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Abstract— Today’s middleware applications tend to be compli-
cated, and consist of tiers that form a nested chain of objects
or processes. For a real-time nested application, predictability is
crucial, even when faults and restarts occur. Nested applications
make it challenging to predict the processing time when faults
occurs. The fault-detection and recovery times are influenced
by the number of tiers, the tier in which the fault occurs, the
state of the end-to-end processing when the fault occurs, and
the processing time of each tier. We investigate the behavior of
nested CORBA applications when faults occur in different tiers,
and at different stages of the nested processing. We present a
model for predicting the worst-case fault-detection and fail-over
times for such nested applications.
Keywords: real-time, fault-tolerance, CORBA, nested appli-
cations, worst-case performance

I. I NTRODUCTION

Today’s distributed mission-critical applications are very com-
plex, and are increasingly built as nested applications with
multi-tier architectures to get better performance, maintainabil-
ity and scalability. The integration of individual subsystems to
perform autonomous tasks is another reason for nesting in such
applications. To simplify developing distributed applications,
middlewares are widely adopted by application developers.
Commercial off-the-shelf (COTS) middleware, such as the
Common Object Request Broker Architecture (CORBA) [3],
renders transparent the low-level details of networking, dis-
tribution, physical location, hardware, operating systems, and
byte order.

Many applications, such as radars, telephone switching and
stock trading, require both real-time and fault tolerance. To
obtain real-time behavior, predictability must be maintained,
even when faults occur in the system. This is difficult enough
for non-nested applications because of the conflicts imposed
by real-time and fault-tolerant properties [2]. However, this
becomes far more challenging for nested applications because
more factors affect their predictability when faults occur.
These factors include the number of nested tiers, the precise
tier in which the fault occurs, and the stage of end-to-end
processing when the fault occurs.

We investigate the behavior of nested real-time CORBA
applications in the presence of faults. This paper focuses on
estimating the impact of a fault when the fault occurs in
different tiers, and at different stages of the end-to-end nested

processing. One of our contributions is a model to predict
the worst-case fault-detection and fail-over times, in terms
of the number of tiers and each tier’s processing time; our
experiments have served to validate this model.

II. BACKGROUND

CORBA applications consist of objects distributed across
the system, with client objects invoking server objects that
return responses to the client objects after performing the
requested operations. The Object Request Broker (ORB) acts
as an intermediary in the communication between a client
and a server, transcending differences in their programming
language (language transparency) and their physical locations
(location transparency). The Portable Object Adapter (POA),
a server-side entity that deals with the actual implementations
of a CORBA server object, allows application programmers to
build implementations that are portable across different ven-
dors’ ORBs. CORBA’s General Internet Inter-ORB Protocol
(GIOP) and its TCP/IP-based mapping, the Internet Inter-ORB
Protocol (IIOP), allow client and server objects to commu-
nicate regardless of differences in their operating systems,
byte orders, hardware architectures, etc. In order to satisfy the
demand for middleware that supports the application requiring
high reliability and quality of service, CORBA provides FT-
CORBA [4] and RT-CORBA [5] extensions to support those
applications.

The FT-CORBA specification provides reliability through
the replication of CORBA objects, and the subsequent distribu-
tion of the replicas of every object across the processors in the
system. The specification specifies components to support fault
detection, fault notification, and replication management.The
Fault Detector is capable of detecting host, process and object
faults and communicates the occurrence of faults to the Fault
Notifier. The Fault Detectors can be structured hierarchi-
cally, with the global replicated Fault Detector triggering the
operation of local fault detectors on each processor. Any
faults detected by the local fault detectors are reported to
the global replicated Fault Notifier. On receiving reports of
faults from the Fault Detector, the Fault Notifier filters them
to eliminate any inappropriate or duplicate reports, and then
distributes fault-event notifications to interested parties. The
Replication Manager, being a subscriber of the Fault Notifier,



receives reports of faults that occur in the system, and can,
therefore, initiate appropriate recovery actions. The Logging
and Recovery Mechanisms are located underneath the ORB,
in the form of non-CORBA entities, on each processor that
hosts replicas. They are intended to capture checkpoints of
the application, and to store them for the correct restoration
of a new replica.

