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Abstract

Mission-critical system designers are turning towards Commercial Off-The-Shelf

(COTS) software to reduce costs and shorten development time even though COTS software

components may not specifically be designed for robust operation.  (Systems are robust if

they can function correctly despite exceptional inputs or stressful conditions.)  Automated

testing can assess component robustness without sacrificing the cost and time advantages of

using COTS software.  This report describes a scalable, portable, automated robustness

testing tool for component interfaces.  An object-oriented approach based on parameter data

types rather than component functionality essentially eliminates the need for function-

specific test scaffolding.  A full-scale implementation that automatically tests the robustness

of 233 operating system software components has been ported to nine POSIX systems.

Between 42% and 63% of components on the POSIX systems measured had robustness

problems, with a normalized failure rate ranging from 10% to 21% of tests conducted.

Robustness testing could be used by developers to measure and improve robustness, or by

consumers to compare the robustness of competing COTS component libraries.
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1   Introduction

1.1  Motivation
Use of Commercial Off-The-Shelf (COTS) software components in computing systems

is becoming more popular with system designers as an alternative to costly and time

consuming custom development.  Unfortunately many COTS components do not provide the

robustness necessary for safe use in mission-critical systems.  For instance, a component

originally intended for use in a desktop computing environment may have been developed

with robustness as only a secondary goal because of the relatively low cost of a system crash

and the ability of operators to work around known problems.

Even components specifically designed for mission-critical applications may prove to

have problems with robustness if reused in a different context.  For example, a root cause of

the loss of Ariane 5 flight 501 was the reuse of Ariane 4 inertial navigation software [1].  The

software proved to have robustness problems due to an overflow on a float-to-integer

conversion when operating under the different conditions found on Ariane 5.  With the

current trend to an increased use of COTS components, opportunities for bad data values to

be circulated within a system are likely to multiply, increasing the importance of dealing

with such exceptional conditions gracefully.

Robustness of COTS software components is therefore an important consideration

when building mission-critical systems.  To a mission-critical system designer, a measure of

robustness might be useful to determine whether a COTS component is appropriate for a

given application.  This is similar to the use of component performance metrics in designing

a time-critical system.  The ability to measure component robustness could also be useful to

COTS component developers, in order to evaluate and improve the robustness of their

products.  Such robustness measurement, whether by the producer or the consumer, must be

simple, automated, and fast.  It was with these goals in mind that the Ballista approach to

robustness testing, presented in this report, was created.

1.2  Background
Robustness is defined as “the degree to which a system or component can function

correctly in the presence of invalid inputs or stressful environmental conditions” [2].

Nonrobust behavior of a software component may or may not be the result of buggy software;

it is often caused by code that simply neglects to test for invalid inputs to an algorithm.  In

fact, one could envision a system comprised of a number of COTS components, each bug-free



3

(i.e., operating as intended for every valid input), yet the system being nonrobust if, for

example, a correct output of one component is invalid as an input to the next component.  In

this case the nonrobustness of the system stems not from the individual components but

from the interconnection of them.  Such a scenario is not uncommon, because systems can be

built from various COTS components from different vendors, each with their own idea of

invalid inputs and outputs.  Hence, even if a component were bug-free and formally correct,

its robustness could still be in question.

One approach to robustness testing, therefore, is to measure the response of a software

component to invalid inputs.  (A software component is any piece of software that can be

invoked as a procedure, function, or method taking one or more arguments.)  The focus of

Ballista is the automatic creation and execution of invalid input robustness tests.

Specifically, these tests are designed to detect crashes and hangs caused by invalid inputs to

function calls.  The Ballista methodology focuses on only the first part of the definition of

robustness, concerning “invalid inputs;” system behavior under “stressful environmental

conditions” is not considered.  Nevertheless, the results presented here indicate that

robustness vulnerabilities to invalid inputs are common in at least one class of mature

COTS software components.

The Ballista approach has the following benefits:

• Only a description of the component interface in terms of parameters and data types

is required.  COTS or legacy software may not come with complete function

specifications or perhaps not even source code, so these are not required by the

Ballista robustness testing approach.

• Creation and execution of individual tests is automated, and the investment in

creating test database information is prorated across many modules.  In particular,

no per-module test scaffolding, script, or other driver program need be written.

• The test results are highly repeatable, and permit isolating individual test cases for

use in bug reports or for debugging purposes.

The Ballista approach is intended to be generic.  In order to demonstrate feasibility on

a full-scale example, automated robustness testing has been performed on several

implementations of the POSIX operating system C language Application Programming

Interface (API) [3].
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1.3  Scope
Ballista robustness testing draws from fault injection methods as well as software

testing techniques (Section 2, Prior Work) to develop a high-level, repeatable way to test

robustness of COTS software (Section 3, Methodology).  This has been applied in a full-scale

implementation, testing POSIX operating system calls (Section 4, Implementation), and the

results show that Ballista can be effective in identifying nonrobustness (Section 5,

Experimental Results).  The Ballista methodology in general is highly scalable due to an

object-oriented approach (Section 6, Generic Applicability of the Methodology).  The novelty

of the Ballista approach generates substantial opportunities for further research (Section 7,

Future Work).  Conclusions are presented last (Section 8, Conclusions).

