
Trade-Offs Between Real-Time and Fault Tolerance
for Middleware Applications *

Priya Narasimhan
Electrical & Computer Engineering Department

Carnegie Mellon University
Pittsburgh, PA 15213-3890

priya@cs.cmu.edu

Abstract
The OMG’s Real-Time CORBA (RT-CORBA) and Fault-
Tolerant CORBA (FT-CORBA) specifications make it possible
for today’s CORBA implementations to exhibit either real-time
or fault tolerance in isolation. While real-time requiresa priori
knowledge of the system’s temporal operation, fault tolerance
necessarily deals with faults that occur unexpectedly, and with
possibly unpredictable fault recovery times. When both real-
time and fault-tolerance are required to be satisfied within the
same system, it is rather likely that trade-offs are made during
the composition. The contribution of this paper is the identifica-
tion of the conflicts between real-time and fault tolerance.

1 Introduction
Middleware platforms, such as CORBA and Java, are
increasingly being adopted because they simplify appli-
cation programming by rendering transparent the low-
level details of networking, distribution, physical loca-
tion, hardware, operating systems, and byte order. Since
CORBA and Java have come to incorporate support for
many “-ilities” (e.g., reliability, real-time, security), these
middleware platforms have become even more attractive
to applications that require a higher quality of service.

. For CORBA middleware, there exist the Fault-
Tolerant CORBA [20] and the Real-Time CORBA [21]
specifications that aim to provide fault tolerance and real-
time, respectively, to CORBA applications. The push for
Commercial-Off-The-Shelf (COTS) products, along with
the recent support for “-ilities” within middleware, have
furthered the adoption of middleware within mission-
critical applications.

Despite its many attractive features, middleware still
does not quite support applications that havemultiple
simultaneous quality-of-service (QoS) requirements, in
terms of their reliability and real-time. It is simply not

* The author wishes to acknowledge partial support through the
High Dependability Computing Program from NASA Ames cooperative
agreement NCC-2-1298.

possible today for a CORBA application to haveboth
real-time and fault-tolerant support through the straight-
forward adoption of implementations of the Real-Time
and Fault-Tolerant CORBA standards, primarily because
the two specifications are incompatible with each other.

To some extent, this is because the real-time and fault
tolerance standards for CORBA were developed indepen-
dently of each other, and cannot be readily reconciled. In
reality, though, this is a manifestation of a much harder
research problem – the fact that real-time and reliability
are system-level properties (i.e., properties that require a
more holistic consideration of the distributed system, and
not just of components or objects in isolation) that are not
easy to combine because they often impose conflicting re-
quirements on the system.

Real-time operation requires the application to be pre-
dictable, to have bounded request processing times, and
to meet specified task deadlines. Typically, for a CORBA
application that is required to be real-time, the behavior
of the application, in terms of the actual time and fre-
quency of client invocations, the relative priorities of the
various invocations, the worst-case execution times of the
invocations at the server, and the availability and allo-
cation of resources for the application’s execution, must
be known ahead of run-time. Armed with this informa-
tion, the real-time CORBA infrastructure then computes a
schedule ahead of run-time, and the application executes
according to this predetermined schedule. Because every
condition has been anticipated, and appropriately planned
for, the system behaves predictably. This predictability is
often the single most important characteristic of real-time
systems.

On the other hand, fault-tolerant operation requires that
the application continue to function, even in the pres-
ence of unanticipated events such as faults, and poten-
tially time-consuming events such as recovery from faults.
For a CORBA application, fault tolerance is typically pro-
vided through the replication of the application objects,



and the subsequent distribution of the replicas across dif-
ferent processors in the system. The idea is that, even if
a replica (or a processor hosting a replica) crashes, one of
the other replicas of the object can continue to provide ser-
vice. Because it is not sufficient for a truly fault-tolerant
system merely to detect the fault, most fault-tolerant sys-
tems include some form of recovery from the fault. For a
fault-tolerant CORBA system, recovery is likely to occur
through the launching of a new replica, and its subsequent
reinstatement to take the place of one that crashed. Of
course, this implies the ability to restore the state of the
new replica to be consistent with those of currently exe-
cuting replicas of the same object. The consistency of the
states of the replicas, under fault-free, faulty and recovery
conditions, is often the single most important characteris-
tic of fault-tolerant systems.