The Real-Time CORBA (RT-CORBA) specification aims
to facilitate the end-to-end predictability of activities in the
system, and to allow CORBA developers to manage resources
and to schedule tasks. The specification includes a number of
components, each of which must be designed or implemented
by the RT-CORBA vendor to be predictable. The components
include the real-time ORB (RT-ORB), the real-time POA (RT-
POA), the mapping of the ORB-level priorities to the operating
system’s native priorities, and the server-side thread pool. In
addition to the core CORBA infrastructural enhancements, the
specification also includes a Real-Time CORBA Scheduling
Service for the offline scheduling of the application’s tasks,
typically in accordance with the proven Rate Monotonic
Analysis algorithm. The specification also specify two model
to specify a priority that a server processes a client’s invocation
based on. In the client-propagated priority model, the client
specifies the priority for the invocation, and the server honors
this priority. In the server-declared priority model, the server
specifies the priority at which it will execute the invocation. To
improve the predictability of the system, clients are allowed
to set timeouts to bound the amount of time that they wait for
a server’s response.

III. N ESTEDAPPLICATIONS

CORBA applications that are not very complicated can be
built in a non-nested form to contain objects that act only
either as a pure client or as a pure server. An example is a
two-tier application which is separated into two parts: a pure
client part (e.g., a user interface) and a pure server part (e.g.,
back-end processing). Such non-nested ”flat” architectures are
not sufficiently scalable or flexible to support complicated
applications spanning several servers and with multiple clients.

To overcome the limitations of “flat” architectures, or to
support the communication/sharing of data across sub-systems,
more tiers are chained together to build anested application
that achieves a specific end-to-end function. The additional
tiers provide facilities for integrating existing components,
along with better performance through concurrency, maintain-
ability through decoupled functionality, and scalability. In this
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Fig. 1. A typical nested CORBA application.

nested chain, a server may process an incoming invocation
from its client (preceding object) by sending an outgoing
invocation to another server (following object). Thus, an object
in an intermediate tier acts as both a client and a server,
depending on the semantics (incoming or outgoing) of the
operation. An example of an application of a pure client with
� nested tiers is shown in Figure 1; here,�� is a server for
���� and a client for����, and�� is a pure server; note that
the pure client count as tier� in this system.

The termnested operation refers to the end-to-end process-
ing, starting the pure client to the last server,��. Because
a nested operation propagates through� tiers (i.e.,� server
objects), it can be at any one of the�� � objects (including
the pure client) within the chain. The termstage is used to
refer to the precise object/tier that has finished processing its
share of the nested operation, and is now ready to invoke the
next tier (stage� represents the start of the nested operation by
the pure client). For example, for an application with a client
and three nested tiers, if the invocation has been processed at
the second tier, which is now ready to invoke the third tier,
the nested operation is at the second stage. Once the third/last
tier has processed, but not yet responded to, the invocation, the
nested operation is at the third stage. Once the third tier returns
the response, the notion of stage is meaningless. The remainder
of the paper deals with the real-time and fault tolerance issues
for nested CORBA applications at various stages and tiers of
processing.

A. Architecture for RT-FT Nested Applications

In order to satisfy high reliability and real-time requirements
of mission-critical applications, we consider a combination of
FT-CORBA and RT-CORBA as a starting point, as shown in
Figure 2. In this architecture, RT-CORBA features, such as RT-
ORB, RT-POA, priority mapping, thread pool, etc. are used
to provide predictability in the fault-free case. FT-CORBA
components are exploited to enable the system to tolerate
faults.

To explore the fundamental issues, we focus on a simple
system with stateless warm passively replicated servers. Each
server has a designated primary replica that processes requests;
the backup replicas remain dormant until one of them is
elected as the new primary if the old primary fails. Fault
detection, fault notification, and replication management con-
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Fig. 2. Architecture for RT-FT nested CORBA applications.



form those in FT-CORBA. However, logging mechanisms are
disregarded as the servers are stateless. Fail-over mechanisms
are built into the pure client and the intermediate-tier objects
which are client of other servers so that each tier can itself
trigger fail-over (rather than the pure client triggering the entire
chain of fail-overs). Withstage-specific fail-over mechanisms,
when any object detects faults in its primary server replica,
it can simply switch to the backup server replica, and re-
issues the request. If this fail-over is successful, the end-to-
end processing can be continued from the point of fail-over,
without throwing away the processing completed by previous
tiers.

IV. M ODEL OF NESTEDAPPLICATION

The purpose of our model is to estimate the worst-case
fault-detection time for nested applications in order to assist
developers in designing for their applications’ real-time re-
quirements. This model assumes that the application conforms
to the architecture shown in Section III-A.

In this model, we have a client (tier�)and a sequence of
� server objects (tiers� through�), as shown in Figure 3.
The client invokes��, which processes the client’s request
and, in turn, invokes��, and so on, until�� processes the
request and returns a response. Because each server is two-
way warm passively replicated, if a fault occurs in a server, its
preceding tier will detect the fault, and fail-over to the server’s
backup replica, which will then reprocess the request. Using
one backup, we can tolerate a single crash fault of a server
(with more backups, we can, of course, tolerate more faults).
We assume that we are operating in a distributed asynchronous
system where (i) the pure client does not fail (and is, therefore,
not replicated), (ii) there are no correlated faults in the system,
and (iii) the objects are deterministic.

