
Carnegie Mellon

Middleware for Embedded Adaptive
Dependability (MEAD)

Real-Time Fault-Tolerant Middleware Support

Priya Narasimhan
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Collaborators
Thomas D Bracewell, Raytheon Integrated Defense Systems (co-PI, DARPA PCES-II)
Philip J Koopman, Carnegie Mellon University (co-PI, General Motors & NASA HDCP)

2

Carnegie Mellon

© 2003 Priya Narasimhan

Background
Assistant Professor of ECE and CS at Carnegie Mellon University

Research and teaching in the area of dependable distributed middleware

MEAD: Real-time fault-tolerant middleware
Primary focus of my talk today

Starfish: Secure partition-tolerant scalable middleware
Cyclopes: Robustness evaluation (and benchmarking) of middleware

3

Carnegie Mellon

© 2003 Priya Narasimhan

Motivation for MEAD

CORBA is increasingly used for applications, where dependability
and quality of service are important

The Real-Time CORBA (RT-CORBA) standard
The Fault-Tolerant CORBA (FT-CORBA) standard

But ……
Neither of the two standards addresses its interaction with the other
Either real-time support or fault-tolerant support, but not both
Applications that need both RT and FT are left out in the cold

Focus of MEAD
Why real-time and fault tolerance do not make a good “marriage”
Overcoming these issues to build support for CORBA applications that
require both real-time and fault tolerance

4

Carnegie Mellon

© 2003 Priya Narasimhan

Quality of Service for CORBA Applications

The Real-time CORBA (RT-CORBA) standard
Scheduling of entities (threads)
Assignment of priorities of tasks
Management of process, storage and communication resources
End-to-end predictability

The Fault tolerant CORBA (FT-CORBA) standard
Replication of entities (CORBA objects or processes)
Management and distribution of replicas
Logging of messages, checkpointing and recovery
Strong replica consistency

5

Carnegie Mellon

© 2003 Priya Narasimhan

FT-Determinism Coherent state across
replicas for every input

RT-Determinism Bounded predictable
temporal behavior

FT-Determinism prohibits the use of local
processor time

Use of timeouts and timer-based mechanisms

FT-Determinism prohibits the use of
multithreading

Multithreading for concurrency and efficient
task scheduling

Operations ordered to preserve data
consistency (across replicas)

Operations ordered to meet task deadlines

No advance knowledge of when faults might
occur

Requires a priori knowledge of events

Fault-Tolerant SystemsReal-Time Systems

6

Carnegie Mellon

© 2003 Priya Narasimhan

Observations – I
Fault-Free Performance for Simple Real-Time CORBA Applications

Fault-Detection Time for Simple Real-Time CORBA Applications

7

Carnegie Mellon

© 2003 Priya Narasimhan

Observations – II
Recovery Time for Simple Real-Time CORBA Applications

Recovery Time for Multi-Tiered “Nested” Real-Time CORBA Applications

8

Carnegie Mellon

© 2003 Priya Narasimhan

Combining Real-Time and Fault-Tolerance

Trade-offs between RT and FT for specific scenarios
Effective ordering of operations to meet both RT and FT requirements
Resolution of non-deterministic conflicts (e.g., timers, multithreading)

Impact of fault-tolerance and real-time on each other
Impact of faults/restarts on real-time behavior
Replication of scheduling/resource management components
Scheduling (and bounding) recovery to avoid missing deadlines

For large-scale systems
Scalable fault detection and recovery
Considering nested (multi-tiered) middleware applications
Tolerance to partitioning faults

9

Carnegie Mellon

© 2003 Priya Narasimhan

Architectural Overview
Use replication to protect

Application objects
Scheduler and global resource manager

Special RT-FT scheduler
Real-time resource-aware scheduling service
Fault-tolerant-aware to decide when to initiate recovery

Hierarchical resource management framework
Local resource managers feed into a replicated global resource manager
Global resource manager coordinates with RT-FT scheduler

Ordering of operations
Keeps replicas consistent in state despite faults, missed deadlines,
recovery and non-determinism in the system

