Carnegie Mellon

Middleware for Embedded Adaptive
Dependability (MEAD)

Real-Time Fault-Tolerant Middleware Support

Priya Narasimhan

Carnegie Mellon University
Pittsburgh, PA 15213-3890

Collaborators
Thomas D Bracewell, Raytheon Integrated Defense Systems (co-Pl, DARPA PCES-II)
Philip J Koopman, Carnegie Mellon University (co-Pl, General Motors & NASA HDCP)

b

) Electrical & Computer
J ENGINEERING

Carnegie Mellon

Background

m Assistant Professor of ECE and CS at Carnegie Mellon University
N Research and teaching in the area of dependable distributed middleware

m MEAD: Real-time fault-tolerant middleware
N Primary focus of my talk today

m Starfish: Secure partition-tolerant scalable middleware

m Cyclopes: Robustness evaluation (and benchmarking) of middleware

© 2003 Priya Narasimhan

Carnegie Mellon

Motivation for MEAD

m CORBA is increasingly used for applications, where dependability
and quality of service are important
N The Real-Time CORBA (RT-CORBA) standard
N The Fault-Tolerant CORBA (FT-CORBA) standard

N Neither of the two standards addresses its interaction with the other
N Either real-time support or fault-tolerant support, but not both
N Applications that need both RT and FT are left out in the cold

m Focus of MEAD

N Why real-time and fault tolerance do not make a good “marriage”

N Overcoming these issues to build support for CORBA applications that
require both real-time and fault tolerance

© 2003 Priya Narasimhan

Carnegie Mellon

Quality of Service for CORBA Applications

m The Real-time CORBA (RT-CORBA) standard

N Scheduling of entities (threads)

N Assignment of priorities of tasks

N Management of process, storage and communication resources
N End-to-end predictability

m The Fault tolerant CORBA (FT-CORBA) standard

N Replication of entities (CORBA objects or processes)
N Management and distribution of replicas

N Logging of messages, checkpointing and recovery

N Strong replica consistency

© 2003 Priya Narasimhan

Carnegie Mellon

Requires a priori knowledge of events No advance knowledge of when faults might
occur

Operations ordered to meet task deadlines Operations ordered to preserve data
consistency (across replicas)

RT-Determinism = Bounded predictable FT-Determinism = Coherent state across

temporal behavior replicas for every input

Multithreading for concurrency and efficient | FT-Determinism prohibits the use of
task scheduling multithreading

Use of timeouts and timer-based mechanisms | FT-Determinism prohibits the use of local
processor time

© 2003 Priya Narasimhan

Observations - |

Fault-Free Performance for Simple Real-Time CORBA Applications

PROCESSOR 1 PROCESSOR 2

800
RIT 750

:@i Server 700

650
‘Q\\\\ \ 600 : 1o T et Ttattelt]
Client % Naming

550
Service

—
hﬁ“\‘““‘-—-—

Round-Trip Time
{microseconds)

450
400

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 230 253 267 281 205

Number of invocations

Fault-Detection Time for Simple Real-Time CORBA Applications

PROCESSOR 2

Datection Time (time for client to detact a COMM_FAILURE ex ce ption)
PROCESSOR | ﬁm;: o @ Primary
FIECTION . . A
e [St Server S00EH06 o E
- @ .
Chent &% £) A0D0EHS "
",,.-"‘ b b] . .
it i 8 § 100es |
o ; E
c Naming § & 200800 + Y
Qorvice =2 L oomoe L4 { e f U
3 E 1.00E+06
L
JECLE t:uc:u(:ulfrt:-::-""!y‘gl
; N, -+~ g 2 ® 2 8§ 8 8§ 5 35 ¢ ¢ ¢ 3
' B_HLJL up Humber of faulls
. Sedver
1 -

© 2003 Priya Narasimhan

Carnegie Mellon

Observations - i

Recovery Time for Simple Real-Time CORBA Applications

PROCESS0OR 2

"--._.-
r -
N "

PROCESSOR | ! @ Primoary
"] I|]
i LA < Sepver
) ™ S
Chent M
ol - 4
= = Egrm!ng
Roemaery ﬁ VL
\FIE \

Fa

Backup
Server

Frimary
Reglecron

Thine

=

Recowery time
microseconds

—_—

Total Recovery Time (fault detection time + failowver + re-execution of falled operation)

G.00E+08

5.00E+05

4 00E+08

A

J.00E+08
\

(¥

2.00E+08
1.00E+08 -
0.00E+00

Y > /
|

-—

T T
-+

-~ 2
=

™
-—

2

T T
=
-
ber of

w M m = w e o
- - Nom oM M -+

restarts

§ 227

M

b
=+

T
Lzl
-

Recovery Time for Multi-Tiered “Nested” Real-Time CORBA Applications

Client Server S, Server S,
h - 9 \‘ _
o | omw | | oms

© 2003 Priya Narasimhan

Server S,

A

A

Worst-case of t 4

500
450
400
350
— 300
£ 250

~— 200

150
100

n
=]

