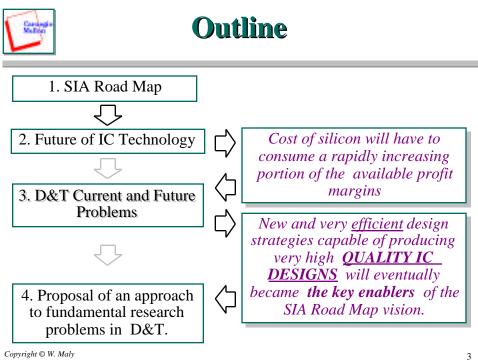
SIA Road Map and DESIGN&TEST

Wojciech Maly

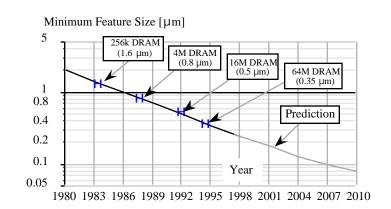
Department of Electrical and Computer Engineering Carnegie Mellon University Pittsburgh, Pa. 15213.

Copyright © W. Maly


Objective

To discuss fundamental research in Design and Test (D&T) of VLSI ICs

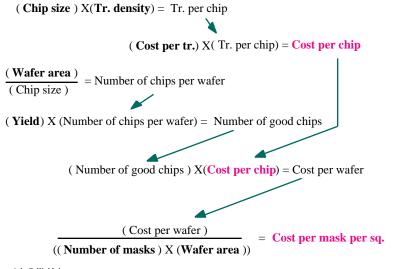
D&T Current and Future Problems Future of IC Technology


SIA Road Map

Copyright © W. Maly

SIA Road Map

1994 SIA Road Map Assumptions

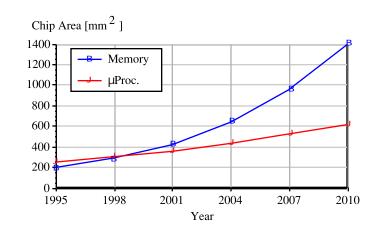

Year	1995	1998	2001	2004	2007	2010
Feature size [µm]	0.35	0.25	0.18	0.12	0.1	0.08
Wafer diameter [mm]	200	200	300	300	400	400
		l I	 M E N	 1 O R	Y	
Tr. per chip [10 6]	64	256	1024	4096	16384	65536
Cost per tr. [millicents]	0.017	0.007	0.003	0.001	0.0005	0.0002
Chip size [mm ²]	190	280	420	640	960	1400
Tr. density [10 ⁶ # tr. / cm ²]	34	91	244	640	1707	4681
		μΡ	RO	 CSS	O R	
Tr. per chip [10 6]	10	21	46.8	107.5	260	558
Cost per tr. [millicents]	1	0.5	0.2	0.1	0.05	0.02
Chip size [mm ²]	250	300	360	430	520	620

SIA Road Map

- SIA Road Map is a collective view on the future of the microelectronics industry;
- The objective of the SIA Road Map was a consolidation of the vision for the entire semiconductor industry;
- Such a consolidation was a necessary step in focusing industry, governments and universities on the same technology development objectives;
- The SIA Road Map has a strong "technology/ manufacturing/ equipment" orientation;
- The SIA Road Map is a "linear extrapolation" of the trends known from the past;
- The SIA Road Map is a "self-fulfilling prophecy" which facilitates continuation of the evolution of the semiconductor industry along Moore's Law;

