
SPATIAL FREQUENCY DOMAIN IMAGE PROCESSING FOR BIOMETRIC 
RECOGNITION 

B.V.K. Vijaya Kumar, Marios Savvides, Krithika Venkataramani,and Chunyan Xie 

Dept. of ECE, Carnegie Mellon University, Pittsburgh, PA 15213, USA 

ABSTRACT 

Biometric recognition refers to the process of matching 
an input biometric to stored biometric information. In 
particular, biometric verification refers to matching the 
live biometric input from an individual to the stored 
biometric template about that individual. Examples of 
biometrics include face images, fingerprint images, iris 
images, retinal scans, etc. Thus, image processing 
techniques prove useful in the biometric recognition. In 
this paper, we discuss spatial frequency domain image 
processing methods useful for biometric recognition. 

1. INTRODUCTION 

Verifying a user’s identity is critical for e-commerce and 
access control. Most current authentication systems are 
password based making them susceptible to problems 
such as forgetting the password and passwords being 
stolen. One way to overcome these problems is to employ 
biometrics (e.g., fingerprints, face, iris pattern, etc.) for 
authentication. Another important application is to match 
an individual’s biometrics against a database of 
biometrics. An example application of biometric 
identification is the matching of fingerprints found at a 
crime scene to a set of fingerprints in a database. 
Authentication problem has narrower scope, but the 
matching technologies are applicable to both verification 
and identification problems. We will refer to these 
problems loosely as biometric recognition. 

Many biometric sensors output images and thus image 
processing plays an important role in biometric 
authentication. Image preprocessing is important since 
the quality of a biometric input can vary significantly. For 
example, the quality of a face image depends very much 
on illumination type, illumination level, detector array 
resolution, noise levels, etc. Preprocessing methods that 
take into account sensor characteristics must be employed 
prior to attempting any matching of the biometric images. 

However, this paper will focus on spatial frequency 
domain image processing technologies that can be used 
for matching biometric images. Processing in spatial 
frequency domain is nothing but 2-D filtering and we will 
refer to this approach as correlation filtering.  

As we will see, correlation filter offer several 
advantages over model-based approaches. First is the 
built-in shift-invariance. If the input image is translated 
with respect to training images, that shift is usually easy 
to determine and correct when correlation filters are used. 
Second, correlation filters are based on integration 
operation and thus offer graceful degradation in that 
impairments to the test image cause only gradual 
degradation in the quality of the output. Third, 
correlation filters can be designed to exhibit attributes 
such as noise tolerance, high discrimination, etc. Finally, 
correlation filter designs offer closed form expressions. 

The rest of this paper is organized as follows. Section 
2 provides some background for correlation filters. 
Section 3 illustrates the application of correlation filters 
to face verification and Section 4 contains our 
conclusions.  

2. CORRELATION FILTERS 

Object recognition is performed by cross-correlating an 
input image with a synthesized template or filter and 
processing the resulting correlation output. Figure 1 
shows schematically how the cross-correlation is obtained 
using Fast Fourier Transforms (FFTs). The correlation 
output is searched for peaks, and the relative heights of 
these peaks are used to determine whether the object of 
interest is present or not. The locations of the peaks 
indicate the position of the objects. 

Correlation filters have been investigated mostly for 
automatic target recognition (ATR) [1] applications. The 
most basic correlation filter is the matched filter (MF), 
which performs well at detecting a reference image 
corrupted by additive white noise. But it performs poorly 
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when the reference image appears with distortions (e.g., 
rotations, scale changes). In biometric verification, the 
input biometric is bound to have some differences from 
the reference biometric because of normal variations. 
Then, one MF will be needed for each appearance of a 
biometric. Clearly this is computationally impractical. 
Hester and Casasent [2] addressed this challenge with the 
introduction of the synthetic discriminant function (SDF) 
filter. The SDF filter is a linear combination of MFs 
where the combination weights are chosen so that the 
correlation outputs corresponding to the training images 
would yield pre-specified values at the origin. For 
example, the correlation peak values corresponding to the 
training images of authentics can be set to 1, and the peak 
values due to the impostor training images can be set to 
zero. It is hoped that the resulting correlation filter would 
yield correlation peak values close to 1 for non-training 
images from the authentic class and correlation peak 
values close to zero for non-training images from the 
impostor class. 