Worst-case nested -operation time

m=1andst=n

A
=
__I,-pf —— Measured
= Valus
A = Calculatad
. —_ Valua
1 2 3 4 &
Mumber of tiers n

Carnegie Mellon

Combining Real-Time and Fault-Tolerance

m Trade-offs between RT and FT for specific scenarios
N Effective ordering of operations to meet both RT and FT requirements
N Resolution of non-deterministic conflicts (e.g., timers, multithreading)

m Impact of fault-tolerance and real-time on each other
N Impact of faults/restarts on real-time behavior
N Replication of scheduling/resource management components

N Scheduling (and bounding) recovery to avoid missing deadlines

m For large-scale systems
N Scalable fault detection and recovery
N Considering nested (multi-tiered) middleware applications
N Tolerance to partitioning faults

© 2003 Priya Narasimhan

Architectural Overview

m Use replication to protect
N Application objects
N Scheduler and global resource manager

m Special RT-FT scheduler
N Real-time resource-aware scheduling service

N Fault-tolerant-aware to decide when to initiate recovery

m Hierarchical resource management framework
N Local resource managers feed into a replicated global resource manager
N Global resource manager coordinates with RT-FT scheduler

m Ordering of operations

N Keeps replicas consistent in state despite faults, missed deadlines,
recovery and non-determinism in the system

© 2003 Priya Narasimhan

Carnegie Mellon

So, What Do We Want To Tolerate?

m Crash faults

Hardware and/or OS crashes in isolation
Process and/or Object crashes

m Communication faults

Message loss and message corruption
v Network partitioning T Fault Model
Kinds of faults that MEAD

m Malicious faults (commission/Byzantine) is designed to tolerate
X Processor/process/object maliciously subverted

m Omission faults
Missed deadline in a real-time system

m Design faults
X Correlated software/programming/design errors

10
© 2003 Priya Narasimhan

MEAD (Middleware for Embedded Adaptive Dependability)

m Our RT-FT Architecture
m Why MEAD?
m Legendary ambrosia of the Vikings

m Believed to endow its imbibers with
N Immortality (= dependability)
N Reproductive capabilities
(=replication)
N Wisdom for weaving poetry

(= cross-cutting aspects of real-time
and fault tolerance)

N Happy and long married life
(= partition-tolerance)

11
© 2003 Priya Narasimhan

Carnegie Mellon

Real-Time |
Fault-Tolerant
o dnler ﬁ
= —l
Manager Manager

Replicated

Application i

Beplicated : —
Replicated | - _~— Fault Detector|
Application
ST “, "v _ s« | Fault Detector|| |-
| | Fault Detector|| |/

Middleware

(CORBA, Real-Time Java)
Middleware ;

(CORBA, Real-Time Java)
- ; nterceptor .
Middleware l—l ’
e o i b s b | Interceptor |, __| Interceptor |,

-l Interceptor] Interceptor .-
) ! | Fault Tolerance |

— g Fault Tolerance o
Operating System |

cr

Factory &
Local Resource Mana

.l Fault Tolerance

—» QOperating System

© 2003 Priya Narasimhan

Carnegie Mellon

Resource-Aware RT-FT Scheduling

m Requires ability to predict and to control resource usage
N Example: Virtual memory is too unpredictable/unstable for real-time usage
N RT-FT applications that use virtual memory need better support

m Needs input from the local and global resource managers
N Resources of interest: load, memory, network bandwidth
N Parameters: resource limits, current resource usage, usage history profile

m Uses resource usage input for

N Proactive action

N Predict and perform new resource allocations

N Migrate resource-hogging objects to idle machines before they start executing
N Reactive action

N Respond to overload conditions and transients

N Migrate replicas of offending objects to idle machines even as they are
executing invocations

13
© 2003 Priya Narasimhan

Carnegie Mellon

Proactive Dependability

m What if we knew, with some confidence, when a fault was to occur?

m Needs input from a fault-predictor (error-log analysis)
N To determine when, and what kinds of, faults can occur
N To schedule fault detection time based on prediction

m Needs input from a recovery-predictor
N Offline predictor: Source code analysis for worst-case recovery time

N Look at each object’s data structures
N Looks at the object’s containing process and ORB interactions
N Not comprehensive: unable to predict dynamic memory allocations
N Runtime predictor: Object execution and memory allocation profile

N Intercepts and observes runtime memory allocations (e.g., object instantiation,
library loading), connection establishment, etc.