2   Prior Work

2.1  Use of fault injection concepts
Fault injection is a technique for testing the response of a system to a fault that is

artificially induced in order to evaluate its robustness.  Faults can be injected into a system

via hardware or software.  Hardware fault injection usually involves manipulating pins,

lines, or chips electrically.  Such manipulations affect the whole system and are therefore not

useful for isolating the robustness of a particular software component (Module under Test, or

MuT) running on that system.

Injecting faults via software, on the other hand, allows different parts of a system to be

targeted.  For example, FTAPE [4] injects faults such as parity errors into memory chips via

software, which may affect only the owner of that memory location.  FIAT [5] injects faults

by making changes to the binary image of a MuT, and it measures the ability of both the

MuT and the system as a whole to recover from such faults.  FAUST [6] performs mutation

on the source code of a MuT and is therefore targeted specifically at the MuT.

However, each of these software fault injection techniques has drawbacks for

robustness testing of COTS software components.  For FTAPE to target fault injections to a

MuT, the memory layout of the system must be known (furthermore, specialized hardware is

needed), so the technique is not portable.  Since binary image changes may have global

effects, FIAT is more a measure of overall system robustness than of that of a specific MuT.

Code mutation techniques like FAUST modify source code (which may not be available for a

COTS component) and are in general more suitable for test set coverage analysis than

robustness testing.
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Two portable software approaches are targeted specifically at testing the robustness of

software components.  The University of Wisconsin Fuzz approach [7] tests user programs

(e.g., UNIX command-line utilities) with both random and crafted input streams, looking for

program crashes and system hangs.  Its goal is to quantify and describe the robustness of

UNIX systems from the typical interactive user’s point of view.

The Carnegie Mellon University robustness benchmarking approach [8] [9] tests

individual operating system calls with specific input values, to detect crashes and hangs.

Fault injection is performed by passing combinations of acceptable and exceptional inputs as

a parameter list to a MuT via a normal function call.  Thus fault injection is done through

the API.

The work reported herein is a generalization of previous Carnegie Mellon efforts, with

a completely new implementation on a full-size application to demonstrate scalability.

2.2  Use of software testing concepts
Software testing for the purpose of determining reliability is often carried out by

exercising a software system under representative workload conditions and measuring

failure rates.  In addition, emphasis is placed on code coverage (i.e., portion of code exercised

during testing) as a way of assessing whether a module has been thoroughly tested [10].

Unfortunately, traditional software reliability testing may not uncover robustness problems

that occur because of unexpected input values generated by bugs in other modules, or

because of an encounter with atypical operating conditions.

Structural, or white-box, testing techniques [10] are useful for attaining a high test

coverage of programs.  However, they typically focus on the control flow of a program rather

than the handling of exceptional data values.  For example, structural testing ascertains

whether code designed to detect invalid data is executed by a test suite, but may not detect if

such code is missing altogether.  Additionally, structural testing typically requires access to

source code, which is often unavailable when using COTS software components.

An alternative approach is black-box testing, also called behavioral testing [11].  This

type of testing ignores the internal operation of the system being tested and instead focuses

on whether the system produces the correct response to various input values.  This is

appropriate for testing COTS software since source code is often unavailable.  Finally, black-

box testing enables easy comparison of two MuTs with the same interface but different
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implementations.  This allows, for example, competing COTS components which perform the

same function to be readily compared in terms of robustness.

Two types of black-box testing are particularly useful for robustness testing: domain

testing and syntax testing.  Domain testing locates and probes points around extrema and

discontinuities in the input domain.  Syntax testing constructs character strings that are

designed to test the robustness of string lexing and parsing systems.  Both types of testing

and more are used in Ballista as described in the next section.

3   Methodology
Automatically generating software tests requires four things: a MuT, a machine-

understandable specification of correct behavior, a way to generate test cases, and an

automatic way to compare the specification with the results of executing the MuT with those

test cases.

3.1  Behavioral specification
Unfortunately, obtaining or creating a behavioral specification for a COTS or legacy

software component is often impractical due to unavailability or cost.  Fortunately,

robustness testing need not use a detailed behavioral specification.  Instead, the almost

trivial specification of “doesn’t crash, doesn’t hang” suffices.  Determining whether a MuT

meets this specification is straightforward—the operating system can be queried to see if a

test program terminates abnormally, and a watchdog timer can be used to detect infinite

loops.  Thus, robustness testing of any module that is not intentionally designed to crash or

hang can be performed in the absence of a behavioral specification.

Any existing specification for a MuT might define inputs as falling into three

categories: valid inputs, inputs which are specified to be handled as exceptions, and inputs

for which the behavior is unspecified (Figure 1).  Ballista testing, because it is not concerned

with the specified behavior, collapses the unspecified and specified exceptional inputs into a

single invalid input space.  The focus is on overall robustness, not on whether written

specifications have officially exempted certain cases of nonrobust operation.  The robustness

of the responses of the MuT can be characterized as robust (neither crashes nor hangs, but is

not necessarily correct from a detailed behavioral view), having a reproducible failure (a

crash or hang that is consistently reproduced within the Ballista single-call fault

assumption), and an unreproducible failure (a robustness failure that is not readily
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reproducible, or that requires a sequence of calls to reproduce).  The objective of Ballista is to

identify reproducible failures.