Thus, there exists a fundamental difference in the phi-
losophy underlying the two system properties of real-time
and fault tolerance. While real-time requiresa priori
knowledge of the system’s temporal operation, fault tol-
erance is built on the principle that faults can, and in-
deed do, occur unexpectedly, and that faults must be han-
dled through some recovery mechanism whose processing
time is usually unknown in advance. While inconsistency
in state across replicated entities is detrimental to fault-
tolerant behavior, missed task deadlines are detrimental
to real-time behavior. When both real-time and fault toler-
ance are required to be satisfied within the same system, it
is rather likely that trade-offs are made during their com-
position. For instance, the consistency semantics of the
data might need to be traded against timeliness, or vice-
versa.

Combining reliability and real-time is further compli-
cated by the fact that each system property has its own
range of “values”. For instance, reliability can vary from
weakly-consistent replication (where the availability of a
server is more important, even if the data in some replicas
is somewhat stale or inconsistent) to strongly-consistent
replication (where the availability of the server and the
integrity/consistency of the data across all replicas are
equally important). The composition of real-time behav-
ior and reliability must take into account the varying de-
grees of both real-time and reliability support, and the ef-
fective quality-of-service (QoS) that results.

This work looks at the difficult issues in providing sup-
port for both fault tolerance and real-time in a distributed
asynchronous system. CORBA is chosen as the vehicle
for initial investigation because CORBA currently incor-
porates separate real-time and fault tolerance standards
within its specifications. Section 2 provides the neces-
sary background, including the specifications of the Fault-
Tolerant CORBA and the Real-Time CORBA standards,
respectively, as they exist today. Section 3 outlines the

conflicts that we have identified between real-time and
fault-tolerant operation. Section 4 looks at existing ap-
proaches to real-time fault-tolerant systems. Section 5
concludes with the insights that we have gained from our
preliminary experiments, along with possible strategies
for resolving the conflicts that we have identified.

The work in this paper represents an essential founda-
tional step in the research necessary to develop real-time
fault-tolerant middleware. The major contribution of this
paper is the identification of the conflicts between real-
time and fault tolerance.

2 Background
The Common Object Request Broker Architecture
(CORBA) [19] middleware supports applications that
consist of objects distributed across a system, with client
objects invoking server objects that return responses to
the client objects after performing the requested opera-
tions. CORBA’s Object Request Broker (ORB) acts as an
intermediary in the communication between a client ob-
ject and a server object, transcending differences in their
programming language (language transparency) and their
physical locations (location transparency). The Portable
Object Adapter (POA), a server-side entity that deals
with the actual implementations of a CORBA server ob-
ject, allows application programmers to build implemen-
tations that are portable across different vendors’ ORBs.
CORBA’s General Internet Inter-ORB Protocol (GIOP)
and its TCP/IP-based mapping, the Internet Inter-ORB
Protocol (IIOP), allow client and server objects to com-
municate regardless of differences in their operating sys-
tems, byte orders, hardware architectures, etc.

The following section describes the Fault Tolerant
CORBA and the Real-Time CORBA standards, both of
which are optional sets of extensions to CORBA that en-
hance ORBs with support for fault tolerance and real-
time, respectively. In this section, we present the stan-
dards as they exist; neither the Fault-Tolerant CORBA
standard [20] nor the Real-Time CORBA standard [21]
addresses, or intended to address, how real-time and fault
tolerance impact each other.

2.1 Fault-Tolerant CORBA (FT-CORBA)
Current fault-tolerant CORBA systems can be classi-
fied into the integration, service or interception ap-
proaches. The integration approach to fault-tolerant
CORBA incorporates the reliability mechanisms into the
ORB infrastructure, resulting in modified, non-standard,
CORBA implementations. Examples of the integra-
tion approach include Electra [10], AQuA [3], Maestro
[28] and Orbix+Isis [7]. The service approach to fault-
tolerant CORBA provides reliability through a collection



ORB

Local Fault
DetectorFactory

Server
Replica

Notifications

Server
ReplicaClient

Logging
Mechanism

Recovery
Mechanism

Logging
Mechanism

Recovery
Mechanism

Logging
Mechanism

Recovery
Mechanism

Global Fault
Detector

Fault
Notifier

Factory

ORB ORB

Replication
Manager

Fault
reports

is_alive()create_object()

create_object()

is_alive()

Local Fault
Detector

Figure 1: Architecture of the Fault-Tolerant CORBA (FT-CORBA) standard, showing support for a client-server
application with two-way replication of the server.

of CORBA objects which are explicitly used by the ap-
plication. Examples of the service approach include OGS
[5], FRIENDS [4], DOORS [17], IRL [11], NewTOP [14]
and FTS [6]. The interception approach to fault-tolerant
CORBA provides reliability as a transparent add-on to ex-
isting CORBA applications by means of an interceptor
that can add new services to existing ORBs. The Eter-
nal [15] and the Immune [16] systems provide transpar-
ent reliability and survivability, respectively, to unmodi-
fied CORBA applications running over unmodified ORBs
using the interception approach.