We use the following symbols, some of which are illustrated
in Figure 3. Unless mentioned otherwise,� � �.

� = number of server tiers (����, excluding tier�),
�� = processing time used in tier�,
�� = server object in tier�,
� = tier where fault occurs,� � �,
�� = nested-operation (round-trip) time measured at tier
�� � (including any reprocessing time after fail-over),
	� = time for tier �� � to detect the fault in tier�.
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Fig. 3. Model of a nested CORBA application.

We define the following two tier-independent constants for
the interaction between tier�� � and tier�:


� = round-trip time for a correct response (excluding
the processing time for the invocation),

� = round-trip time for an exceptional response
(COMM FAILURE),

� = fail-over to the backup replica of tier�.

We define�� to be the stage of end-to-end processing when
the fault is detected. For an application with� tiers,�� can vary
from � to �, depending on the status of the nested operation.
For example, with three tiers, if the fault occurs in tier 1 (� �
�), �� has one of four possible values:

�: Before the client invokes��,
�: �� completes, and is about to invoke��,
�: �� completes, and is about to invoke��,
�: �� completes, and is about to respond to��.

A. Determining the Worst-Case Performance

Since the worst-case performance of the system in the
presence of a fault is of the most interest to real-time systems,
we focus on estimating the worst-case fault-detection time
(worst-case	� for a given�) and worst-case nested-operation
time (worst-case��).

For a fixed� and�, the values of	� and�� increase with
��, as seen from the following argument. There might be some
amount of time spent in processing beyond tier� before the
fault is detected by tier� � �. If the nested operation has
not proceeded beyond�, ����, �� � �, we do not need to
throw away any of the processing. However, if�� � �, any
processing that occurs at, or beyond, tier� has to be thrown
away, and has to be re-done after fail-over to�’s backup.
This time spent from tier� to stage�� represents the “lost”
processing-time under a fault. As�� becomes greater than
�, the amount of “lost” processing-time and the amount of
reprocessing increase; therefore, the nested-operation time� �
(which includes the reprocessing) and the fault-detection time
	� increase. The worst-case	� and the worst-case�� occur
when�� � �.

One of the factors in worst-case	� is the lost-processing
time, which is bounded as follows:

Lost processing time�
��

���

�� (1)

Other factors affecting the worst-case	� are (i) the time

� to receive the COMMFAILURE exception, and (ii) the
sum of the round-trip time from tier� to tier � (excluding
the processing time at tiers� through�). The total round-trip
time in (ii) is given by:

Total round-trip time� �����
� (2)

The time,	�, for the �� � ��st tier to detect the fault in
the�th tier can be bounded as follows.

	� �

��

���

�� � 
� � �����
� (3)



For a given�, the worst-case�� over all possible values
of � occurs when� � �. Factors affecting the worst-case
�� include (i) the worst-case fault-detection time	�, (ii) the
fail-over time (
� ) to tier �’s backup replica, and (iii) the
reprocessing time, which includes the sum of the round-trip
times (�
�) and the processing times (

��

�����) from tiers 1
through�. Expanding this and using Equation 3,

�� � 
� � 
� � ���� ��
� � �

��

���

�� (4)

V. EMPIRICAL VALIDATION

To study the characteristics of nested applications, and to vali-
date the model of Section IV, we employ a multi-tier CORBA
application with real-time fault-tolerant support conforming to
the architecture of Section III-A. Our experimental test-bed
uses the CORBA implementation provided by ACE 5.2.4 and
TAO 1.2.4 [6] over Linux. The application objects, ACE and
TAO were compiled with gcc 2.96.

Our test-bed consists of a client and five server objects,
with configurable number of tiers,����, the value of� can be
varied from 1 to 5, as needed, for each experiment. Each tier
processes the invocation for 40 ms before invoking the next
tier. We inject faults by killing a server replica at a time, in
isolation. We refrain from injecting subsequent faults into the
system while it is recovering. The objects in the application
are distributed across four processors: one (1.4 GHz Pentium
4) for the client, a second (550 MHz Pentium 3) for the
Naming Service, and the third and fourth processors (550 MHz
Pentium 3 and 1.4 GHz Pentium 4) hosting replicas of all the
tiers. Wherever possible, the primary replicas were located on
the faster processors. All of the machines are connected by a
100 Mbps Ethernet.