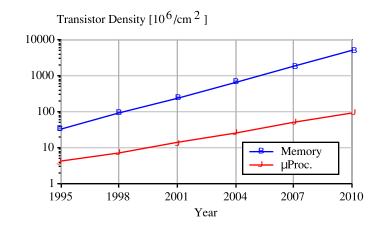
SIA Road Map : MEMORY

Year	1995	1998	2001	2004	2007	2010
Feature size [µm]	0.35	0.25	0.18	0.12	0.1	0.08
Tr. per chip [10 6]	64	256	1024	4096	16384	65536
Cost per tr. [millicents]	0.017	0.007	0.003	0.001	0.0005	0.0002
Chip size [mm ²]	190	280	420	640	960	1400
Wafer diameter [mm]	200	200	300	300	400	400
Tr. density [10 ⁶ # tr. / cm ²]	34	91	244	640	1707	4681
Yield [%]	90	90	90	90	90	90
Number of chips per wafer	142	93	148	91	110	72
Wafer area [cm ²]	314	314	706.5	706.5	1256	1256
Number of good chips	127	83	133	81	99	64
Cost per chip [\$]	10.88	17.92	30.72	40.96	81.92	131.07
Cost per wafer [\$]	1382	1487	4086	3318	8110	8389
Number of masks	18	20	20	22	22	24
Cost per mask per sq.[\$/cm 2]	0.24	0.24	0.29	0.21	0.29	0.28


Cofylight @wlyngiyr the discussion

SIA Road Map : µPROCESSOR

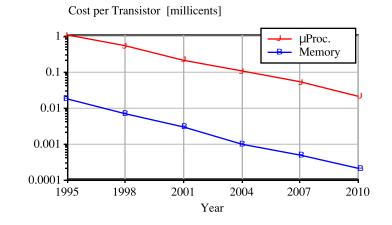
Year	1995	1998	2001	2004	2007	2010
Feature size [µm]	0.35	0.25	0.18	0.12	0.1	0.08
Tr. per chip [10 6]	10	21	46.8	107.5	260	558
Cost per tr. [millicents]	1	0.5	0.2	0.1	0.05	0.02
Chip size [mm ²]	250	300	360	430	520	620
Wafer diameter [mm]	200	200	300	300	400	400
Tr. density [10 ⁶ # tr. / cm ²]	4	7	13	25	50	90
Yield [%]	90	90	90	90	90	90
Number of chips per wafer	104	89	168	140	211	177
Wafer area [cm ²]	314	314	706.5	706.5	1256	1256
Number of good chips	93	80	151	126	189	159
Cost per chip [\$]	100	105	93.6	107.5	130	111.6
Cost per wafer [\$]	9300	8400	14134	13545	24570	17744
Number of masks	18	22	22	24	24	26
Cost per mask per sq.[\$/cm 2]	1.65	1.22	0.91	0.80	0.82	0.54


Constitute @ WIMfor the discussion

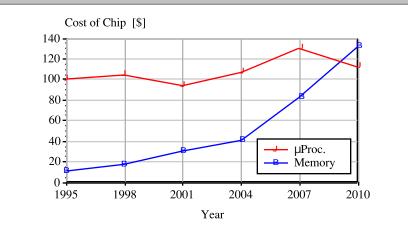
SIA Road Map Assumptions -Chip Size



Copyright © W. Maly



SIA Road Map Consequences -Number of Transistors


Copyright © W. Maly

13

SIA Road Map Consequences -Manufacturing Costs

1994 SIA Road Map assumes that:

- exponential growth in die size,
- exponential growth in transistor density and
- exponential decrease in cost per transistor,

can be handled with unchanged (or even decreased) manufacturing cost per unit square.

Is such a goal really feasible ?

Year	Min. Feature Size [µm]	Interconnect Density [m/cm ² /level]	Interconnect Length [m]
1995	0.40	35	380
1998	0.30	50	840
2001	0.22	70	2100
2004	0.15	105	4100
2007	0.11	125	6300
2010	0.08	155	10,000

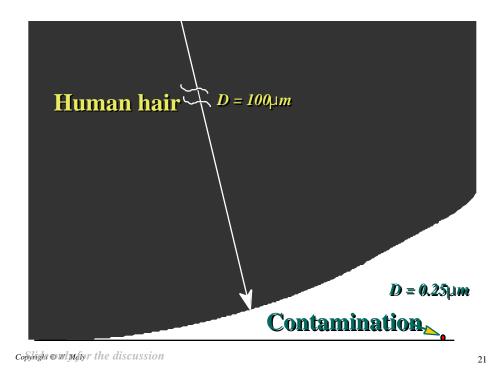
Implications of SIA Road Map: Interconnect

Copyright © W. Maly

Implications of SIA Road Map: Interconnect R_c Metal 2 Rw W R_c AI Metal 1 R_c W R C W С Copyright © W. Maly

x 100 000 000

17


Implications of SIA Road Map: Interconnect

Complexity of the interconnect will strongly affect the methodology of DESIGN, MANUFACTURING and TEST.