The Object Management Group formally adopted a
standard specification for fault-tolerant CORBA (FT-
CORBA) in March 2000. The FT-CORBA specification
provides reliability through the replication of CORBA ob-
jects, and the subsequent distribution of the replicas of ev-
ery object across the processors in the system. Figure 1
shows the various components of the FT-CORBA infras-
tructure, and their interaction with the supported CORBA
application. The Replication Manager handles the cre-
ation, the deletion and the replication of both the applica-
tion objects and the infrastructure objects. The Replica-
tion Manager replicates objects, and distributes the repli-

cas across the system, and allows the user to configure an
object’s fault tolerance properties, including:

� Factories – processors on which replicas are to be
created,

� Minimum Number of Replicas – the number of
replicas that must exist for the object to be suffi-
ciently protected against faults, also known as the
degree of replication,

� Checkpoint Interval – the frequency at which the
state of the object is to be retrieved and logged for
the purposes of recovery,

� Replication Style – stateless, actively replicated,
cold passively replicated or warm passively repli-
cated.

� Fault Monitoring Interval – interval between suc-
cessive “pings” of the object for liveness.

The FT-CORBA infrastructure provides support for
fault detection and notification. The Fault Detector is ca-
pable of detecting host, process and object faults. Each
application object inherits aMonitorable interface to
allow the Fault Detector to determine the object’s status.
The Fault Detector communicates the occurrence of faults



to the Fault Notifier. The Fault Detectors can be structured
hierarchically, as shown, with the global replicated Fault
Detector triggering the operation of local fault detectors
on each processor. Any faults detected by the local fault
detectors are reported to the global replicated Fault Noti-
fier.

On receiving reports of faults from the Fault Detector,
the Fault Notifier filters them to eliminate any inappro-
priate or duplicate reports, and then distributes fault-event
notifications to interested parties. The Replication Man-
ager, being a subscriber of the Fault Notifier, receives re-
ports of faults that occur in the system, and can, therefore,
initiate appropriate recovery actions.

The Logging and Recovery Mechanisms are located
underneath the ORB, in the form of non-CORBA entities,
on each processor that hosts replicas. They are intended to
capture checkpoints of the application, and to store them
for the correct restoration of a new replica. Each appli-
cation object inherits aCheckpointable interface to
allow its state to be retrieved and assigned, for the pur-
poses of recovery.

2.2 Real-Time CORBA (RT-CORBA)
The Real-Time CORBA (RT-CORBA) specification [21],
with compliant implementations like TAO [25], ORBex-
press, e*ORB and VisiBroker, aims to facilitate the end-
to-end predictability of activities in the system, and to
allow CORBA developers to manage resources and to
schedule tasks. The current standard supports only fixed-
priority scheduling. However, there exists a specialized
CORBA specification for dynamic scheduling [22], as a
part of Real-Time CORBA, version 2.0.

As shown in Figure 2, the specification includes a num-
ber of components, each of which must be designed or
implemented by the RT-CORBA vendor to be predictable.
The components include the real-time ORB (RT-ORB),
the real-time POA (RT-POA), the mapping of the ORB-
level priorities to the operating system’s native priori-
ties, and the server-side thread pool. In addition to the
core CORBA infrastructural enhancements, the specifica-
tion also includes a Real-Time CORBA Scheduling Ser-
vice for the offline scheduling of the application’s tasks,
typically in accordance with the proven Rate Monotonic
Analysis algorithm [9]. Using design-time information,
such as the associations between activities, objects, prior-
ities and resources, the Scheduling Service selects the ap-
propriate CORBA priorities, priority mappings and POA
policies to achieve a uniform real-time scheduling policy
at run-time.

A server-side threadpool is used to avoid the run-time
overhead of thread creation. The threadpool contains a
number of pre-spawned threads, of which is selected when
a task is required to be dispatched by the application. The

threadpool abstraction provides interfaces for preallocat-
ing threads, partitioning threads, bounding thread usage,
and buffering additional requests. A threadpool can be
created with lanes, with each lane containing threads at a
specific RT-CORBA priority.

RT-CORBA deals with, and supports the management
of, three kinds of resources: process, storage and com-
munication resources. Process resources are handled by
providing for control over threadpools, for the assignment
of threads to objects, and for the assignment of priori-
ties to threads. Storage resources are appended to thread
pools for creating additional threads, in response to more
concurrent run-time requests than originally anticipated.
Communication resources are managed by providing con-
trol over which transport connections are shared, and at
what priorities they operate.