3.2  Test case generation
In the Ballista approach, robustness testing of a MuT consists of establishing an initial

system state, executing a single call to the MuT, determining whether a robustness problem

occurred, and then restoring system state to pre-test conditions in preparation for the next

test.  Although executing sequences of calls to one or more MuTs during a test can be useful

in some situations, we have found that even the simple approach of testing a single call at a

time provides a rich set of tests, and uncovers a significant number of robustness problems.

A key concept of Ballista is that tests are based on the values of parameters passed to

the MuT and not on the behavioral details of the MuT.  Ballista uses an objected-oriented

approach to define test cases based on the data types of the parameters for the MuT.  The set

of test cases used to test a MuT is completely determined by the data types of the parameter

list of the MuT and in no way depends on the actual behavioral specification.

Figure 2 shows the Ballista approach to generating test cases for a MuT.  Before

conducting tests, a set of test values must be created for each data type used in the MuT.

For example, if one or more modules to be tested require an integer data type as an input

parameter, test values must be created for testing integers.  Values to test integers might

include 0, 1, and INT_MAX (maximum integer value).  Additionally, if a pointer data type is

used within the MuT, values of NULL and -1, among others, might be created as test cases.

MODULE
UNDER
TEST

SHOULD
WORK

UNDEFINED

SHOULD
RETURN
ERROR

VALID
INPUTS

INVALID
INPUTS

ROBUST
OPERATION

REPRODUCIBLE
FAILURE

UNREPRODUCIBLE
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Figure 1. Ballista performs fault injection at the API level using combinations of valid and
exceptional inputs.
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A module cannot be tested until test values are created for each of its parameter data types.

Automatic testing generates module test cases by drawing from the pools of defined data-

type-specific test values.

3.2.1  Data type test value selection
In choosing values to implement for testing, several criteria should be used.  All require

some knowledge of the typical uses of the associated data type.  Without such knowledge,

testing is still possible by choosing values at random, but the coverage is likely to be poor,

and therefore the results may not accurately reflect a MuT’s robustness.

The criteria for choosing data values rely on the notion of valid and invalid values.  A

properly constructed value is not in itself valid or invalid; the validity of a value is imposed

by the module to which the value is passed.  Therefore a given value may be valid when

passed to a certain module but invalid as an input to a different module.  If possible, at least

one valid value should be identified for each intended use of a data type.

Also, different invalid values often elicit different system responses from a given MuT.

With some knowledge of the typical uses of a data type, the implementor should attempt to

identify different ways in which values can be invalid.

API

TESTING
OBJECTS

TEST
VALUES

TEST CASE
(a tuple of

specific
test values)

module_name (integer parameter, file handle parameter, ... )

module_name <zero, open_for_write, ... >

INTEGER
TEST

OBJECT

STRING FILE HANDLE
TEST

OBJECT
TEST

OBJECT

0
1
-1
...

NULL STRING
LONG STRING

...

OPEN FOR READ
OPEN FOR WRITE

...

Figure 2. Refinement of a module within an API into a particular test case.
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Fault masking is also an important consideration.  In modules with more than one

input parameter, masking can occur if a module performs error checking for one input but

not another.  For example, consider the case in which a module checks only its first

parameter for validity.  (Assume also that the module performs this check before any other

operations.)  Then issuing the call module1 (<invalid>, <don’t  care>)  returns an error

code (robust behavior).  However, if invoking module1  (<valid>,  <invalid>)  causes

abnormal termination (nonrobust behavior), the invalid first parameter in the previous call

is said to mask a second-parameter robustness failure.  To ensure that testing results

adequately reflect a MuT’s robustness, the possibility of masking should be kept in mind

when choosing data values.

Another important concept is that of boundary values.  Boundaries could be places

where valid values meet invalid values (in the input space; for example, the integer zero,

which is where positives meet negatives) or important system values (virtual memory page

size, for example).  Boundaries are identified largely from experience.

Thus, there are three criteria that should be followed when choosing data values.

1. Implement at least one valid value.  This is to overcome possible fault masking.  If a

data type has multiple intended uses, ensure that for each intended use, there is at

least one value that is valid for that use.

2. Implement at least one of each type of invalid value.  This gives a rich set of values

to test and is an attempt to span the space of input values.

3. Implement boundary values since errors and exceptions often occur when system

boundaries are encountered.

3.2.2  Test value implementation
Each set of test values (one set per data type) is implemented as a testing object having

a pair of constructor and destructor functions for each defined test value for the object’s data

type.  Instantiation of a testing object (which requires selecting a test value from the list of

available values) executes the appropriate constructor function that builds any required

testing infrastructure.  For example, an integer test constructor would simply return an

integer value.  But, a file descriptor test constructor might create a file, place information in

it, set appropriate access permissions, then open the file for read or write operations.  An

example of a test constructor to create a file open for reading is shown in Figure 3.
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When a testing object is discarded, the corresponding destructor for that test case

performs appropriate actions to free, remove, or otherwise undo whatever testing

infrastructure may remain after the MuT has executed.  For example, a destructor for an

integer value does nothing.  On the other hand, a destructor for a file descriptor might

ensure that a file created by the constructor is deleted.

