
A Middleware for Dependable Distributed Real-Time Systems

Tom Bracewell Priya Narasimhan
Raytheon IDS Carnegie Mellon University

bracewell@raytheon.com priya@cs.cmu.edu

Abstract

New middleware is proposed to support the
development of dependable distributed real-time systems
for avionics, sensor and shipboard computing. Many of
these systems require distributed computing in order to
perform increasingly complex missions. They also require
real-time performance, dependable software, and may
face constraints that limit hardware redundancy.

Real-time performance and fault tolerance are not
easily combined. A reusable approach to achieving fault
tolerance in distributed real-time systems is proposed in
MEAD, a Middleware for Embedded Adaptive
Dependability.

Introduction

The developers of avionics, sensor and shipboard
computing systems face a growing need to build software
fault tolerance into distributed real-time computing
environments. These systems have become more
software-intense as their missions have grown in
complexity. As hardware has grown more reliable,
software has become the key to dependability. Software
faults are the main cause of downtime in large systems
[1,2,3]. Software faults cannot be entirely eliminated, and
must be dealt with at run time.

Distributed computing has become necessary while the
need to execute reliably in real-time has remained. Real-
time performance is not easily ensured in distributed
systems; and in a real-time system, a missed deadline is a
type of fault.

Legacy systems often used top-level hardware
redundancy and application-level software fault detection
and recovery in single-thread environments to make real-
time systems dependable. This approach does not carry
forward into today’s distributed object-oriented systems.
Top-level hardware redundancy is also undesirable in
systems that face severe size, power, weight and cost
constraints.

A scalable, reusable, application-transparent approach
to software fault tolerance in distributed real-time systems
is needed. This presents many challenges.

Challenges

Dependable, Scalable, Real-time Systems. Real-time
systems face increasing demands for multi-mission
computing capabilities, dependability, and at the same
time, lightweight, low power, compact implementations.
Typical examples include shipboard, mobile and tethered
sensor systems [4] and military combat systems [5].
Scalable real-time environments have become essential to
the implementation of these systems. The next generation
of combat systems is intended to be network-centric, and
is likely to be based on adaptive and reflective middleware
[6], in particular, CORBA.

A clear need has arisen for middleware that can
address both the real-time and the fault tolerance
requirements in these military systems. The lack of fault-
tolerant real-time CORBA solutions forces developers to
implement ad-hoc solutions to fault tolerance in the
application layer. These brittle solutions are neither
reusable nor predictably dependable. With failover still
implemented at the top level, they add unnecessary
hardware size, power, and cost to large real-time systems
whose availability requirements could be met with much
less hardware if lower-level software failover were
managed against bounded real-time constraints. An
ability to manage real-time fault tolerance at the
processor/application level will improve recovery times,
provide a means to manage hardware size, power and
cost, and provide an infrastructure that supports graceful
degradation, thus extending the mission life of many real
time systems.

Real-time vs. fault tolerance. Real-time and fault
tolerance constraints can impose conflicting requirements
on a distributed system. Real-time operation requires an
application to be predictable, to have bounded request
processing times, and to meet specified task deadlines.
This predictability is often the most important
characteristic of real-time systems. In contrast, fault-
tolerant operation requires that an application continue to
function, even in the presence of unanticipated, potentially
time-consuming events such as faults and fault recovery.
Faults are often viewed as asynchronous unpredictable

events that can upset a real-time system’s scheduled
operation. Sustained operation with consistency of
application data in the face of faults is often the single
most important characteristic of fault-tolerant systems.
Thus, there is a fundamental conflict between the
philosophies underlying the two system properties of real-
time and fault tolerance. While real-time performance
requires a priori knowledge of the system’s temporal
operation, fault tolerance is built on the principle that
faults can and do occur unexpectedly, and that faults must
be handled through some recovery mechanism whose
processing time is uncertain. When both real-time and
fault tolerant operation are required in the same system
today, trade-offs are made at design time, not at run-time.