Figure 1 Block diagram of correlation process

Although the original SDF filter produces pre-
specified correlation peak values, it also results in large 
sidelobes. Sometimes these sidelobes are larger than the 
pre-specified peak values leading to misclassifications. 
The peak sharpness can be improved by using minimum 
average correlation energy (MACE) filters [3] designed to 
produce correlation peaks that approximate impulse 
functions. We will show in Section 3 results for face 
verification using MACE filters. 

Several advances have been made in the design of 
correlation filters. We give below short summaries of two 
important approaches to correlation filter design. 

2.1 Optimal Tradeoff Filters (OTF) 

In the OTF method [4], the training biometric images 
from a single user are used to construct a single spatial 
frequency filter that discriminates that user from others. 

This single filter captures the essence of the fingerprint 
images from an authentic user while tolerating the 
variability within that set. The OTF is designed using a 
multi-criteria optimization procedure to optimally 
tradeoff a distortion tolerance figure of merit against a 
discrimination figure of merit [5]. This multi-criteria 
optimization procedure provides us the ability to tune the 
filter behavior as needed to achieve a desired tradeoff 
between false acceptance rate (FAR) and false rejection 
rate (FRR).  

2.2 Distance Classifier Correlation Filters (DCCF)

Another method to design the correlation filters is 
based on the concept of distance between a test image and 
the training images [6]. One can imagine each fingerprint 
image (with dxd pixels) to be a point in a d2-dimensional 
space where each axis corresponds to a different pixel in 
the image. Then the training fingerprint images from a 
person represent a few points in this image space. Figure 
2 shows the case of 3 classes. The DCCF method 
determines a transform H such that the training sets are 
maximally separated after the transform. When a test 
input z appears, it is subject to the same transform H and 
its distances to all three classes in the transformed 
domain are estimated and the input is assigned to the 
class with the smallest distance.  These distances can be 
obtained using correlation [6].  
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Figure 2 Transformation of 3 clusters in DCCF 

Once the correlation filter H(u,v) is determined, an 
input biometric image f(x,y) is tested for its authenticity 
by forming the correlation output c(x,y) as follows. 

( ) ( ){ }-1 *( , ) FT2 FT2 , ,c x y f x y H u v= •
where FT2 refers to the 2-D Fourier transform (efficiently 
implemented using FFT) and FT2-1 refers to the inverse 
2-D FT operation. The resulting 2-D output c(x,y) is next 
processed to determine various soft metrics such as 
correlation peak value, peak-to-sidelobe ratio, correlation 
plane energy, etc. These correlation performance metrics 
[5] can be used to provide a more reliable authentication 
decision.  

Correlation-based verification has several advantages 
over other biometric verification methods. In feature 
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based methods, the designer needs to make somewhat 
arbitrary decisions about which features to use. In 
correlation based methods, no information is lost as all 
image pixels are used. Also, correlation methods are 
more graceful in their degradation due to the underlying 
integration operation. Finally, neural network based 
methods cannot handle fingerprint images directly 
because of the number of neurons is as large as the 
number of image pixels. In contrast, correlation methods 
exhibit the needed speed because of the underlying FFT 
efficiency. Also, the correlation filters can be recursively 
updated as new images are acquired instead of having to 
re-compute these filters from scratch. Another major 
advantage of using the correlation filter approach is the 
resulting shift-invariance. If the test biometric image is 
shifted from its nominal center, correlation peak moves 
by the same amount and thus correlation metrics do not 
change. However, input shift can be a big problem for 
feature-based methods since they require centering before 
computing the features. 

3. FACE VERIFICATION 

In this section, we briefly illustrate the application of 
correlation filters for face verification. More details can 
be found elsewhere [7]. 

3.1 Face Database 
We use a facial expression database collected at the 

Advanced Multimedia Processing (AMP) Lab at the 
Electrical and Computer Engineering Department of 
CMU [8]. The database consists of 13 subjects, whose 
facial images were captured with varying expressions. 
Each subject in the database has 75 images of varying 
facial expressions.  The faces were captured in a video 
sequence where a face tracker [9] tracked the movement 
of the user’s head and based upon an eye localization 
routine and extracted registered face images of size 
64x64. Example images are shown in Fig. 4. 