RT-CORBA uses a thread as a schedulable entity;
threads form a part of what is known as an activity.
Activities are scheduled through the scheduling of their
constituent threads. The application can attach priori-
ties to threads for scheduling purposes. RT-CORBA sup-
ports a platform-independent priority scheme designed
to transcend the heterogeneity of the operating system-
specific priority schemes. ANativePriority type
represents the priority native to a specific operating
system, and aPriorityMapping interface, shown
in Figure 2 allows the real-time ORB to translate the
application-specified RT-CORBA priority onto the op-
erating system’s native priority. The characteristics of
a thread can be manipulated via the threadpool cre-
ation and theRTCORBA::Current interfaces. The
RTCORBA::Current interface provides access to the
RT-CORBA priority of a thread. There also exists a user-
defined priority transform whereby the priority of an invo-
cation can be modified even as the invocation is being pro-
cessed at the server. A server can process a client’s invo-
cation at a specific priority based on two different models.
In the client-propagated priority model, the client spec-
ifies the priority for the invocation, and the server hon-
ors this priority. In the server-declared priority model, the
server specifies the priority at which it will execute the
invocation. A client can communicate with a server over
multiple different priority-banded connections,����, with
each connection handling invocations at a different prior-
ity. To improve the predictability of the system, clients
are allowed to set timeouts to bound the amount of time
that they wait for a server’s response.

3 Conflicts Between Real-Time and
Fault Tolerance

Typically, for a CORBA application that is required to
be real-time, the behavior of the application, in terms of



Priority
Mapping

Priority
Mapping

RT-ORB

RT::Current

RT-ORBORBORB

POA

Operating SystemOperating System

RT-POA

Thread Pool

Distinct
Server Objects

Server Process

Client Process

Multiple priority-banded connections

between the client and the server

Client
Object

Scheduling Service

Figure 2: Architecture of the Real-Time CORBA (RT-CORBA) standard, showing support for a client-server applica-
tion, including the real-time priority mapping, the RT-ORB, the RT-POA, the server-side thread pool, the client-side
RT::Current and the Scheduling Service.

the actual time and frequency of client invocations, the
relative priorities of the various invocations, the worst-
case execution times of the invocations at the server, and
the availability and allocation of resources for the ap-
plication’s execution, must be known ahead of run-time.
Armed with this information, the real-time CORBA in-
frastructure can then compute an offline schedule ahead of
run-time, and the application can then execute according
to this predetermined schedule. Because every condition
has been anticipated, and appropriately planned for, the
system behaves predictably.

Fault tolerance for a CORBA application is typically
provided through the replication of the application ob-
jects, and the subsequent distribution of the replicas across
different processors in the system. The idea is that, even if
a replica (or a processor hosting a replica) crashes, one of
the other replicas of the object can continue to provide ser-
vice. Because it is not sufficient for a truly fault-tolerant
system merely to detect the fault, most fault-tolerant sys-
tems include some form of recovery from the fault.

End-to-end temporal predictability of the application’s
behavior is the single most important property of a real-
time CORBA system. Strong replica consistency, un-
der fault-free, faulty and recovery conditions, is often
the single most important characteristic of a fault-tolerant
CORBA system. The rest of this section outlines the real-
time ��� fault tolerance challenges that the proposed re-
search will address.

3.1 Non-Determinism
The real-time and fault tolerance communities disagree

even on the definition of terms such as determinism. From
a fault tolerance viewpoint, an object is said to be deter-
ministic if any two of its replicas (on the same processor
or on different processors), when starting from the same
initial state and executing the same set of operations in
the same order, reach the same final state. If an object
did not exhibit such reproducible behavior, one could no
longer maintain the consistency of the states of its repli-
cas. For a real-time system, an object is said to be de-
terministic if its behavior is bounded, from a timeliness



standpoint. End-to-end predictability for a fixed-priority
CORBA system typically implies that thread priorities of
the client and server are respected in resource contention
scenarios, that the duration of thread priority inversions
are bounded, and that the latencies of operation invoca-
tions are bounded.

Thus, for an application to be deterministic in terms
of both real-time and fault tolerance, the application’s
behavior must be reproducible and identical across mul-
tiple replicas distributed across different processors; in
addition, the application’s tasks must be predictable and
bounded from a temporal standpoint.

