrastructure in a manner that is transparent to the appli-
cation and to the CORBA middleware. Library interposi-
tioning also allows us to be language-neutral because the
resulting Interceptor works off the standard library routine
definitions, without requiring modifications to the operating
system, without requiring recompilation of the application,
and without requiring root/supervisory access. The Inter-
ceptor also provides easy hooks for immediate, inexpensive
fault detection because it is uniquely positioned to detect
the closure of sockets between clients and servers. Regard-
less of our Interceptor-based approach, monitoring network
traffic is, in general, more expensive than monitoring CPU
and memory usage because the overhead increases with the
amount of network traffic.

As seen from Figure 2, the Interceptor periodically com-
municates the network statistics to the MEAD Manager’s
resource monitor over a private socket connection; this push
of information from the Interceptor is triggered by the oc-
currence of specific events, and also by timeouts. During
periods of heavy network traffic, the Interceptor can send
more messages to the resource monitor in order to trigger
fault-tolerance advising for high-bandwidth conditions; the
Interceptor can also reduce the amount of communication
to the resource monitor to produce lower overhead. During
periods of no network traffic, the Interceptor refrains from
communicating as much with the resource monitor because
there are no significant events of interest. Timeout-driven
communication between the Interceptor and the MEAD re-
source monitor is also possible; however, timers are dif-
ficult to implement in the Interceptor library because the
SIGALRM signal produced by timers in the UNIX operat-
ing system can interfere with the intercepted process’ signal
handling.



4.4 Fault Detection
A node-crash fault is considered to have happened if the
hardware or operating system fails on a specific node, or if
the MEAD manager or the group communication service on
that node crashes. In either case, the end-result is that the
node is no longer functional, for the purposes of replicating
the application.

The failure of a node’s hardware or operating system
manifests itself as a node-crash fault that MEAD can read-
ily detect by exploiting the facilities of the underlying group
communication system. The Spread group membership ser-
vice maintains up-to-date information about the number of
functional nodes that are running the Spread system. By
connecting to the Spread daemon running on its local node,
the MEAD Manager on that node can receive membership
notifications about the addition or removal of nodes from
the system.

To verify that the MEAD Managers are still functional,
they can be configured either to broadcast heartbeat mes-
sages to the MEAD group or to invoke each other across
the network. The MEAD resource monitor’s broadcast
messages serve as a heartbeat for MEAD Manager fault-
detection. Fault detection with heartbeat broadcasts is eas-
ier to configure and less expensive than the inter-Manager
invocation scheme. Since the resource state is synchronized
across the system, the broadcast rate for any node can be
determined and a node-crash fault is flagged if the hearbeat
delay reaches a timeout.

A process-crash fault occurs when a process fails, and
also if a process hangs and behaves unexpectedly by failing
to produce a response within a given period of time. Local
process-crash faults can be detected by periodically check-
ing if their UNIX process identifiers are still valid; clearly,
not only is this expensive, but it also depends on how of-
ten the checks are done. Instead, MEAD exploits its Inter-
ceptor as a fault-detector with much lower delay and over-
head. At process launch-time, the Interceptor establishes a
socket connection to its local MEAD Manager. If the in-
tercepted process crashes, the connection between the In-
terceptor and the MEAD Manager is forcibly closed by the
kernel. The MEAD Manager, which awaits events on all of
its socket connections, will detect an error condition on one
of its sockets; by associating this connection with its associ-
ated process, the MEAD Manager can transparently detect
process-crash faults quickly, when they happen.

To detect hung processes transparently, we could pos-
sibly use the application’s execution patterns or network
traffic. However, because process execution is often
unpredictable, process-hang detection is better accom-
plished through application-level support by requiring ev-
ery CORBA object to support theMonitorable inter-
face containing theis alive() method. Clearly, while
the invocation of this method is transparent to the appli-
cation, the existence of the mechanism is no longer trans-

parent to application programmers. The MEAD Manager’s
fault-detector calls theis alive() function on every lo-
cally hosted CORBA process at a frequency that is config-
urable by the MEAD Fault-Tolerance Advisor.

Another advantage of our using a reliable group com-
munication service is its tolerance tomessage-loss faults
through retransmissions. This is transparently handled at
the Spread daemon level, and is conveniently not exposed
to the MEAD Managers. Thus, message-loss faults do not
have to be explicitly handled by MEAD.

4.5 Failover and Recovery
MEAD tolerates node-crash and process-crash faults by
replicating CORBA processes, by redirecting client re-
quests to functioning replicas, and by utilizing extra re-
sources to enable functional nodes to take over the respon-
sibilities of a crashed node.

Recovery of a failed node is fairly straightforward – a
node with operating system or transient hardware faults is
often recoverable with a reboot. Of course, the Spread dae-
mon and the MEAD Manager (and their states) need to be
restored before the node can be considered fully functional.