To combine real-time operation and fault tolerance
today, middleware-based applications may try to combine
ad-hoc and standardized solutions for each. The result is a
brittle system that is hard to maintain and upgrade, that
does not really capture the trade-offs and interactions
between real-time and fault tolerance. These trade-offs
and interactions should be managed by the middleware at
run time - not by the application layer - and they should be
based on policies defined by application developers at
design time.

In the event of a fault, real-time decisions must be
made as to whether the system or application should seek
to perform its mission during fault recovery by operating
out of spec with regard to meeting real-time deadlines or
with regard to maintaining replica consistency.

Any solution to combining real-time operation and
fault tolerance lies in identifying their precise conflicts
and in exploring the possible trade-offs when a conflict
occurs. Trade-off analysis is complicated by the fact that it
involves (a) exhaustively listing the scenarios that might
result from the composition of real-time and reliability;
(b) assessing the risks and the degraded QoS that might
arise for either real-time or reliability, or both, in certain
scenarios; and (c) providing solutions for scenarios where
there are direct conflicts between the requirements for
timeliness and replica consistency.

Predictable recovery times. Today’s ORBs have
fault-detection and fault-recovery times on the order of
seconds [7]. These times vary considerably and
unpredictably even under reproducible conditions for very
simple applications. This poses a problem for applications
that must meet millisecond-level deadlines in the face of
faults and recovery.

Assignment of fault tolerance properties. Fault
tolerance properties include degree of replication, the
physical distribution of replicas, the replication style
(active, passive, etc.), the checkpointing frequency and the
fault-detection frequency. In systems that use FT
CORBA, these properties have been assigned with little

regard for system configuration, the object's state size, the
object's resource usage, etc. The choice of values for an
object's properties really ought to be a resource-aware
decision based additionally on the software component’s
reliability and recovery-time requirements. Without a pre-
deployment tool to assist in deciding the appropriate
values of these properties for each object, and holistically
for the entire system, the ad-hoc choice of properties may
cause a system to miss the mark in terms of reliability.

A run-time feedback framework would allow the
development-time tool to improve its decision-making
based on run-time system modifications, such as the
removal or addition of resources, introduction of new
applications, workstation and network upgrades.

Configurable real-time and fault tolerance levels.
Combining reliability and real-time is further complicated
by the fact that each system property has its own range of
values. For instance, the need for replica consistency can
vary from weak (where abstract server availability is more
important, even if the data in some replicas is somewhat
stale or inconsistent) to strong (where server availability
and data integrity/consistency across all replicas are
equally important). The problem in the composition of
real-time behavior and reliability is that we have to take
into account the varying degrees of both real-time and
reliability support, and the effective quality-of-service
(QoS) that will result. In cases where trade-offs exist
between real-time and fault tolerance requirements, the
resulting (potentially degraded) QoS needs to be well-
defined so that the application developer can specify what
he/she requires from the system, and have some assurance
of the guarantees that the application can expect to obtain
from the system under fault-free, faulty and recovery
conditions.

Dependability metrics and benchmarks. There
currently exists no universally accepted benchmarks or
metrics for evaluating reliable systems. Software
reliability has been difficult to assign, predict, model and
validate. We need to develop benchmarks that allow us to
characterize and quantify the success of a system or its
infrastructure in providing dependability. The challenge
lies in defining metrics and benchmarks in ways that can
be measured and compared across test-beds, middleware,
applications and dependability requirements. The practice
of injecting software faults [4] into unmodified
applications via CORBA will provide a mechanism for
measuring the middleware’s ability to improve system
availability in the presence of faults.