For CORBA applications, fault-tolerant determinism
can be achieved by forbidding the application’s use of any
mechanism that is likely to produce different results on
different processors. This includes a long list of items,
such as local timers, local I/O, hidden channels of com-
munication (such as non-IIOP communication), multi-
threading, etc. Real-time determinism can be satisfied
by ensuring that the application’s tasks are bounded in
terms of processing time. Trivial CORBA applications
can clearly satisfy the notions of determinism from both
real-time and fault tolerance perspectives. For more re-
alistic applications, it is often not possible to satisfy both
determinism requirements.

One classic example is the use of time. Real-world time
is a fundamental building-block in real-time systems, with
absolute and precise time required everywhere to enable
timers, timeouts, deadlines, as well as to bound and to
time application behavior. RT-CORBA applications may
set a timeout on a specific invocation in order to bound
the time that the client is blocked waiting for a reply. The
timeout mechanism is used to improve the predictability
of the system. However, it contributes to fault-tolerant
non-determinism because different replicas of the same
object, on different processors, might obtain different val-
ues of time from their local processor clocks. Typically,
this is resolved through some kind of global clock syn-
chronization. Of course, the global time service must also
be replicated (to avoid it being a single point of failure)
and must not be a bottleneck (to avoid it being inefficient).
This merely leads to a new set of problems.

3.2 Ordering of Operations
Real-time and fault tolerance both require the applica-
tion’s operations to be ordered, but for different reasons.
From an real-time viewpoint, the most important criterion
is to order the application’s task in order to meet dead-
lines. When the same application is replicated for fault
tolerance, the most important criterion is to keep the repli-
cas consistent in state, even as they receive invocations,
process invocations, and return responses. This requires
delivering the same set of operations, in the same order,

to all of the replicas assuming, of course, that the applica-
tion is deterministic.

Thus, fault tolerance requires operations to be ordered
to preserve replica consistency, while real-time requires
operations to be ordered to meet deadlines. The problem
arises when the two orders of operations are in conflict.
For example, consider a processor P1 hosting replicas of
objects A, B and C while processor P2 hosts replicas of
objects A, B and D. The schedules of operations on the
two processors might depend on their respective local re-
source usage and resource limits. It is perfectly possible
that P1’s replica of A and P2’s replica of A see different
orders of operations based on the individual schedules on
their respective processors. Also, if A’s replica on P1 dies,
leaving only replicas of B and D behind on processor P1,
the order of operations at B’s replicas on the two proces-
sors might start to differ. Real-time operation is sensitive
to resource usage and resource availability: meeting op-
eration schedules, given the distribution of replicas onto
different processors and the occurrence of faults, can lead
to replica inconsistency.

3.3 Bounding Fault Handling and Recovery
Detecting a fault is not necessarily an asynchronous

event, particularly if periodic heartbeats, or “pings”, are
used for fault detection. On the other hand, a fault it-
self is an asynchronous event because it is aperiodic. The
time to handle a fault might be non-trivial and unpredi-
catable, and depends on many factors – the source of the
fault, the point in time (relative to the rest of the sys-
tem’s processing) that the fault occurs, the ramifications
of the fault (on the rest of the system’s processing), activ-
ities in the system that are collocated with the faulty ob-
ject/process/processor,���� Thus, when a fault occurs, the
entire schedule might be “upset” at having to deal with the
fault. The time to detect the crash fault of an object might
vary considerably, depending on the ongoing activities of
the other objects within the failed object’s containing pro-
cess, on the amount of time it takes for the underlying
protocol and the ORB to detect connection closure, on the
load and memory of the processor hosting the failed ob-
ject,����

The recovery of a new replica is yet another event that
might “upset” the pre-planned schedule of events in a
real-time system. For a fault-tolerant CORBA system, re-
covery is likely to occur through the launching of a new
replica, and its subsequent reinstatement to take the place
of one that crashed. Of course, this implies the ability
to restore the state of the new replica to be consistent
with those of currently executing replicas of the same ob-
ject. The time to recover a new replica depends on var-
ious factors: (i) state-retrieval duration, i.e., the time to
retrieve the state from an executing replica (which might



depend on the size of the object’s state), (ii) state-transfer
duration, i.e., the time to transfer this retrieved state to
the new replica across the network, (iii) state-assignment
duration, i.e., the time to assign the transferred state to
the new replica (which might sometimes involve instan-
tiating multiple internal objects at the new replica), and
(iv) message-recovery duration, i.e., the time for the new
replica to “catch up” on relevant events that might have
occurred in the system even as the replica was undergoing
recovery. The replica is considered to be fully recovered
only after phases (i)-(iv) are completed.