10

Carnegie Mellon

© 2003 Priya Narasimhan

So, What Do We Want To Tolerate?
Crash faults

Hardware and/or OS crashes in isolation
Process and/or Object crashes

Communication faults
Message loss and message corruption
Network partitioning

Malicious faults (commission/Byzantine)
Processor/process/object maliciously subverted

Omission faults
Missed deadline in a real-time system

Design faults
Correlated software/programming/design errors

Fault Model
Kinds of faults that MEAD

is designed to tolerate

11

Carnegie Mellon

© 2003 Priya Narasimhan

MEAD (Middleware for Embedded Adaptive Dependability)

Our RT-FT Architecture
Why MEAD?
Legendary ambrosia of the Vikings
Believed to endow its imbibers with

Immortality (dependability)
Reproductive capabilities
(replication)
Wisdom for weaving poetry
(cross-cutting aspects of real-time
and fault tolerance)
Happy and long married life
(partition-tolerance)

12

Carnegie Mellon

© 2003 Priya Narasimhan

13

Carnegie Mellon

© 2003 Priya Narasimhan

Resource-Aware RT-FT Scheduling
Requires ability to predict and to control resource usage

Example: Virtual memory is too unpredictable/unstable for real-time usage
RT-FT applications that use virtual memory need better support

Needs input from the local and global resource managers
Resources of interest: load, memory, network bandwidth
Parameters: resource limits, current resource usage, usage history profile

Uses resource usage input for
Proactive action

Predict and perform new resource allocations
Migrate resource-hogging objects to idle machines before they start executing

Reactive action
Respond to overload conditions and transients
Migrate replicas of offending objects to idle machines even as they are
executing invocations

14

Carnegie Mellon

© 2003 Priya Narasimhan

Proactive Dependability

What if we knew, with some confidence, when a fault was to occur?
Needs input from a fault-predictor (error-log analysis)

To determine when, and what kinds of, faults can occur
To schedule fault detection time based on prediction

Needs input from a recovery-predictor
Offline predictor: Source code analysis for worst-case recovery time

Look at each object’s data structures
Looks at the object’s containing process and ORB interactions
Not comprehensive: unable to predict dynamic memory allocations

Runtime predictor: Object execution and memory allocation profile
Intercepts and observes runtime memory allocations (e.g., object instantiation,
library loading), connection establishment, etc.
Prepares for the worst-case replica recovery time

15

Carnegie Mellon

© 2003 Priya Narasimhan

Offline Program Analysis

Application may contain RT vs. FT conflicts

Application may be non-deterministic
MEAD sifts interactively through application source-code

To pinpoint sources of conflict between real-time and fault-tolerance
To determine size of state, and to estimate recovery time
To determine the appropriate points in the application for the
incremental checkpointing of the application
To highlight, and to compensate for, sources of non-determinism

Multi-threading
Direct access to I/O devices
Local timers

Output of program analysis (recovery-time estimates) fed to the
Fault-Tolerance Advisor

16

Carnegie Mellon

© 2003 Priya Narasimhan

Fault-Tolerance Advisor

Configuring fault tolerance today is mostly ad-hoc
To eliminate the guesswork, we deployment/run-time advice on

Number of replicas
Checkpointing frequency
Fault-detection frequency, etc.

Input to the Fault-Tolerance Advisor
Application characteristics (using output from program analysis)
System reliability characteristics
System’s and application’s resource usage

Fault-Tolerance Advisor works with other MEAD components to
Enforce the reliability advice
Sustain the reliability of the system, in the presence of faults

17

Carnegie Mellon

© 2003 Priya Narasimhan

Fault-Tolerance Advisor

Run-time
profile of
resource

usage

Middleware
Application

Operating system,
Network speed/type,
Configuration,
Workstation speed/type

Reliability requirements
Recovery time
Faults to tolerate

Source-code
program analysis

RT-FT Schedule
Number of replicas
Replication style
Checkpointing rate
Fault detection rate