A. Experimental Results

For a fixed number� of tiers, we inject a fault 100 times in
tier � (� � � � �) for each possible stage�� (� � � � �)
of processing the nested operation. Note that� itself can vary
from 1 to 5, not within the same test-run, of course. Thus, a
test-run consists of a fixed�, a fixed� and a fixed��.
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Fig. 4. Round-trip time�� ’s dependency on the tier� where the fault occurs.

The data that we collect include the round-trip nested-
operation times�� (� � � � �) both in the fault-free case,
and in the event of a fault. The fault-free data serve as our
reference measurements. The data collected for each test-run
is averaged over the 100 runs. We observed that the average
round-trip time in the fault-free case increases with the value
of � (this result is rather obvious, and is, therefore, not shown
in the graphs in this paper). The remainder of our data analysis
focus on the experiments where faults were injected.

Validating our Assumptions. Figure 4 shows the round-trip
time �� for � � 	 tiers for different values of� (1 through
�), averaged over all possible values of�� for each�. This
graph shows that, when the fault occurs in an earlier tier, the
application needs more time to reprocess the request than when
the fault occurs in a later tier. Our experimental results bear
out one of the assumptions in our model, namely, the fact the
worst-case�� occurs when� � �.

Figure 4 reveals the dependency on�, but not on��. Our
model postulated that the greater that�� becomes over�, the
more processing time we lose once the fault occurs; therefore,
the round-trip time�� in the presence of a fault should increase
as ������ increases. This dependency on the value of�� is
demonstrated by the results shown in the graph of Figure 5.
Each line of this graph shows the average round-trip time� �
when the fault occurs in a specific tier�, and the nested
operation is in different stages��.

Validating our Model. We measured the constants
�, 
�
and 
� over multiple runs, and used the highest value to
validate the worst-case model in Section IV-A. These values
are
� � �
�� 
s, 
� � ���� 
s and
� � ������� 
s. In
addition, the worst-case�� = 43 ms. Using these values in
Equation 3 and Equation 4, we obtained our predicted worst-
case bounds for	� and ��, respectively. In all of the results
discussed below,� � � and �� � � were fixed in order
to measure the worst-case performance. Figure 6 shows the
comparison between our calculated/theoretical	� bound and
the measured values of	� for a fixed� � 	. As we can see, our
calculated bounds are valid, except in the case of the abnormal
“spikes” in the graph. Figure 7 shows the comparison between
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Worst-case detection time
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Fig. 6. Measured values vs. calculated values of worst-case detection time
�� when� � �.
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Fig. 7. Measured values vs. calculated values of worst-case detection time
�� for various�

our theoretical	� bound and our experimental measurements
with the varying number� of tiers in the application. Figure 8
shows the comparison between our theoretical�� bound and
our experimental measurements with the varying number� of
tiers in the application. In both Figure 7 and Figure 8, our
worst-case theoretical values clearly bound the experimental
measured ones, except when� � �. We discovered that, when
� � �, the average�� is higher than the worst-case�� due to
the presence of other unrelated tasks on the same processor,
leading to this transient, unrepresentative behavior.

VI. RELATED WORK

There have been several non-middleware systems that have
looked at some combination of real-time and fault tolerance
for specific environments. In this section, we focus solely
on current CORBA-based approaches. To the best of our
knowledge, none of these systems address the fault-detection
and fail-over issues when nested applications are considered.

Fault tolerant features have been added to the real-time
CORBA implementation, TAO. The work adopts the semi-
active replication style pioneered by Delta-4/XPA [1] in order
to provide some guarantees of fault-tolerant determinism. The
implementation currently supports single-threaded applica-
tions. The Real-time Object-oriented Adaptive Fault Tolerance
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Fig. 8. Measured values vs. calculated values of worst-case round-trip time
�� for various�

Support (ROAFTS) architecture [7] is designed to support the
adaptive fault-tolerant execution of both process-stuctured and
object-oriented distributed real-time applications. ROAFTS
considers those fault tolerance schemes for which recovery
time bounds can be easily established, and provides quan-
titative guarantees on the real-time fault tolerance of these
schemes. A prototype has been implemented over the CORBA
ORB, Orbix, on Solaris.

VII. C ONCLUSION

We explore the performance and the predictability of nested
CORBA applications when faults occur in different tiers, and
at different stages. We also develop a theoretical model to
estimate the worst-case fault-detection time and the worst-
case nested operation time for such applications. From our
experimental measurements, we conclude that our model pro-
vides us with worst-case performance bounds that are accurate
enough to enable the scheduling of real-time CORBA appli-
cations in the presence of faults and recovery. Our ongoing
research includes the investigation of strategies for reducing
the observed worst-case performance, and for tightening the
theoretical bounds.
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