Interconnect may become a main show stopper of the SIA Road Map.

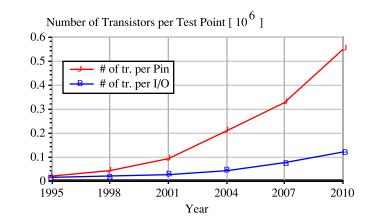
Copyright © W. Maly

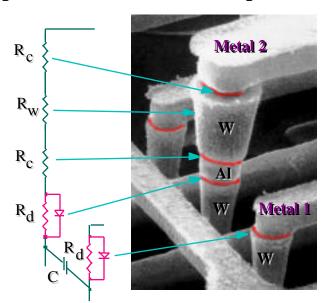
Silicon Wafer R = 15 cmLegislate of the discussion R = 15 cm D = 100 cmCross-sections of a human hair

$Y = \frac{1}{1 + A_{ch} D_0}$ Die Area [cm ²] 14 B $D_0 = \frac{1 - Y}{YA_{ch}}$ 13 12 11 10 For Y = 70% $D_0 = \frac{.43}{A_{ch}}$ 9 B 8 B 7 3 6 For Y = 90% $D_0 = \frac{.11}{A_{ch}}$ 5 4 0.2 0.15 0.25 0.3 0.35 0.05 0.1 Feature Size [µm] Copyright © W. Maly

Implications of SIA Road Map: Manufacturing

Implications of SIA Road Map: Manufacturing




Implications of SIA Road Map: Manufacturing

Complexity of IC processes must cause rapid increase in cost of IC manufacturing.

Cost of manufacturing may become a main show stopper on the SIA Road Map.

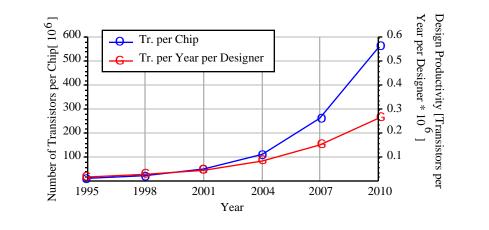
Implications of SIA Road Map: Testing

Copyright © W. Maly

Implications of SIA Road Map: Testing

- Testing will have to handle very large devices/ systems;
- New difficult-to-detect failures will have to be tested.
 - Data dependent cross-talk failures;
 - Power bus noise generated faults;
 - R-F coupling generated faults.
- Solution Very high band-width testers will be required;
- Massive application of DFT will be a must.

Copyright © W. Maly


27

Implications of SIA Road Map: Testing

Complexity of ICs to be tested will soon reach levels impossible to be handled with the testing paradigm as it is known today.

Tester limitations may become a main show stopper on the SIA Road Map.

SEMATECH Copyright © W. Maly

Implications of SIA Road Map: Design

- Design productivity will have to increase by orders of magnitude;
- Design verification (on all levels of design abstraction) will become an absolute necessity;

Implications of SIA Road Map: Design

Size of ICs to be designed will soon reach levels impossible to be handled with the design paradigm as it is known today.

Design productivity and design verification may become key show stoppers on the SIA Road Map.

Copyright © W. Maly

SIA Road Map Consequences -Manufacturing Costs

1994 SIA Road Map assumes that

the substantial increase in complexity of :

- manufacturing,
- test and
- design,

can be handled with unchanged (or even decreased) manufacturing cost per unit square.

Is such a goal really feasible ?

Copyright © W. Maly

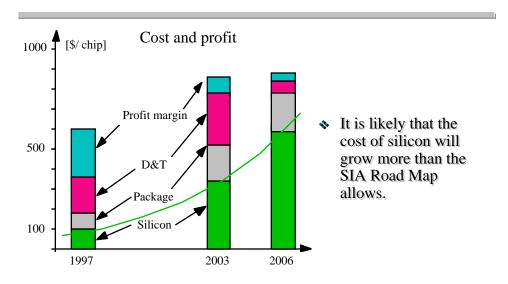
SIA Road Map Consequences -Manufacturing Costs

1994 SIA Road Map assumes that

the substantial increase in complexity of :

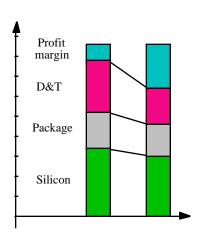
- manufacturing,
- test and
- design,

can be handled with unchanged (or even decreased) manufacturing cost per unit square.