Instrumentation and profiling. Faults often end up
depleting resources; e.g., a processor crash may take a
processor out of action for a while. Faults can also end up
consuming resources; e.g., detecting, isolating and
recovering from a fault might require excessive bandwidth

and CPU time. In an environment subject to faults such as
processor/process/object crashes, lost messages, missed
deadlines and network partitioning, it becomes critical to
manage system resources in order not to compromise the
performance of the functioning part of the system. The
problem lies in deciding which of the resources in the
system to monitor, and how often to monitor them.
Profiling of resources is by no means a zero-penalty
activity; monitoring an entity is often intrusive and can
impact performance. We need mechanisms for the
selective surveillance of the system, to collect the right
statistics at the right points in time. The profiling of the
system’s resource usage should ideally be a dynamic run-
time decision.

Resource-aware adaptation. Part of the resource
management problem lies in the modified dependability of
the system following a fault. Because a fault might
temporarily take a processor out of action, we need to
account for the loss of the processor (and any replicas that
it might have hosted) in figuring out the system’s
dependability. It might be possible for a system to
continue to operate, although at a reduced level of
dependability, while recovery is ongoing. The challenge
here is to determine the appropriate level of dependability
while the system is undergoing recovery in a gracefully
degraded mode. The loss or addition of resources needs to
be communicated to the system rapidly enough for it to
realize its new level of dependability, and to adjust its
end-to-end guarantees and its recovery strategy
appropriately.

Proactive dependability. Faults are often viewed as
unexpected events that can upset real-time operations. An
ability to predict with confidence when faults will occur
would be very valuable in a real-time system. Some faults
caused by resource exhaustion, error accumulation and
other patterns, can be highly predictable. Fault prediction
is based on the premise that certain patterns of abnormal
events typically manifest themselves in a system prior to
the actual occurrence of the fault. The problem lies in
identifying the pattern of abnormal events prior to a fault,
and in the correct diagnosis of the kind of fault that is
imminent. This is not a trivial exercise because it involves
knowledge of where, how and when the abnormal
harbingers of a fault are likely to be detected and to be
recorded. Some predictors, such as memory leaks, may
exhibit definite trends; other predictors are often more
subtle. A deeper problem is ascertaining our confidence
in the prediction, given a certain pattern of abnormal
events. This information needs to be fed back into the
system, before the fault occurs, in order for proactive
action to be taken. Proactive dependability actions might
include relocating a replica or rebooting a logical

partition, while maintaining real-time operation, before a
fault occurs.

Transparency with tunability. CORBA interceptors
have been shown to provide a viable approach to
providing transparent fault tolerance on many unmodified
vendor ORBs hosting various unmodified applications.
Applications that have real-time behaviors are more
difficult to render fault-tolerant (transparent to the
application) because application-level semantics are
involved in scheduling decisions. These resource-
sensitive and timing-sensitive features must be captured at
the interceptor level in order to provide simultaneous fault
tolerance and real-time support. APIs need to be defined
to allow middleware to observe and influence these
features at run-time. The goal is to provide "out-of-the-
box" real-time and fault tolerance to systems and
applications, without requiring substantial effort by
application developers.

A Middleware for Embedded Adaptive
Dependability (MEAD) 1

A middleware for embedded adaptive dependability
(MEAD) is proposed to address these challenges. MEAD
will achieve its goals through a set of collaborating
distributed reliable software components that create a real
time fault tolerant CORBA. Key components in MEAD
include the following.

Replication Manager: This component replicates
application components and distributes the replicas across
system processors. During development, the application
developer can select fault tolerance properties for each
application component through a Replication Manager
GUI. This enables the Replication Manager to decide how
many replicas to create, where to place the replicas, and
which replication style to enforce for each replicated
object. The Replication Manager assumes responsibility
for supporting a certain level of dependability by ensuring
a pre-specified minimum degree of replication at all times.