The last contributing factor, the message-recovery du-
ration, requires the fault-tolerant infrastructure to record
all incoming messages that are destined for the new
replica (while it is recovering), and feeding this ordered
queue of logged messages to the new replica after the
state transfer to the new replica has occurred. Based on
the instant at which the fault occurred, and on the instant
at which recovery is initiated, the recovery time can vary
considerably. For instance, the message-recovery dura-
tion (iv) might be zero (if no new invocations arrive for the
new replica during the state-retrieval, the state-transfer or
the state-assignment phases) or might never become zero
(if new invocations arrive faster than the replica is able
to catch up with the previously enqueued ones, even af-
ter the state-assignment phase has completed. Potentially
unbounded events, such as fault handling, logging and re-
covery, are anathema to a real-time system.

3.4 CORBA-Specific Issues
In the current state-of-the-art, replicas of the same ob-
ject cannot be hosted over different real-time ORBs, or
even over different real-time operating systems. Other
CORBA-specific issues that are concerns for real-time or
fault tolerance, or both are:
CORBA also supports an asynchronous/oneway invoca-
tion mode, where the client sends an invocation to the
the server, and does not expect any response. Oneways
are inherently unreliable, with even the ORB not knowing
for certain when the oneway completes. Asynchronous
message handling is used in real-time CORBA to make a
relatively quick up-call to a server object, and then to al-
low the server object to complete actual processing asyn-
chronously, along with other concurrent client requests.

In fault-tolerant CORBA applications, the completion
of one operation is used to signal that the next operation
may be safely delivered. Not knowing when an operation
completes, and not knowing if the operation shares state
with other concurrent requests on the same object, can
lead to replica inconsistency. RT-CORBA uses threads
as the entity for scheduling while FT-CORBA uses ob-
jects as the entity for replication. Since there can exist
multiple threading models (thread-per-object, thread-per-

connection,����) within an ORB, care must be taken to
reconcile the object��� thread models. The RT-CORBA
priority transform, which can change the priority of a re-
quest on the fly, is not idempotent. Therefore, executions
of the transform at different replicas of the same object
might produce different results.

Every replicated CORBA object is associated with
application-level state, ORB/POA-level state and
infrastructure-level state. As a part of this project, we
have already begun to identify the additional pieces of
information that a Real-Time ORB might store (and that
would need to be recovered), over and above standard
non-real-time ORBs. For instance, an RT-CORBA client
can have multiple connections to a server, with each
connection at a different priority. For instance, the
mapping of the priority to the physical connection within
the Real-Time ORB constitutes a part of the client-side
ORB-level state.

4 Related Work
Middleware systems that provide purely real-time or fault
tolerance have already been covered in Section 2.2 and
Section 2.1, respectively. This section looks exclusively at
current approaches to provide some combination of real-
time and fault tolerance. Stankovic’s work [27] recog-
nizes the tension between real-time and fault tolerance,
and looks at providing fault tolerance for real-time sys-
tem through a planning-mode scheduler and an imprecise
computation model. This model prevents timing faults by
reducing the accuracy of the results in a graceful manner,
����, the accuracy of the results increase with additional
computation or execution time.

The work in [12] describes a time-redundancy approach
to solve the problem of scheduling real-time tasks, along
with transient recovery requests, in a uniprocessor sys-
tem. The slack-stealing scheduling approach is exploited
to determine various levels of responsiveness, with each
responsiveness level based on the slack available at a spec-
ified priority in the system, and on the criticality of the re-
quest. A recovery request is accepted if it can meet its pre-
computed deadline, while being serviced at an assigned
responsiveness level. Otherwise, the recovery request is
rejected.

ARMADA [1] is a set of communication and middle-
ware services that provide support for fault-tolerance and
end-to-end Guarantees for embedded real-time distributed
applications. The two distinct aspects of this project in-
clude the development of a predictable communication
service for QoS-sensitive message delivery. The sec-
ond thrust of this project includes a suite of fault-tolerant
group communication protocols with timeliness guaran-
tees, and a timed atomic multicast. The system supports



real-time applications that can tolerate minor inconsis-
tencies in replicated state. To this end, ARMADA em-
ploys passive replication where the backups’ states are al-
lowed to lag behind the primary’s state, but only within
a bounded time window. The Maruti [24] system aims
to support the development and deployment of hard real-
time applications in a reactive environment. Maruti em-
ploys a combination of replication for fault tolerance and
resource allocation for real-time guarantees. In this sys-
tem, the object model can be enhanced to specify timing
requirements, resource requirements and error handling.