Recovery of failed processes (due to either a node-crash
or a process-crash fault) involves different actions. When
a fault is detected, the MEAD infrastructure will take im-
mediate steps to restore service and recover from the fault.
When MEAD detects a node-crash fault, if primary repli-
cas of passively replicated processes were running on the
failed node, MEAD promotes backup replicas on the other
functional nodes to be the new primaries. The location of
new primaries is chosen according to a deterministic recov-
ery heuristic. In addition, MEAD ensures that clients of
these passively replicated processes perform a fail-over to
the new primary replicas. Note that primary re-election and
fail-over do not occur for active replication.

A node-crash fault can lead to possibly multiple process-
crash faults associated with its hosted processes. Thus,
due to a node-crash fault, some CORBA processes might
have degraded resilience because their replicas might have
crashed, too. To perform effective recovery, the MEAD
Manager that detects a process-crash fault broadcasts fault-
notifications to MEAD Managers on other nodes. Based
on feedback from the Fault-Tolerance Advisor, the MEAD
system might launch new replicas on available nodes in or-
der to restore the resilience of the application. The loading
of nodes, and the distribution of primary replicas are taken
into account in this repopulation process in order to balance
system load and reduce the maximum potential impact of
any future failure.

4.6 Enabling Fault-Tolerance Configuration
MEAD provides an interface that end-users and system ad-
ministrators can use for the static or the dynamic config-
uration of the application’s fault-tolerance properties. The



0

50

100

150

200

250

300

350

400

450

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Sample number

R
o

u
n

d
-t

ri
p

 ti
m

e 
(m

s)

Without MEAD

With MEAD

Figure 3. Impact of MEAD’s resource monitor-
ing on the performance of the application.

Effect of decentralized MEAD infrastructure on the 
application's performance

0
50

100
150
200
250
300
350
400
450
500

0 100 200 300 400 500 600

MEAD manager state broadcast frequency 
(broadcasts/sec)

R
o

u
n

d
-t

ri
p

 t
im

e 
(m

s)

Figure 4. Variation of the round-trip time
with the frequency of broadcasting the MEAD
Manager state.

baseline operating mode involves the Fault-Tolerance Advi-
sor extracting the fault-tolerance properties from a configu-
ration file at the time of bootstrapping.

Run-time Fault Tolerance Advisors can be implemented
in two ways. The Fault-Tolerance Advisor can be repli-
cated like a CORBA service by the MEAD infrastructure.
Note that there will not necessarily be an Advisor replica
running on each node; the Advisor replicas will be dis-
tributed across a select group of nodes. The replicated Ad-
visor can subscribe to MEAD’s resource monitoring and
fault-notification broadcasts to gather system state infor-
mation. Based on that information, it can generate fault-
tolerance advice and configuration updates and send them
to the MEAD Managers through a special advising group.
This approach would be flexible and would allow for dif-
ferent Advisors to be compared against each other, or even
swapped in and out of a running system without disruption.
Multiple Advisors, each customized for different applica-
tion types, could run simultaneously and be responsible for

specific, non-overlapping applications. If the replicated Ad-
visor crashes, the MEAD infrastructure can continue to op-
erate normally; only the ability to configure fault-tolerance
automatically will be temporarily suspended until the Ad-
visor service is restored. Such an Advisor service would be
straightforward to implement, but the computation and the
information involved in generating the advice would not be
spread across all the nodes; also, each node does not have
the capability to influence local advising decisions.

The alternative approach that we employ is to create
a distributed Advisor that is integrated with each MEAD
Manager. The Advisor component is automatically sym-
metrically replicated across all nodes, and operates on the
Manager’s synchronized system state to generate the ad-
vice. Rather than broadcast its configuration updates, each
Advisor directly updates the state of its local MEAD man-
ager. This is more difficult to implement, but more effective
in terms of scalability and overhead.

5 Empirical Evaluation
Because the focus of this paper is on the decentralized
MEAD infrastructure, rather than the Fault-Tolerance Ad-
visor, we focus on our empirical evaluation of the resource
monitoring and state synchronization, assuming a static
fault-tolerance configuration.

Our test-bed consisted of seven nodes (1GHz processor,
256MB RAM, running RedHat Linux version 9) connected
over a 100 Mbps Ethernet. The underlying group commu-
nication facilities were provided through the Spread system
version 3.17.1. Each node in the system runs a Spread dae-
mon and a MEAD Manager.

Our CORBA test applications are built with the TAO
ORB (ACE version 5.2.8 and TAO version 1.2.8). The
application mimics a distributed unmanned aerial vehicle
(UAV) application, and consists of a simple client that con-
nects to a server on another node and transfers 64KB im-
ages. To load MEAD’s resource monitoring system and to
impose infrastructural traffic on the network, each MEAD
Manager launches and monitors 15 dummy processes on its
node. Each Manager collects local resource usage data and
broadcasts it to the Manager group at a fixed period with
unsynchronized phase.

We vary the MEAD resource monitor’s broadcast rate,
and measure the round-trip time for a block of data trans-
fers between the test client and server; we record the round-
trip time for fifty 64KB images. This round-trip time is on
the order of half a second. We then conducted one hundred
trials spaced one second apart, in an attempt to reduce any
bias from low-frequency nodes and network load variations.
After each set of trials, we shut down the entire MEAD sys-
tem, and then restart the system with a different monitor
broadcast rate before repeating the experiment. We choose
broadcast periods ranging from 125ms to 2ms, halving the
period in consecutive runs (125ms, 63ms, 32ms, ..., 2ms).