Hierarchical Fault Detection-Reporting-Analysis: A
Local Fault Detector on each processor detects the crash
of objects and processes on that processor. The Local
Fault Detectors feed fault notifications into the
Replication Manager, allowing it to restore the required
degree of replication if a replica has crashed. The Local
Fault Detectors and the Replication Manager also do fault
analysis. Fault analysis can conserve bandwidth (in the
case of multiple fault reports that can be combined into a

1 Mead, the legendary ambrosia of the Vikings, was
believed to endow its imbibers with immortality and
reproductive capabilities (dependability and replicas).

single fault report) and provide a more accurate diagnosis
of the source of the fault. For instance, if a processor
hosting 100 objects crashes, a single processor-crash fault
report might save bandwidth and provide more utility than
100 object-crash fault reports. The fault detection-
reporting-analysis framework is structured hierarchically
in order to support scalability.

Hierarchical Resource Management Framework: A
Local Resource Manager on each processor monitors the
resource usage of the replicas on that processor. The
Local Resource Manager has instrumentation and
profiling hooks at the processor, the ORB and application
levels in order to monitor the respective resource usage of
each of these local components. The Local Resource
Managers communicate this information to a Global
Resource Manager. The system-wide Global Resource
Manager is aware of processor and communication
resources, and their interactions across the entire system.
The Global Resource Manager has a system-wide
perspective of resource availability and usage across all
processors. Thus, it is uniquely positioned to make load-
balancing decisions to migrate objects and processes from
heavily loaded processors onto relatively lightly loaded
processors, in order to meet timing requirements, or to
isolate resource-intensive tasks onto relatively idle
processors. It can also make decisions about selectively
shedding replica load, based on task criticality, under
overload conditions.

RT-FT Scheduler: A Local RT-FT Scheduler on each
processor monitors the scheduling and the performance of
tasks on that processor. An offline scheduler computes a
real-time schedule of an application’s tasks ahead of run-
time; this schedule provides the sequence of operations in
the absence of faults. The Global RT-FT Scheduler then
starts to execute the application according to this pre-
determined schedule. However, to withstand dynamic
system conditions, the Global Scheduler is capable of
inspecting the schedule, computing the available slack
time, and reallocating work to selective replicas so that an
application continues to meet its original deadlines in the
presence of dynamic situations (e.g., faults, loss of
resources, object/process migration, fault-recovery) that
may arise. Thus, the pre-computed schedule does not
necessarily change in the presence of faults; instead, the
RT-FT Scheduler works with the proactive dependability
framework to determine the least disruptive point in the
schedule for initiating fault-recovery. Working with a FT-
Hazard Analyzer, the RT-FT Scheduler predicts worst-
case recovery times and the safest checkpoint and
recovery points during runtime. The RT-FT Scheduler is
responsible for dynamically scheduling replica migration
and fault recovery.

Proactive Dependability Framework: Proactive
dependability involves predicting, with some confidence,
when a fault might occur, and compensating for the fault
before it occurs. This allows MEAD to execute a more
controlled response to a fault scenario at less risk to real
time operation. Knowing, for instance, that there is an
80% chance of a specific processor crashing within the
next 5 minutes will help MEAD survive the crash with far
less penalty than waiting for the crash to occur. In this
case, MEAD might elect to migrate all of the processes on
the moribund processor within the remaining 5 minutes
before the crash. This proactive recovery action is far less
disruptive on the real-time deadlines and the normal
operation of the system because the recovery can be
staggered out within the currently fault-free functional
version of the system. Anticipatory and preventive
recovery from a fault will place fewer demands on the
system than reactive recovery.

Proactive dependability hinges on the ability to predict
when a fault can happen. This is possible because a fault
is typically preceded by a visible pattern of abnormal
behavior or resource exhaustion. Recognizing these
patterns and their timelines will allows us to compute the
"slack-time" available before a fault. Using statistical and
heuristic techniques, we can predict, with some
confidence level, the time at which certain faults might
occur [8].