The MARS project [8] is aimed at the analysis and de-
ployment of synchronous hard real-time systems. MARS
is equipped with redundancy, self-checking procedures
and a redundant network bus. It employs a static of-
fline real-time scheduler, along with tools to analyze the
worst-case execution time of the application. For pre-
dictable communication with timeliness guarantees, the
time-triggered protocol (TTP) is used for communica-
tion within the system. The Delta-4/XPA architecture [2]
extended the original Delta-4 system [23] work to reli-
able group communication support, with bounded laten-
cies and loose synchrony, for real-time applications. A
comparison of the MARS and Delta-4/XPA systems can
be found in [13]. More recently, fault tolerant features
have been added to the real-time CORBA implementa-
tion, TAO [18]. The work adopts the semi-active replica-
tion style pioneered by Delta-4/XPA in order to provide
some guarantees of fault-tolerant determinism. The im-
plementation currently supports single-threaded applica-
tions.

The Real-time Object-oriented Adaptive Fault Toler-
ance Support (ROAFTS) architecture [26] is sdesigned
to support the adaptive fault-tolerant execution of both
process-stuctured and object-oriented distributed real-
time applications. ROAFTS considers those fault toler-
ance schemes for which recovery time bounds can be eas-
ily established, and provides quantitative guarantees on
the real-time fault tolerance of these schemes. A proto-
type has been implemented over the CORBA ORB, Orbix,
on Solaris.

5 Conclusion
The work in this paper represents an essential founda-
tional step in the research necessary to develop real-time
fault-tolerant middleware. The major contribution of this
paper is the identification of the conflicts between real-
time and fault tolerance. Although these contributions are
described in the context of CORBA, they apply to any
application that requires real-time and fault tolerance sup-
port simultaneously, in a distributed asynchronous envi-
ronment.

From our preliminary empirical evaluation, we con-
clude that new mechanisms for fast fault detection and fast
recovery are required for real-time fault-tolerant CORBA
applications. Current CORBA implementations produce
fault detection, fail-over and recovery times in the order
of seconds, and show great variability, even under iden-
tical, reproducible conditions. Because the behavior of
even a simple real-time CORBA application is not suffi-
ciently bounded or predictable in the presence of faults,
additional mechanisms need to be incorporated into the
system to compensate for, and to smooth out, the unpre-
dictability.

Our current research is focussed on the kinds of infras-
tructural support and mechanisms required to resolve the
real-time��� fault tolerance conflicts, to support middle-
ware applications that must haveboth real-time and fault
tolerance.

References
[1] T. F. Abdelzaher, S. Dawson, W. chang Feng, F. Ja-

hanian, S. Johnson, A. Mehra, T. Mitton, A. Shaikh,
K. G. Shin, Z. Wang, H. Zou, M. Bjorkland, and
P. Marron. ARMADA middleware and communica-
tion services.Real-Time Systems, 16(2-3):127–153,
1999.

[2] P. Barrett, P. Bond, A. Hilborne, L. Rodrigues,
D. Seaton, N. Speirs, and P. Verissimo. The delta-4
extra performance architecture (xpa). InProceed-
ings of the Fault-Tolerant Computing Symposium,
pages 481–488, Newcastle, UK, June 1990.

[3] M. Cukier, J. Ren, C. Sabnis, W. H. Sanders, D. E.
Bakken, M. E. Berman, D. A. Karr, and R. Schantz.
AQuA: An adaptive architecture that provides de-
pendable distributed objects. InProceedings of the
IEEE 17th Symposium on Reliable Distributed Sys-
tems, pages 245–253, West Lafayette, IN, October
1998.

[4] J. C. Fabre and T. Perennou. A metaobject archi-
tecture for fault-tolerant distributed systems: The
FRIENDS approach.IEEE Transactions on Com-
puters, 47(1):78–95, 1998.

[5] P. Felber.The CORBA Object Group Service: A Ser-
vice Approach to Object Groups in CORBA. PhD
thesis, Swiss Federal Institute of Technology, Lau-
sanne, Switzerland, 1998.

[6] R. Friedman and E. Hadad. FTS: A high perfor-
mance CORBA fault tolerance service. InProceed-
ings of IEEE Workshop on Object-oriented Real-
time Dependable Systems, San Diego, CA, January
2002.



[7] Isis Distributed Systems Inc. and Iona Technologies
Limited. Orbix+Isis Programmer’s Guide, 1995.

[8] H. Kopetz, A. Damm, C. Koza, M. Mulazzani,
W. Schwabl, C. Senft, and R. Zainlinger. Dis-
tributed fault-tolerant real-time systems: The Mars
approach.IEEE Micro, pages 25–40, February 1989.