A natural result of defining test cases by objects based on data type instead of by

behavior is that large numbers of test cases can be generated for functions that have

multiple parameters in their input lists.  Combinations of parameter test values are tested

exhaustively by nested iteration.  For example, testing a three-parameter function is

illustrated in the simplified pseudocode shown in Figure 4.  The corresponding real code is

automatically generated given just a function name and a typed parameter list.  In real

testing a separate process is spawned for each test to facilitate the measurement of system

response.

3.2.3  Per-function test scaffolding
An important benefit of the parameter-based test case generation approach used by

Ballista is that no per-function test scaffolding is necessary.  In the pseudocode in Figure 4

any test taking the parameter types (fd, buf, len) could be tested simply by changing the

read to some other function name.  All test scaffolding creation is both independent of the

behavior of the function being tested, and completely encapsulated in the testing objects.

3.3  Robustness measurement
The response of the MuT is measured in terms of the CRASH scale. [9]  In this scale the

response lies in one of six categories:  Catastrophic (the system crashes or hangs), Restart

(the test process hangs), Abort (the test process terminates abnormally, i.e. “core dump”),

Figure 3. Code for an example constructor.  fd_testfilename is a standard test file name
used by all constructors for file descriptors, *param is the parameter used in the
subsequent call to the MuT, and the variable fd_tempfd is used later by the
destructor.

case FD_OPEN_RD:
  create_file (fd_testfilename);
  fd_tempfd = open (fd_testfilename, O_RDONLY);
  *param = fd_tempfd;
  break;
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Silent (the test process exits without an error code, when one should have been returned),

Hindering (the test process exits with an error code not relevant to any exceptional input

parameter value), and Pass (the module exits properly, with a correct error code if

appropriate).  In order to achieve automated testing in the absence of specification

information, Silent and Hindering failures are not differentiated from Passes.  Restarts and

Aborts are detected by checking the status of the spawned test processes (using wait()).

Catastrophic failures are detected when the tester is restarted after having been interrupted

in the middle of a test cycle.

4   Implementation
The Ballista approach to robustness testing has been implemented for a set of 233

POSIX calls, including realtime extensions for C.   Specifically, all system calls defined in the

IEEE 1003.1b standard [3] (“POSIX.1b,” or “POSIX with realtime extensions”) were tested

except for calls that take no arguments, such as getpid(); calls that do not return, such as

exit(); and calls that send signals, such as kill().  POSIX calls were chosen as an example

application because they form a reasonably complex set of functionality, and are widely

available in a number of mature commercial implementations.

Figure 4. Example code for executing all tests for the function read().  In each iteration
constructors create system state, the test is executed, and destructors restore system
state to pre-test conditions.

/* test function read (fd, buf, len) */
foreach ( fd_case ) {
  foreach ( buf_case ) {
    foreach ( len_case ) {
      fd_type  fd (fd_case);    /* constructors create instances */
      buf_type buf (buf_case);
      len_type len (len_case);

      puts (“starting test...”);
      read (fd, buf, len);
      puts (“...test completed”);

      ~fd();  ~buf();  ~len();         /* destructors - clean up */
    } } }
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4.1  Test case database
Table 1 shows that only 20 data types

were necessary for testing the 233 POSIX

calls.  The constructor and destructor code

for each test value is typically from one to fif-

teen lines of C code.  (See the Appendix for

an example of code for the filename data

type, as well as a sample function specifica-

tion file and a sample test result file.)  Cur-

rent test values were chosen based on the

Ballista programming team’s experience

with software defects and knowledge of com-

piler and operating system behavior, using

the criteria described in Section 3.2.1.  Test-

ing objects fall into the categories of base

type objects and specialized objects.

The only base type objects required to

test the POSIX functions are integers, floats,

and pointers to memory space.  Test values

for these data types include:

• Integer data type: 0, 1, -1, INT_MIN,

INT_MAX, selected powers of two,

powers of two minus one, and pow-

ers of two plus one.

• Float data type: 0, 1.0, -1.0,

±DBL_MIN, ±DBL_MAX, pi, and e

• Pointer data type: NULL, -1 (cast to

a pointer), pointer to free()’ed

memory, pointers to malloc()’ed

buffers of various powers of two in size including 231 bytes (if that much can be

successfully allocated by malloc()).  Some pointers are placed near the end of

Table 1. Data types used in POSIX test-
ing.  Only 20 data types were
necessary for testing 233 POSIX
system calls.

Data Type

Number 
of 

Functions 
Requiring

Number 
of Test 
Cases

string 71 9

buffer 63 15

integer 55 16

bit masks 35 4

filename 32 9

file descriptor 27 13

FILE pointer 25 11

float 22 9

process ID 13 9

file mode 10 7

semaphore 7 8

AIO cntrl block 6 20

message queue 6 6

file open flags 6 9

signal set 5 7

simplified int 4 11

pointer to int 3 6

DIR pointer 3 7

timeout 3 4

size 2 9
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allocated memory to test the effects of accessing memory on virtual memory pages

just past valid addresses.

Specialized testing objects build upon base type object test values but add in special

information to create and initialize data structures or other system state such as files.  Some

examples include:

• String data type (based on the pointer base type): includes NULL, -1 (cast to a

pointer), pointer to an empty string, a string as large as a virtual memory page, a

string 64K bytes in length, a string having randomly selected characters, a string

with pernicious file open permissions (e.g., “rwb+-x”), and a string with a pernicious

printf() format (e.g., “%99999d%999.999f%999s”).