Figure 4.  Sample images from the facial expression 
database. 

3.2 Face Verification using MACE Filters 
We have evaluated, using the above facial expression 

database, the performance of MACE filter for face 
verification. A single MACE filter was synthesized for 
each of the 13 persons using a variable number of 
training images from that person. In the test stage, for 
each filter, we performed cross correlations with all the 
face images from all the people (i.e., 13 x 75 = 975 
images). For authentics, the correlation output should be 
sharply peaked and it should not exhibit such strong 
peaks for impostors. Peak to sidelobe ratio (PSR) defined 
below is used to measure the peak sharpness.  

σ
meanpeak −=PSR                                                

Figure 5. Correlation outputs when using a MACE 
filter designed for Person A.  (Top): Input is from 
Person A.  (Bottom): Input is not from Person A. 

Figure 5 (top) shows a typical correlation output for an 
authentic face image. Note the sharp correlation peak 
resulting in a large PSR value of 37. The bottom 
correlation output in Fig. 5 shows a typical response to an 
impostor face image exhibiting low PSRs (<10).  
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We used only 3 training images for the synthesis of 
each person’s MACE filter. These three images were at a 
uniform interval in order to capture some of the 
expression variations in the dataset (e.g., images # 1, 21 
and 41). To evaluate the performance of each person’s 
MACE filter, cross-correlations of all the images in the 
dataset were computed using a person’s MACE filter 
resulting in 13*75=975 correlation outputs 
(corresponding to 75 true class images and the 900 false 
class images) and the corresponding PSRs were measured 
and recorded.

One very important observation from PSR sets for all 
13 individuals is that all impostor face images 
(12*75=900) yielded PSR values consistently smaller 
than 10 for all 13 subjects. For each person, a PSR 
threshold was selected and if the test input resulted in a 
PSR larger than the threshold, it was declared as an 
authentic and if the PSR is lower than the threshold, the 
input was declared as an impostor. FAR refers to the 
percentage of impostors with PSRs above the threshold 
and FRR refers to the percentage of authentics with PSRs 
below the threshold. By changing the threshold, we can 
trade off FAR for FRR. Equal error rate (EER) refers to 
the value where FAR=FRR=EER. 

Table 1 Error percentages for 13 MACE filters 
synthesized using only 3 training images 

Person  1 2 3 4 5 6 7 8 9 10 11 12 13 
FAR, FRR=0 0 1.3 0 0 1 0 0 0 0 0 0 0 0 
EER 0 0.9 0 0 1 0 0 0 0 0 0 0 0 
FRR, FAR=0 0 0.2 0 0 2.6 0 0 0 0 0 0 0 0 

Table 2 Error percentages for 13 MACE filters 
synthesized using the first 5 training images 

Person  1 2 3 4 5 6 7 8 9 10 11 12 13 
FAR, FRR=0 0 2.4 0 0 0 0 0 0 0 0 0 0 0 
EER 0 1.3 0 0 0 0 0 0 0 0 0 0 0 
FRR, FAR=0 0 2.6 0 0 0 0 0 0 0 0 0 0 0 

Table 1 shows the error rates achieved using MACE 
filters designed from only 3 training images. Table 1 
shows that the overall EER (13 filters each tested on 975 
images) is only 0.15% from MACE filters designed from 
only 3 training images per person.  

We also performed a similar experiment using the first 
5 training images from each person in the dataset to 
design that person’s filter. These 5 images exhibit a 
different range of variability and have been placed there 

out of sequence. Table 2 summarizes the results of using 
5 training images per person. There is some improvement 
in that Person 5 is now 100% correctly classified. 
However, class 2 gives 1.3% EER for an overall EER of 
0.1%. 

Although we have shown that the verification accuracy 
of the MACE filters increases as more training images 
are used for filter synthesis, it is attractive that this 
method can work well with as few as 3 training images 
per class for this database. 

4. CONCLUSIONS 

In this paper, we have briefly reviewed how correlation 
filters can be employed successfully for biometric image 
recognition. Correlation filters are particularly attractive 
because of advantages such as shift-invariance, closed-
form expressions, and distortion-tolerance.  
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