This requires a Local Error Detector record all of the
errors/warnings into a Log, a Fault Analyzer to sift
through the log entries, and to forward predictions to the
Global Proactive FT-Manager. The Proactive FT-Manager
collects all of these predictions, assesses the severity and
the likelihood of the predicted faults, and communicates
impending loss of resources or of replicas or processors to
the Resource Manager and the Replication Manager.
These components, in their turn, work quickly with the
Global RT-FT Scheduler to close the feedback loop by
triggering object/process migration, load balancing, load
shedding, or any one of several other fault-recovery
decisions.

One example of fault-recovery involves proactively
restarting, or injecting new life into, applications that
might have memory leaks in them, through a process
called software rejuvenation. The Local Resource
Managers, through their profiling information,
communicate an object’s memory-leak trend to the Local
Error Detectors, which then communicates it to the rest of
the proactive dependability framework, as explained
above.

Chain of Interceptors: Interception allows us to insert
the MEAD infrastructure transparently underneath any
unmodified ORB. Interception allows us to be language-
neutral because the interceptor relies only on the existence

of the IIOP protocol interface of any middleware
platform. Underneath the ORB, MEAD inserts a chain of
interceptors, each transparently enhancing the ORB with
some new capability. One of the authors, Priya
Narasimhan, has used interceptors to enhance CORBA
applications [9] with profiling, totally ordered reliable
multicast, replication mechanisms, survivability and
controlled thread scheduling.

The value of interceptors is two-fold. For one,
interceptors can be installed at run-time, into the process
address space of an unmodified CORBA application. By
being readily installable and uninstallable at run-time,
interceptors can allow MEAD mechanisms to "kick in"
only when needed. This prevents MEAD from
unnecessarily impacting application performance.

Secondly, interceptors can be chained together in
parallel or in series to implement crosscutting
functionality. We envision the real-time fault-tolerant
MEAD infrastructure having a number of interceptors,
each providing additional assurances of dependability;
e.g., there would be interceptors for reliable multicast,
TCP/IP, real-time annotations of messages, task profiling,
checkpointing and resource monitoring.

Interceptors are analogous to the concept of aspect-
oriented programming (AOP) [10], where the cross-
cutting concerns of a system are represented by different
aspects which are then woven together to capture the
system interactions. MEAD will apply the concepts of
AOP in its interception technology (i) to capture and to
resolve the real-time vs. fault tolerance trade-offs, and (ii)
to provide for different runtime-customizable levels of
real-time and fault tolerance.

 Reliability Advisor: This development-time tool
allows the application developer to select the best
reliability configuration settings for his/her application.
These settings include the fault tolerance properties for
each of the objects of the application that requires
protection from faults. The properties for each object
include (i) degree of replication, i.e., the number of
replicas, (ii) replication style, i.e., one of the active, active
with voting, warm passive, cold passive and semi-active
replication styles, (iii) checkpointing frequency, i.e., how
often state should be retrieved and stored persistently, (iv)
fault detection frequency, i.e., how often the object should
be "pinged" for liveness (via heartbeat) and (v) the
physical distribution, or the precise location, of these
replicas. Unlike current dependability practices, we do not
decide on these properties in an ad-hoc unsystematic
manner. Instead, MEAD makes these property
assignments through the careful consideration of the
application’s resource usage, structure, reliability
requirements, faults to tolerate, etc. The novel aspect of
the MEAD reliability advisor is that, given any

application, the advisor will profile the application for a
specified period of time to ascertain the application’s
resource usage (in terms of bandwidth, processor cycles,
memory, etc.) and its rate/pattern of invocation. Based on
these factors, the advisor makes recommendations to the
engineer as to the best possible reliability strategy to adopt
for the specific application. Of course, at run-time,
multiple different applications might perturb each other’s
performance, leading to erroneous development-time
advice. Keeping this in mind, the MEAD reliability
advisor has a run-time feedback component that updates
the development-time component with run-time profiling
information in order to improve development-time advice.
This feedback component just the Local Resource
Managers operating in concert with the Global Resource
Manager.