• File descriptor (based on the integer base type): includes -1, INT_MAX, and various

descriptors: to a file open for reading, to a file open for writing, to a file whose offset

is set to end of file, to an empty file, and to a file deleted after the file descriptor was

assigned.

The above test values by no means represent all possible exceptional conditions and

were chosen simply to explore a reasonably large input space.  Future work could include

studying ways to expand and automate the exploration of the exceptional input space.

Nonetheless, experimental results show that even these relatively simple test values expose

a significant number of robustness problems with mature software components.

A special feature of the test value database is that it is organized for automatic

extraction of single-test-case programs.  In other words, code for the various constructors

and destructors for the particular test values of interest can be automatically extracted and

placed in a single simple program that contains information for producing exactly one test

case.  This ability makes it easier to reproduce a robustness failure in isolation and

facilitates creation of bug reports.

4.2  Test generation
In its simplest operating mode Ballista generates an exhaustive set of test cases that

spans the cross product of all test values for each module input parameter.  So, for example,

the function read() would combine (per Table 1) 13 test values for the file descriptor, 15 test

values for the buffer, and 16 test values for the integer length parameter, for a total of

13x15x16=3120 test cases.
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Thus, the number of test cases for a particular MuT is determined by the number and

type of input parameters and is exponential with the number of parameters.  Most functions

have fewer than 5000 tests; however, the seven POSIX functions listed in Table 2 exceed

that, so combinations of parameter test values are pseudorandomly selected up to an

arbitrary limit of 5000 test cases.  In order to ensure comparability across systems and

between different runs on the same system, the random number generator is seeded based

on the function name, so for a given function the same tests are always run.  A comparison of

the results of random sampling to exhaustive testing (see Table 2) shows that the results can

be expected to be very close (within less than one percentage point).

Table 2: Random Sampling vs. Exhaustive Testing
(Digital UNIX 3.2)

Function Total Tests

Failure Rate 
from 

Complete 
Testing

Tests Run 
Randomly

Failure Rate 
from 

Random 
Testing

Percentage 
Point 

Difference

fread 49,152 29.9% 5000 30.8% 0.9%

fwrite 30,720 23.2% 5000 23.1% 0.1%

mmap 2,809,856 0% 5000 0% 0%

mq_receive 28,672 0% 5000 0% 0%

mq_send 19,712 0% 5000 0% 0%

strftime 25,600 75.6% 5000 75.5% 0.1%

timer_settime 7840 21.4% 5000 21.7% 0.3%



15

5   Experimental Results
The Ballista POSIX robustness test suite has been ported to the nine operating

systems listed in Table 3 with no code modification.  (In two cases the operating systems

tested are significantly different versions from the same vendor.)  On each operating system

(OS) as many of the 233 POSIX calls were tested as were provided by the vendor.  The

compiler and libraries used were those supplied by the system vendor (in the case of Linux

these were the GNU C tools).

5.1  Results of testing POSIX operating systems
Table 3 shows that the combinational use of test values over a number of functions

produced a reasonably large number of tests, ranging from 92,658 for the two OSes that

supported all 233 POSIX functions to 63,913 for HP-UX.  None of the OSes took more than

three hours to test, so on average less than a minute was required for each function.

Catastrophic failures occurred in one function in IRIX, munmap(), requiring rebooting

the workstation, and in two functions in QNX, munmap() and mprotect().  All OSes had

relatively few Restart failures (task hangs).  On the other hand, every OS exhibited a

significant number of Abort failures (abnormal task terminations).

Table 3: Summary of robustness testing results

System
POSIX

Functions
Tested

Fns. with
Catastr.
Failures

Fns. with
Restart
Failures

Fns. with
Abort

Failures

Fns. with
No

Failures

Number of
Tests

Restart
Failures

Abort
Failures

Normal-
ized

Failure
Rate

AIX 4.1 186 0 4 77 108 (58%) 64,009 13 11,559 10.0%

Digital UNIX 3.2 232 0 2 136 96 (41%) 92,628 17 18,074 15.6%

Digital UNIX 4.0 233 0 2 124 109 (47%) 92,658 17 18,316 15.0%

HP-UX A.09.05 186 0 3 87 98 (53%) 63,913 13 11,208 11.3%

IRIX 6.2 226 1 0 94 131 (58%) 91,470 0 15,086 12.6%

Linux 2.0.18 190 0 3 86 104 (55%) 64,513 9 11,986 12.5%

QNX 4.22 205 2 6 125 75 (37%) 73,508 505 20,068 20.7%

SunOS 4.1.3 189 0 2 104 85 (45%) 64,503 7 14,227 15.8%

SunOS 5.5.1 233 0 2 103 129 (55%) 92,658 28 15,376 14.6%
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The main trend to notice in Table 3 is that from 37% to 58% of functions did not exhibit

robustness failures under testing.  This indicates that, even in the best case, about half the

functions had at least one robustness failure.