Is such a goal really feasible ? 1997 Road Map says NO !

Cost of silicon will have to consume a rapidly increasing portion of the available profit margins. Copyright © W. Maly

33

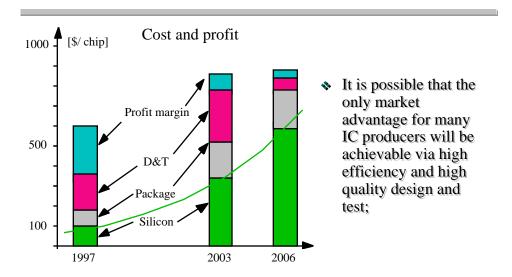


SIA Road Map: Implications

SIA Road Map: Implications

$$\mathbf{C}_{\mathrm{D\&T}} = \mathbf{C}_{\mathrm{TE}} + \frac{\mathbf{C}_{\mathrm{D}} + \mathbf{C}_{\mathrm{TG}}}{\mathbf{V}_{\mathrm{Ch}}} \longrightarrow \mathbf{C}_{\mathrm{TE}}$$

♦ Cost of D&T can be substantially reduced by increasing volume of sold chips.


$$\mathbf{C}_{\text{Silicon}} = \mathbf{C}_{\text{Material}} + \mathbf{C}_{\text{Own.}} + \frac{\mathbf{C}_{\text{TD}}}{\mathbf{V}_{\text{Ch}}}$$

Cost of silicon cannot be reduced beyond a certain level by increasing volume of sold chips.

Copyright © W. Maly

35

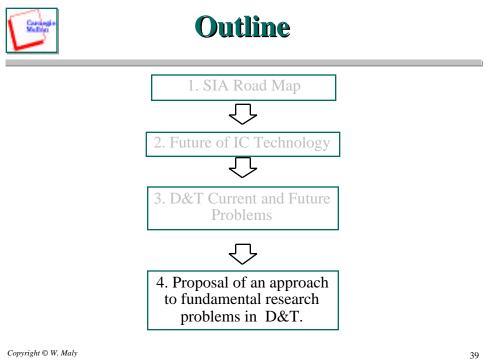
SIA Road Map: Implications

Design Quality

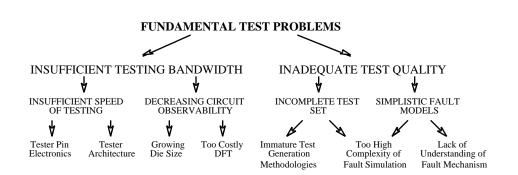
	Intel P6 (Kalmath)	Mitsubishi D30V
Type:	CISC (32 bit data/instr.)	DSP LIW (64 bit instr.)
Applications:	Universal (MPEG2,)	M-Media (MPEG2, V-ph.)
Load for DVD:	100 %	90 %
Technology:	0.28 µm CMOS	0.3 µm CMOS
Clock:	233 MHz;	250 MHz;
# Trans. Total:	7.5 M (with 32K L1 cache)	300 K + 64K SRAM
Area:	203 mm^2	37 mm^2
Price:	TBA	TBA
	(PPro - 200 MHz = \$1072)	(Est. < \$50)

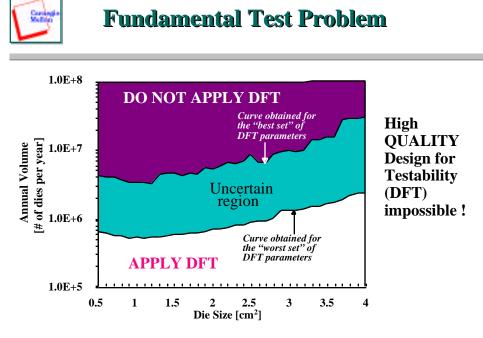
Compiled by **Pierre Paulin** of ST based on the data published in EE Times and µP Rep.