Innovations Underlying MEAD

The components of the MEAD infrastructure embody
many innovative concepts, some of which are described
below.

Replication - Not Just for Reliability, But for Real-
Time: Object/process replication has primarily been
viewed as a way to obtain fault tolerance, i.e., having
multiple copies, or replicas, of an object/process
distributed across a system can allow some replicas to
continue to operate even if faults terminate other replicas
of the object/process. MEAD goes beyond this in
exploiting replication, a common fault tolerance
technique, to derive better real-time behavior! With
replication, there always exist redundant replicas that
receive and process the same invocations, and
deterministically produce the same responses. The
invocations and responses are synchronized across the
different replicas of the same object in logical time; of
course, the invocations/responses might be received at
individual replicas at different physical times. Thus, a
faster replica might produce a response more quickly, but
nevertheless in the same order as a slower replica of the
same object. If we send an invocation to two replicas of
the same object, where one replica is faster and the other
is slower, the faster replica will return the response faster,
and can move onto the next scheduled invocation more
quickly. In this case, the slower replica’s response is a
duplicate and can probably be safely discarded. In any
case, it might be late, or miss the deadline for producing
the response. The faster replica’s result can be fed back to
the slower replica’s FT infrastructure support, thereby
suppressing the duplicate response.

By staggering the times at which invocations are
released to replicas of different speeds, we can always

ensure that we have at least one replica that beats the
others in terms of meeting the specified deadline for
producing the response. This technique exploits the
duplicate responses/outputs of active replicas, as well as
their redundant processing, in order to meet deadlines and
tolerate timing faults.

Incremental Checkpointing: Checkpointing, or
saving the state, of applications with a large amount of
state, is a non-trivial exercise. It involves the retrieval of
the application’s state, the transfer of this state across the
network, and the logging of this state onto some persistent
stable storage. When the state of an application is large,
checkpointing consumes both CPU cycles and bandwidth,
and can choke up the entire system. MEAD employs a
differential, or incremental, checkpointing scheme.
Instead of checkpointing the entire state, MEAD
checkpoints "diffs", or state-increments, between two
successive snapshots of the state of an object/process. The
state-increments are usually much smaller than the entire
state itself, and can be transferred more quickly, leading to
faster recovery times and more RT-deterministic behavior,
under faulty and recovery conditions.

The mechanisms for incremental checkpointing involve
understanding the application code sufficiently to get each
application object to implement an Updateable interface to
extract a state-increment. It is not always trivial for an
application programmer to decide sensible state-
increments. We will need to develop tools to assist the
application programmer in identifying "safe" incremental-
checkpointing points in the code, as well as the size and
the structure of each state-increment.

Self-Healing Mechanisms: Components of the MEAD
infrastructure are replicated in the interests of fault
tolerance. Their resource usage is monitored along with
that of the applications. Typical fault tolerance issues
include the "Who watches the watchers?" problem, e.g.,
how the Replication Manager replicates itself, and
recovers a failed replica of itself, how the Proactive FT-
Manager deals with a fault-report predicting a fault within
one of its replicas, how the Resource Manager reacts to
one of its replicas being migrated, etc. MEAD handles this
by having the replicas of its own components employ a
"buddy-system" approach, i.e., the replicas of each of
MEAD’s own components watch over each other, recover
each other, and maintain their own degree of replication.
At the same time, replicas that are "buddies" should not
adversely impact each other’s performance or reliability
under either fault-free or recovery conditions, and must be
able to pair up with an operational "buddy" if their
existing "buddy" fails. Bootstrapping (i.e., starting up
from scratch) such a self-monitoring and self-healing
system is tricky because it requires bringing the system up

to a certain initial level of reliability and functionality
before allowing the application to execute.