5.2  Detailed per-function results
It would be simple to list the number of test cases that produced different types of

robustness failures, but it is difficult to draw conclusions from such a listing because some

functions have far more tests than other functions as a result of the combinatorial explosion

of test cases with multiparametered functions.  Instead, the number of failures are reported

as a percentage of tests on a per-function basis.  Figures 5a and 5b graph the per-function

percent of failed test cases for the 233 functions of Digital UNIX 4.0 and SunOS 5.5.1,

respectively.  Providing normalized failure rates conveys a sense of the probability of failure

of a function when presented with exceptional inputs, independent of the varying number of

test cases executed on each function.

The two functions in both Figures 5a and 5b with 100% failure rates are longjmp() and

siglongjmp(), which perform control flow transfers to a target address.  These functions are

not required by the POSIX standard to recover from exceptional target addresses, and it is

easy to see why such a function would abort on almost any invalid address provided to it.

Nonetheless, one could envision a version of this function that could recover from such a

situation.  Similarly, one can argue that most of the remaining functions should return error

codes rather than failing for a broad range of exceptional inputs.

The other function in Figure 5b with a 100% failure rate is asctime(), whose sole

parameter is of type struct tm *.  Due to the difficulty of writing tests for structs in the

current implementation (see Section 7, Future Work), asctime() was tested with a generic

pointer type.  Since none of the generic tests generate a parameter conforming to the type

struct tm *, many of the tests looked the same to asctime(), which explains all the

responses being the same.

Graphs similar to those in Figure 5, for the remainder of the OSes, can be found in the

Appendix.  The gray areas denote functions not available on an OS.  A comparison of all

these graphs shows that the functions failing were not necessarily the same across different

OSes.  However, two groups of functions that generally failed on all systems are the C
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Figure 5. Normalized failure rates for 233 POSIX functions on Digital UNIX 4.0 and SunOS
5.5.1.  The data represent 92,658 tests spanning the 233 functions.
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standard library string and file functions, often due to the same invalid parameters: NULL

and other invalid pointers.

5.3  Comparing results among implementations
One possible use for robustness testing results is to compare different implementations

of the same API.  For example, one might be deciding which off-the-shelf operating system to

use.  It might be useful to compare the robustness results of different operating systems and

avoid those that were significantly less robust than others.  In application areas other than

operating systems there might still be possible sources of identical or roughly equivalent

APIs that could be similarly evaluated, such as graphic libraries or database engines.

Figure 6 shows normalized failure rates for the OSes measured.  Each failure rate is

the arithmetic mean of the normalized failure rates for each function, including both

functions that fail and functions that are failure-free.  So, the normalized failure rates

Normalized Failure Rates Averaged Over Functions

Average Normalized Failure Rate

0% 5% 10% 15% 20% 25%

AIX 4.1

Digital Unix3.2

Digital Unix4.0

HP-UX A.09.05

IRIX 6.2

Linux 2.0.18

QNX 4.22

SunOS 4.1.3

SunOS 5.5.1

Abort Failures
Restart Failures

14.6%

15.8%

20.7%

12.5%

12.6%

11.3%

15.0%

15.6%

10.0%

Figure 6. Normalized failure rates for nine POSIX operating systems.  Catastrophic failures are
not included due to the difficulty of retaining test result information across system
crashes.
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represent a failure probability metric for an OS implementation conditional upon the actual

exceptional input distribution of the current Ballista test cases.  As such, they are probably

most useful as relative measures of the robustness of an entire API.

It is important to note that the results do not purport to report the number of software

defects (“bugs”) in the modules that have been tested.  Rather, they report the number of

times that inputs elicit faulty responses due to one or more robustness deficiencies within

the software being tested.  From a user’s perspective it is not as important how many bugs

are within COTS software as the likelihood of triggering a failure response due to a

robustness deficiency.

6   Generic applicability of the methodology
The successful experience of the Ballista methodology in testing implementations of

the POSIX API suggests that it may be a useful technique for robustness testing of generic

COTS software modules.  Different aspects of the Ballista methodology that are important

for generic applicability include: scalability, portability, cost of implementation, and

effectiveness.

6.1  Scalability
Testing a new software module with Ballista often incurs no incremental test case

development cost.  In cases where the data types used by a new software module are already

included in the test database, testing is accomplished simply by defining the interface to the

module in terms of data types and running a test.  For example, once tests for a file

descriptor, buffer, and length are created to enable testing the function read(), other

functions such as write(), dup(), and close() can be tested using the same data types.

Furthermore, the data types buffer and length would have already been defined if these

functions were tested after tests had been created for functions such as memcpy().  Even

when data types are not available it may be possible to substitute a more generic data type

or base data type for an initial but limited assessment (for example, a generic memory

pointer may be somewhat useful for testing a pointer to a special data structure).

In addition, specific data type test values and even new data types can be added

without invalidating previous results.  Such additions can augment existing test results,

making rerunning all previous tests unnecessary.  Furthermore, the system reorganizes

itself automatically whenever additions or other changes are made, eliminating the need to

revise the test harness infrastructure after each change.
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The number of tests to be run can be limited using random sampling or specific

parameter variation.  Random sampling allows the execution time of testing a module to be

kept low even with a large search space.  Parameter variation can be used to produce a

specific subset of the complete tests for a module; one or more parameters are held constant

while the others are varied.  As the degenerate case, a single test case can be run

individually.  This can be useful for obtaining one specific result, possibly to compare it to the

same test case run as a part of a complete test run, or run under different system conditions

(to verify repeatability).  (Note that the ability to run a single test case is separate from the

capability to automatically extract standalone code that runs a single test case.)