37

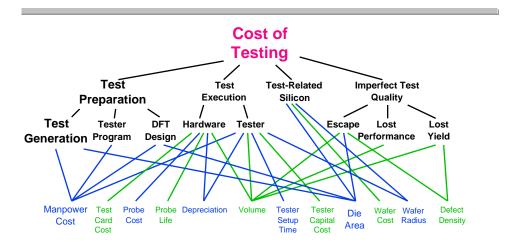


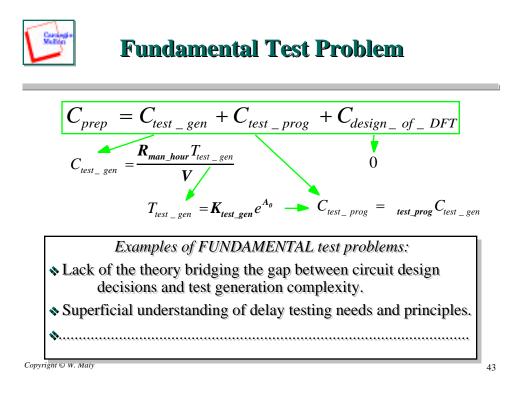
SIA Road Map Implications

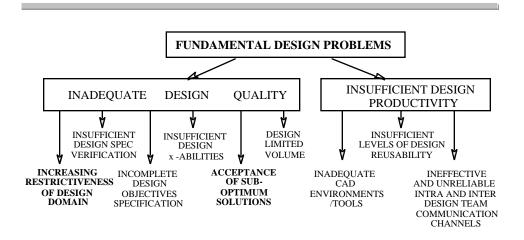

SIA Road Map will cause:

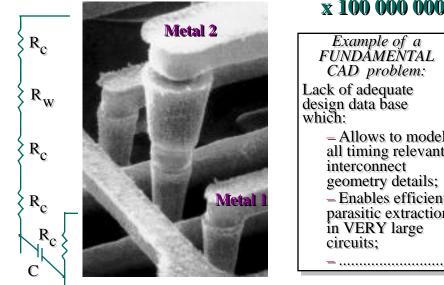

- Cost of silicon to go up;
- Price of chips to go up (but with well defined upper limit);
- Progress along Moore's curve to slow down;
- Design and test budgets to go down;
- Design efficiency and design quality to become the most important knobs in profit maximization.

New and very <u>efficient</u> design strategies capable of producing very high <u>OUALITY IC</u> <u>DESIGNS</u> will eventually became the key enablers of the SIA Road Map vision.








Copyright © W. Maly

Fundamental Problems: DESIGN

Limitations of Design Domain

Copyright © W. Maly

x 100 000 000

Example of a FUNDAMENTAL CAD problem: Lack of adequate design data base which: Allows to model all timing relevant interconnect geometry details; - Enables efficient parasitic extraction in VERY large

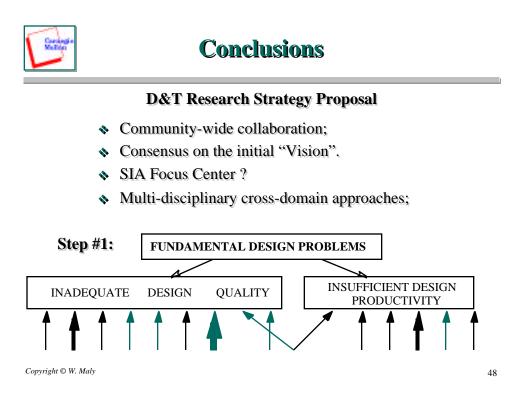
Sub-optimum Designs

Intel P6 (Kalmath)	Mitsubishi D30V
CISC (32 bit data/instr.)	DSP LIW (64 bit instr.)
MPEG2	MPEG2
7.5 M (with 32K L1 cache)	300 K + 64K SRAM
203 mm ²	37 mm ²

Is Mitsubishi design close enough to optimum ?

Example of a FUNDAMENTAL design problem: Lack of adequate objective functions for hardwaresoftware co-design which : - Take into account cost and time of design process;

- Forecast volume to be sold;
- Predict true cost of manufacturing.



Conclusions

- Microelectronics industry may approach a highcost-of-manufacturing-based crisis;
- Design&Test may need to:
 - operate with lower time and "\$" budgets;
 - become a main and the only provider of market advantage;

47

- deliver much better designs.
- Design&Test community need to re-think the traditional view on its role and strategy;