Fault
Tolerance
Advisor

18

Carnegie Mellon

© 2003 Priya Narasimhan

Summary
Resolving trade-offs between real-time and fault tolerance

Ordering of tasks to meet replica consistency and task deadlines
Bounding fault detection and recovery times in asynchronous environment
Estimating worst-case performance in fault-free, faulty and recovery cases

MEAD’s RT-FT middleware support
Tolerance to crash, communication, timing and partitioning faults
Resource-aware RT-FT scheduler to schedule recovery actions
Proactive dependability framework
Fault-tolerance advisor to take the guesswork out of configuring reliability
Offline program analysis to detect, and to compensate for, RT-FT conflicts

Ongoing research and development with RT-CORBA and Real-Time Java
Intention to participate in the standardization efforts of the OMG
Sponsors: DARPA PCES-II, General Motors, National Science Foundation

19

Carnegie Mellon

© 2003 Priya Narasimhan

Looking Ahead to RT-FT Standardization

Consider (and seek means to reconcile) the fundamental
conflicts/tensions between real-time and fault-tolerance

To apply the solution to a wider class of middleware applications
To avoid point solutions that might work well, but only for
well-understood applications, and only under certain constraints
To allow for systems that are subject to dynamic conditions, e.g.,
changing constraints, new environments, overloads, faults, ……

Expose interfaces that support the
Capture of the application’s fault-tolerance and real-time needs
Tuning of the application’s fault-tolerance and real-time configurations
Query of the provided “level” of fault-tolerance and real-time
Scheduling of both real-time and fault-tolerance (fault-detection, fault-
recovery and fault-forecasting) activities

20

Carnegie Mellon

© 2003 Priya Narasimhan

Related Projects: Starfish

System-wide Intrusion Tolerance
Looks at which parts of the system may
have been tainted by faulty processor/object

Supports multi-tiered wide-area systems
with varying guarantees for survivability

Extends the survivability to both clients
and servers
Proactive containment of malice

More comprehensive fault model
Crash faults
Communication faults
Byzantine/arbitrary faults
System/Network partitioning

http://www.ece.cmu.edu/~starfish

21

Carnegie Mellon

© 2003 Priya Narasimhan

Related Projects: Cyclopes

Part of the NASA High Dependability Computing Program (HDCP) – joint work
with Prof. Philip J. Koopman of Carnegie Mellon University
How do you know if a dependable system is really dependable?

Cyclopes – ensuring robust middleware systems
Probing middleware interfaces to see how they respond to anomalies
Wrappers to contain detected system vulnerabilities

Quantifying dependability
How do you put a number on dependability?
Metrics and benchmarks for objective evaluation
Need to evaluate “-ilities” in isolation and in composition

Evaluation of Java middleware
Generic Baseline (Red Hat Linux/ SUN VM): 4.7 % Robustness Failure Rate
Timesys Real-Time Java: Similar rate, but less robust

Segmentation faults encountered

22

Carnegie Mellon

© 2003 Priya Narasimhan

http://www.ece.cmu.edu/~mead

Priya Narasimhan
Assistant Professor of ECE and CS

Carnegie Mellon University
Pittsburgh, PA 15213-3890

Tel: +1-412-268-8801
priya@cs.cmu.edu

For More Information on MEAD

	Middleware for Embedded Adaptive Dependability (MEAD)Real-Time Fault-Tolerant Middleware Support
	Background
	Motivation for MEAD
	Quality of Service for CORBA Applications
	Observations – I
	Observations – II
	Combining Real-Time and Fault-Tolerance
	Architectural Overview
	So, What Do We Want To Tolerate?
	MEAD (Middleware for Embedded Adaptive Dependability)
	Resource-Aware RT-FT Scheduling
	Proactive Dependability
	Offline Program Analysis
	Fault-Tolerance Advisor
	Fault-Tolerance Advisor
	Summary
	Looking Ahead to RT-FT Standardization
	Related Projects: Starfish
	Related Projects: Cyclopes
	For More Information on MEAD