N Prepares for the worst-case replica recovery time

14
© 2003 Priya Narasimhan

Offline Program Analysis

m Application may contain RT vs. FT conflicts

m Application may be non-deterministic

m MEAD sifts interactively through application source-code
N To pinpoint sources of conflict between real-time and fault-tolerance
N To determine size of state, and to estimate recovery time

N To determine the appropriate points in the application for the
incremental checkpointing of the application

N To highlight, and to compensate for, sources of non-determinism
N Multi-threading
N Direct access to I/O devices
N Local timers

m Output of program analysis (recovery-time estimates) fed to the
Fault-Tolerance Advisor

15
© 2003 Priya Narasimhan

Fault-Tolerance Advisor

m Configuring fault tolerance today is mostly ad-hoc

m To eliminate the guesswork, we deployment/run-time advice on
N Number of replicas
N Checkpointing frequency
N Fault-detection frequency, etc.

m Input to the Fault-Tolerance Advisor
N Application characteristics (using output from program analysis)
N System reliability characteristics
N System’s and application’s resource usage

m Fault-Tolerance Advisor works with other MEAD components to
N Enforce the reliability advice
N Sustain the reliability of the system, in the presence of faults

16
© 2003 Priya Narasimhan

Carnegie Mellon

Fault-Tolerance Advisor

Reliability requirements
Recovery time

J 1
& =
Faults to tolerate ¢‘!
Source-code I 4

[
=

Middleware program analysis

Application m

Advisor

RT-FT Schedule
Number of replicas
Replication style
Checkpointing rate
Fault detection rate

Operating system,
Network speed/type,
Configuration,
Workstation speed/type

17
© 2003 Priya Narasimhan

Summary

m Resolving trade-offs between real-time and fault tolerance
N Ordering of tasks to meet replica consistency and task deadlines
N Bounding fault detection and recovery times in asynchronous environment

N Estimating worst-case performance in fault-free, faulty and recovery cases

m MEAD’s RT-FT middleware support

N Tolerance to crash, communication, timing and partitioning faults

N Resource-aware RT-FT scheduler to schedule recovery actions

N Proactive dependability framework

N Fault-tolerance advisor to take the guesswork out of configuring reliability
N Offline program analysis to detect, and to compensate for, RT-FT conflicts

m Ongoing research and development with RT-CORBA and Real-Time Java
m Intention to participate in the standardization efforts of the OMG

m Sponsors: DARPA PCES-Il, General Motors, National Science Foundation

18
© 2003 Priya Narasimhan

Looking Ahead to RT-FT Standardization

m Consider (and seek means to reconcile) the fundamental
conflicts/tensions between real-time and fault-tolerance
N To apply the solution to a wider class of middleware applications

N To avoid point solutions that might work well, but only for
well-understood applications, and only under certain constraints

N To allow for systems that are subject to dynamic conditions, e.g.,
changing constraints, new environments, overloads, faults,

m Expose interfaces that support the
N Capture of the application’s fault-tolerance and real-time needs
N Tuning of the application’s fault-tolerance and real-time configurations
N Query of the provided “level” of fault-tolerance and real-time

N Scheduling of both real-time and fault-tolerance (fault-detection, fault-
recovery and fault-forecasting) activities

19
© 2003 Priya Narasimhan

Related Projects: Starfish

m System-wide Intrusion Tolerance

N Looks at which parts of the system may
have been tainted by faulty processor/object

m Supports multi-tiered wide-area systems
with varying guarantees for survivability

N Extends the survivability to both clients
and servers

N Proactive containment of malice

m More comprehensive fault model
N Crash faults
N Communication faults
N Byzantine/arbitrary faults
N System/Network partitioning

http://www.ece.cmu.edu/~starfish

20

© 2003 Priya Narasimhan

Carnegie Mellon

Related Projects: Cyclopes

m Part of the NASA High Dependability Computing Program (HDCP) - joint work
with Prof. Philip J. Koopman of Carnegie Mellon University

m How do you know if a dependable system is really dependable?
N Cyclopes — ensuring robust middleware systems
N Probing middleware interfaces to see how they respond to anomalies
N Wrappers to contain detected system vulnerabilities

m Quantifying dependability
N How do you put a number on dependability?
N Metrics and benchmarks for objective evaluation
N Need to evaluate “-ilities” in isolation and in composition

m Evaluation of Java middleware
N Generic Baseline (Red Hat Linux/ SUN VM): 4.7 % Robustness Failure Rate

N Timesys Real-Time Java: Similar rate, but less robust
N Segmentation faults encountered

21
© 2003 Priya Narasimhan

Carnegie Mellon

For More Information on MEAD) ENCINEERING

i

http://www.ece.cmu.edu/~mead

Priya Narasimhan
Assistant Professor of ECE and CS
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Tel: +1-412-268-8801
priya@cs.cmu.edu

P e Lt Raytheon
J{'E[& :,@‘_’ Integrated Defense Systems

22
© 2003 Priya Narasimhan

	Middleware for Embedded Adaptive Dependability (MEAD)Real-Time Fault-Tolerant Middleware Support
	Background
	Motivation for MEAD
	Quality of Service for CORBA Applications
	Observations – I
	Observations – II
	Combining Real-Time and Fault-Tolerance
	Architectural Overview
	So, What Do We Want To Tolerate?
	MEAD (Middleware for Embedded Adaptive Dependability)
	Resource-Aware RT-FT Scheduling
	Proactive Dependability
	Offline Program Analysis
	Fault-Tolerance Advisor
	Fault-Tolerance Advisor
	Summary
	Looking Ahead to RT-FT Standardization
	Related Projects: Starfish
	Related Projects: Cyclopes
	For More Information on MEAD