6.2  Portability
The Ballista approach has proven portable across platforms, and promises to be

portable across applications.  The Ballista tests have been ported to nine processor/operating

system pairs.  This demonstrates that high-level robustness testing can be conducted

without any hardware or operating system modifications.  Furthermore, the use of

normalized failure reporting supports direct comparisons among different implementations

of an API executing on different platforms.

In a somewhat different sense, Ballista seems to be portable across different

applications.  The POSIX API encompasses functions including file handling, string

handling, I/O, task handling, and even mathematical functions.  No changes or exceptions to

the Ballista approach were necessary in spanning this large range of functionality, so it

seems likely that Ballista will be useful for a significant number of other applications as

well.

6.3  Testing cost
One of the biggest unknowns when embarking upon a full-scale demonstration of the

Ballista methodology was the amount of test scaffolding that would have to be erected for

each function tested.  In the worst case, special-purpose code would have been necessary for

each of the 233 POSIX functions tested.  If that had been the case, it would have resulted in

a significant cost for constructing tests for automatic execution (a testing cost linear with the

number of modules to be tested).



21

However, the adoption of an object-

oriented approach based on data type

yielded an expense for creating test cases

that was sublinear with the number of

modules tested.  Figure 7 is a graph of

functions testable versus data types

implemented, for the POSIX test set.

The figure shows that implementing just

a few data types enables most of the func-

tions to be testable.  Eventually the curve

levels off, but the incremental cost is still

linear at worst.  The key observation is

that in a typical program there may be

fewer data types than functions—the

same data types are used over and over

when creating function declarations.  In

the case of POSIX calls, only 20 data types were used by 233 functions, so the effort in creat-

ing the test suite was driven by the 20 data types, not by the number of functions.

Although we have not conducted the exercise, it seems likely the Ballista testing

approach will also work with an object-oriented software system.  The effort involved in

preparing for automated testing would be proportional to the number of object classes (data

types) rather than the number of methods within each class.  In fact, one could envision

robustness testing information being added as a standard part of programming practice

when creating a new class, just as debugging print statements might be added.  Thus, a

transition to object-oriented programming should have little effect on the cost and

effectiveness of the Ballista testing methodology.

6.4  Effectiveness
The Ballista testing fault model is fairly simplistic: single function calls that result in a

crash or hang.  It specifically does not encompass sequences of calls.  Nonetheless, it is

sufficient to uncover a significant number of robustness problems.  Part of this may be that

such problems are easy to uncover, but part of it may also be that the object-oriented testing

approach is more powerful than it appears upon first thought.
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In particular, a significant amount of system state may be set by the constructor for

each instance of a data type test value.  For example, a file descriptor test value might create

a particular file with associated permissions, access mode, and contents as part of its

constructor operation.  Thus, a single test case can in many cases replace a sequence of tests

that would otherwise have to be executed to create and test a function in the context of a

particular system state. In other words, a series of calls to achieve a given system state can

be simulated by a constructor that in effect jumps directly to a desired system state without

need for a sequence of calls in a test.

A high emphasis has been placed on reproducibility within Ballista.  In 99% of the

80,232 cases attempted, extracting a single test case into a standalone test program leads to

a reproduction of robustness failures.  In a few cases having to do with the location of buffers

the failure is reproducible only by executing a single test case within the testing harness

(but, is reproducible in the harness and presumably has to do with how the data structures

have been arranged in memory).

The only situation in which Ballista results have been found to lack reproducibility is

in some Catastrophic failures (complete system crashes).  On two systems (IRIX and QNX,

as per the results presented above), system crashes were completely reproducible.  On

Digital UNIX 3.2 with an external swap partition mounted (different conditions from those

under which the results presented above were obtained), it appeared that a succession of two

or three test cases could produce a system crash from the function mq_receive(), probably

having to do either with internal operating system state being damaged by one call resulting

in the crash of a second call, or with latent manifestation of the error.

In all cases, however, robustness failures have been reproducible by rerunning the

Ballista test programs, and could be recreated under varying system loads including

otherwise idle systems.

7   Future Work
The robustness results reported here are unweighted normalized averages.  It may be

useful to be able to weight the data according to relative frequencies of module calls in actual

programs, so that the robustness results better reflect the likelihood of a specific program or

application encountering nonrobust behavior.  Modules used more often could be weighted

more heavily than seldom-used modules.  A more extensive analysis could determine
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relative frequencies of actual parameters passed to modules.  With these weights applied to

robustness data, a more practically accurate measure of robustness could be available.

Current Ballista testing searches for robustness faults using heuristically created test

cases.  Future work could include both random and patterned coverage of the entire function

input space in order to produce better information about the size and shape of input regions

producing error responses, and to generate statistical information about test coverage.

In the Ballista implementation presented here, the data type test databases were built

as objects, but without taking advantage of the hierarchy present in many data types (e.g., a

filename is a type of character string, which is a type of pointer (char *)).  Building the test

database hierarchically could make database creation and expansion even easier, as well as

enabling hierarchical data types (e.g., structs in C) to be built with very little extra effort.