Periodic Software Rejuvenation: Software
rejuvenation, or the periodic restart of software, is often
useful in prolonging the run-time life of software that
might contain memory leaks and other defects. MEAD’s
profiling of the resource usage of the application, along
with its creation and distribution of replicas of the
application objects, allows it to inject new life into long-
running replicas by restarting them at appropriate
moments in the system’s life. Care must be taken to
stagger rejuvenation across replicas so that the replicated
object continues to provide service through one or the
other of its operational replicas. By starting replicas at
different times, and by rejuvenating them at the same
frequency, we can minimize the disruption and
simultaneously tolerate yet another kind of fault, i.e.,
memory leaks.

Fault Prediction: The algorithms for fault prediction
and dependability forecasting depend on knowing the
pattern of abnormal behavior that precedes different kinds
of faults. MEAD will employ and extend algorithms for
data mining in order to look through error logs that it
maintains to forecast the occurrence of faults. For each
prediction, MEAD needs to associate a confidence level in
order to allow the adaptation framework to determine
whether or not to take proactive action. Low confidence
levels assert that proactive action might be overkill
because the chances of the fault occurring are low; high
confidence levels might require urgent processing and
high priority. Statistical and heuristic techniques are
valuable in making predictions and in ascertaining our
confidence in those predictions.

High Performance Enablers: MEAD will work with
CORBA high performance enablers as they become
available. High performance enablers reduce middleware
latency and jitter by eliminating unnecessary data
marshalling/demarshalling and by providing zero-copy
transfers. As minimized and low-footprint real-time
ORBs become available, the MEAD architecture will
readily adapt to them.

Conclusions

The MEAD infrastructure aims to provide a reusable,
resource-aware real-time support to applications to protect
against crash, communication, partitioning and timing
faults. MEAD provides novel mechanisms for proactive
dependability, application-transparent fault tolerance and
for making trade-offs to maximize mission availability
during runtime.

References

[1] Jim Gray. Why do computers stop and what can be done
about it? Proceedings of 5th Symposium on Reliability in
Distributed Software and Database Systems, pages 3--11.
IEEE Computer Society Press, catalog number 86CH2260--
8, 1986.

[2] J.N. Gray. A Census of Tandem System Availability between
1985 and 1990. IEEE Trans. Reliability, vol.39, no.4,
pp.409-418, 1990.

[3] Mark Sullivan, Ram Chillarege. Software Defects and their
Impact on System Availability A Study of Field Failures in
Operating Systems. 21st International Symposium on Fault-
Tolerant Computing (FTCS-21), 1991.

[4] D. M. Blough, T. D. Bracewell, J. Cooper, and R. Oravits.
Realizing software fault tolerance in radar systems through
fault-tolerant middleware and fault injection. Proceedings of
the Workshop on Dependable Middleware-Based Systems,
pages G117--G121, Washington, D.C., June 2002.

[5] L. DiPalma and R. Kelly. Applying CORBA in a
contemporary embedded military combat system. In OMG
Workshop on Real-Time and Embedded Distributed Object
Computing, June 2001.

[6] D. C. Schmidt, R. E. Schantz, M. W. Masters, J. K. Cross, D.
C. Sharp, and L. P. DiPalma. Adaptive and reflective
middleware for network-centric combat systems. Crosstalk:
The Journal of Defense Software Engineering, pages 10--16,
November 2001.

[7] P. Narasimhan and S. Ratanotayanon. “Evaluating the
(Un)Predictability of Real-Time CORBA Under Fault-Free
and Recovery Conditions,” submitted for review.

[8] K. Vaidyanathan and Kishor S. Trivedi, "Workload-Based
Estimation of Resource Exhaustion in Software Systems,"
Dept. of Electrical & Computer Engineering, Duke
University, 1999.

[9] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Using
interceptors to enhance CORBA. IEEE Computer, pages 62-
-68, July 1999.

[10] Special issue on Aspect-Oriented Programming.
Communications of the ACM, 44(11), October 2001.