[9] C. L. Liu and J. W. Layland. Scheduling algorithms
for multi-programming in a hard real-time environ-
ment.Journal of the Association for Computing Ma-
chinery, 20(1):40–61, 1973.

[10] S. Maffeis. Adding group communication and fault
tolerance to CORBA. InProceedings of the 1995
USENIX Conference on Object-Oriented Technolo-
gies, pages 135–146, Monterey, CA, 1995.

[11] C. Marchetti, M. Mecella, A. Virgillito, and R. Bal-
doni. An interoperable replication logic for CORBA
systems. InProceedings of the International Sympo-
sium on Distributed Objects and Applications, pages
7–16, Antwerp, Belgium, September 2000.

[12] P. Mejia-Alvarez and D. Mosse. A responsiveness
approach for scheduling fault recovery in real-time
systems. InProceedings of the IEEE Real-Time
Technology and Applications Symposium, Vancou-
ver, Canada, June 1999.

[13] S. Melro and P. Verssimo. Real-time and depend-
ability comparison of delta-4/xpa and mars systems.
Technical report, INESC Technical Report RT/09-
92, University of Lisbon, Portugal, 1992.

[14] G. Morgan, S. Shrivastava, P. Ezhilchelvan, and
M. Little. Design and implementation of a CORBA
fault-tolerant object group service. InProceedings
of the Second IFIP WG 6.1 International Working
Conference on Distributed Applications and Inter-
operable Systems, Helsinki, Finland, June 1999.

[15] P. Narasimhan. Transparent Fault Tolerance for
CORBA. PhD thesis, Department of Electrical
and Computer Engineering, University of Califor-
nia, Santa Barbara, December 1999.

[16] P. Narasimhan, K. P. Kihlstrom, L. E. Moser, and
P. M. Melliar-Smith. Providing support for surviv-
able CORBA applications with the Immune system.
In Proceedings of the 19th IEEE International Con-
ference on Distributed Computing Systems, pages
507–516, Austin, TX, May 1999.

[17] B. Natarajan, A. Gokhale, S. Yajnik, and D. C.
Schmidt. DOORS: Towards high-performance fault-
tolerant CORBA. InProceedings of the Interna-
tional Symposium on Distributed Objects and Appli-

cations, pages 39–48, Antwerp, Belgium, Septem-
ber 2000.

[18] B. Natarajan, N. Wang, C. Gill, A. Gokhale, D. C.
Schmidt, J. K. Cross, C. Andrews, and S. J. Fer-
nandes. Adding real-time support to fault-tolerant
CORBA. In Proceedings of the Workshop on De-
pendable Middleware-Based Systems, pages G1–
G15, Washington, D.C., June 2002.

[19] Object Management Group. The Common Ob-
ject Request Broker: Architecture and specification,
2.6 edition. OMG Technical Committee Document
formal/2001-12-01, December 2001.

[20] Object Management Group. Fault tolerant
CORBA. OMG Technical Committee Document
formal/2001-09-29, September 2001.

[21] Object Management Group. Real-time
CORBA. OMG Technical Committee Docu-
ment formal/2001-09-28, September 2001.

[22] Object Management Group. Real-time CORBA 2.0:
Dynamic scheduling specification. OMG Techni-
cal Committee Document ptc/2001-08-34, Septem-
ber 2001.

[23] D. Powell. Delta-4: A Generic Architecture for De-
pendable Distributed Computing. Springer-Verlag,
1991.

[24] M. Saksena, J. Silva, and A. Agrawala. Design and
implementation of maruti-ii, 1994.

[25] D. C. Schmidt, D. L. Levine, and S. Mungee. The
design of the TAO real-time Object Request Broker.
Computer Communications, 21(4):294–324, April
1998.

[26] E. Shokri, P. Crane, K. H. Kim, and C. Subbaraman.
Architecture of ROAFTS/Solaris: A Solaris-based
middleware for real-time object-oriented adaptive
fault tolerance support. InProceedings of the Com-
puter Software and Applications Conference, pages
90–98, Vienna, Austria, Aug. 1998.

[27] J. A. Stankovic and F. Wang. The integration of
scheduling and fault tolerance in real-time systems.
Technical Report UM-CS-1992-049, Department of
Computer Science, University of Massachusetts,
Amherst, , 1992.

[28] A. Vaysburd and K. Birman. The Maestro approach
to building reliable interoperable distributed appli-
cations with multiple execution styles.Theory and
Practice of Object Systems, 4(2):73–80, 1998.