Figure 3 shows the effect of adding resource monitor-
ing to an application. The graph shows the round-trip times
of the application with no monitoring and with monitoring
with 62 broadcasts/sec to transmit the MEAD Manager sys-
tem state. With MEAD’s resource monitoring, the round-
trip time degrades by only 4.5%, even for the high broadcast
rate that we intentionally chose.

Figure 4 shows the effect of increasing the MEAD re-
source monitor’s broadcast frequency on the round-trip
time. The graph shows that the round-trip time increases
linearly, with low impact on performance at a high fre-
quency (50 broadcasts/sec) of broadcasts.

While MEAD can support high rates of broadcasting the
monitor state, they are unlikely to be necessary because the
Fault-Tolerance Advisor (which uses this system state) is
occurs at a relatively low or moderate rate. Thus, MEAD’s
overhead in the presence of fault-tolerance advising is likely
to be much lower.

6 Related Work
Current fault-tolerant CORBA systems can be classified
into the integration, service or interception approaches. The
integration approach to fault-tolerant CORBA incorporates
the reliability mechanisms into the ORB infrastructure, re-
sulting in modified, non-standard, CORBA implementa-
tions. The specific examples of fault-tolerant CORBA sys-
tems are discussed in greater detail in [4].

Examples of the integration approach include Electra,
AQuA, Maestro and Orbix+Isis. The service approach to
fault-tolerant CORBA provides reliability through a collec-
tion of CORBA objects which are explicitly used by the ap-
plication. Examples of the service approach include OGS,
FRIENDS, DOORS, IRL, NewTOP and FTS. The intercep-
tion approach to fault-tolerant CORBA provides reliability
as a transparent add-on to existing CORBA applications by
means of an interceptor that can add new services to existing
ORBs. The Eternal and the Immune systems provide trans-
parent reliability and survivability, respectively, to unmod-
ified CORBA applications running over unmodified ORBs
using the interception approach. More recently, fault toler-
ant features have been added to the real-time CORBA im-
plementation, TAO, by adopting the the semi-active replica-
tion style pioneered by Delta-4/XPA.

To the best of our knowledge, none of these systems
or approaches completely identifies, or addresses, the real-
time vs. fault tolerance conflicts for middleware systems, or
provides support for the easy and dynamic configuration of
fault-tolerance properties in a resource-aware manner.

7 Conclusion
Most fault-tolerant CORBA systems arbitrarily assign val-
ues to properties such as an object’s replication style, its
checkpointing frequency,���� The choice of values for an

object’s fault-tolerance properties really ought to be a deci-
sion based on the object’s resource usage, the system’s re-
source availability, and the object’s reliability and recovery-
time requirements.

The MEAD system encompasses a decentralized infras-
tructure to obtain the application’s resource usage across the
distributed system. Exploiting this information, MEAD’s
Fault-Tolerance Advisor makes informed decisions about
the application’s fault-tolerance configuration, and dynam-
ically adapts these decisions to run-time events, such as
faults. We describe MEAD’s resource management infras-
tructure, its design for scalability and no single points of
failure, and then evaluate its overhead for test applications.

References
[1] Y. Amir, C. Danilov, and J. Stanton. A low latency, loss

tolerant architecture and protocol for wide area group com-
munication. InProceedings of the International Conference
on Dependable Systems and Networks, pages 327–336, New
York, NY, June 2000.

[2] D. P. Bovet and M. Cesati.Understanding the Linux Kernel.
O’Reilly and Associates, 2003.

[3] R. Faulkner and R. Gomes. The process file system and pro-
cess model in UNIX System V. InProceedings of the Winter
USENIX Conference, Jan. 1991.

[4] P. Felber and P. Narasimhan. Experiences, approaches and
challenges in building fault-tolerant CORBA systems.IEEE
Transactions on Computers, To appear 2003.

[5] J. R. Levine.Linkers and Loaders. Morgan Kaufmann Pub-
lishers, San Francisco, CA, 2000.

[6] P. Narasimhan. Transparent Fault Tolerance for CORBA.
PhD thesis, Department of Electrical and Computer Engi-
neering, University of California, Santa Barbara, December
1999.

[7] P. Narasimhan. Trade-offs between real-time and fault-
tolerance for middleware applications. InWorkshop on Foun-
dations of Middleware Technologies, Irvine, CA, November
2002.

[8] Object Management Group. Fault Tolerant CORBA.
OMG Technical Committee Document formal/2001-09-29,
September 2001.

[9] Object Management Group. Portable Interceptors. OMG
Technical Committee Document formal/2001-12-25, De-
cember 2001.

[10] Object Management Group. Real-Time CORBA. OMG
Technical Committee Document formal/2001-09-28,
September 2001.

[11] S. Ratanotayanon and P. Narasimhan. Estimating fault-
detection and fail-over times for nested real-time CORBA
applications. InInternational Conference on Parallel and
Distributed Processing Techniques and Applications, Las
Vegas, NV, June 2003.