If COTS software is to be used in mission-critical applications, it may be beneficial to

provide a mechanism that could keep a software component from behaving in a nonrobust

manner.  One way to do this could be to create a software wrapper to encapsulate a COTS

component.  The wrapper would discard calls to the component that would cause the

component to behave nonrobustly.  Ballista-type testing could be used in creating the

wrapper, generating a list of which function/parameter combinations are dangerous

(eliciting Catastrophic, Restart, or Abort failures during Ballista testing) so that those calls

are not passed to the component.

8   Conclusions
The Ballista methodology can automatically assess the robustness of software

components in response to exceptional input parameter values.  This has been demonstrated

by a full-scale implementation and application to POSIX operating system calls, in which as

many as 233 functions were tested on each of nine commercially available operating

systems.  Even in these mature sets of software, about half the functions tested exhibited

robustness failures with a normalized failure rate of from 10% to 21%, and even

Catastrophic failures were found in several operating systems.  

An object-oriented approach based on data types rather than component functionality

is the key to the Ballista methodology.  This was found to be inexpensive to implement

because the test database development was proportional to the number of data types (20
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data types) instead of the number of functions tested (233 functions) or the number of tests

executed (up to 92,658 tests).

This high-level approach has enabled Ballista testing to be highly repeatable, portable,

and extendable.  The implementation presented here tested a wide variety of system calls on

a number of different operating systems, without modification.  The results obtained are

able to be recreated by running the tests again.  Finally, by basing tests on parameter data

types, new functions can be added to the test set for low (often zero) cost.

The major contribution of this Master’s project has been to develop and implement the

Ballista approach, which has been shown to be an effective method for robustness testing.  It

has produced practical results that could help evaluate and improve current software, and it

also shows promise as the basis for more sophisticated and comprehensive test methods.
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Appendix

Code for filename data type

/* fname.c
 *
 * Data object constructor for filenames
 * Written by Nathan Kropp; Test cases by Nathan Kropp and Chris Dingman
 * For Master’s project, CMU, 1997
 * 4 June 1997
 *
 */

#include “types.h”
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include “support.h”

#define FNAME_NOEXIST   0
#define FNAME_EMBED_SPC 1
#define FNAME_LONG      2
#define FNAME_CLOSED    3
#define FNAME_OPEN_RD   4
#define FNAME_OPEN_WR   5
#define FNAME_EMPTY_STR 6
#define FNAME_RAND      7
#define FNAME_NEG       8
#define FNAME_NULL      9
#define NUM_VALUES      10      /* Must equal prev line + 1 (and  */
                               /*  prev line must be the max)    */

int Get_FNAME (char *param_name[PARAM_NAME_LEN],
                        char **param,
                        int value)
{
   /* The following table must match the above #defines */
   char *param_name_table[] = {
      “FNAME_NOEXIST”,
      “FNAME_EMBED_SPC”,
      “FNAME_LONG”,
      “FNAME_CLOSED”,
      “FNAME_OPEN_RD”,
      “FNAME_OPEN_WR”,
      “FNAME_EMPTY_STR”,
      “FNAME_RAND”,
      “FNAME_NEG”,
      “FNAME_NULL”
   };

   /* local var declarations go here */
   /* VARS */
   int fname_tempfd;
   char *fname_testfilename;
   static int fname_count;      /* count for multiple instances */
   char fname_count_str [127];  /* count, in string format      */
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   /* end VARS */

   if ( param == NULL ) {
      /* initialization stuff here */
      /* INIT */
      fname_count = 0;
      /* end INIT */

      return (NUM_VALUES);
   }
   assert (param_name != NULL);

   /* global setup here */
   /* SETUP */
   fname_count++;
   sprintf (fname_count_str, “_fname%d”, fname_count);
   fname_testfilename = (char *) malloc (strlen (TESTFILE) + strlen (fname_count_str) + 2048);
                                                /* + 2048 to be safe below */
   strcpy (fname_testfilename, TESTFILE);
   strcat (fname_testfilename, fname_count_str);
   /* end SETUP */

   switch ( value )
   {
    case FNAME_NOEXIST:
      unlink (fname_testfilename);
      *param = fname_testfilename;
      break;

    case FNAME_EMBED_SPC:
      strcpy (fname_testfilename, TESTDIR);
      strcat (fname_testfilename, “ space here”);
      unlink (fname_testfilename);
      *param = fname_testfilename;
      break;

    case FNAME_LONG:
      strcpy (fname_testfilename, TESTDIR);
      sup_fill (fname_testfilename + strlen (fname_testfilename), 1028);
      fname_testfilename [1027] = ‘\0’;
      *param = fname_testfilename;
      break;

    case FNAME_CLOSED:
      sup_createfile (fname_testfilename);
      fname_tempfd = open (fname_testfilename, O_RDONLY);
      close (fname_tempfd);
      *param = fname_testfilename;
      break;

    case FNAME_OPEN_RD:
      sup_createfile (fname_testfilename);
      fname_tempfd = open (fname_testfilename, O_RDONLY);
      *param = fname_testfilename;
      break;

    case FNAME_OPEN_WR:
      sup_createfile (fname_testfilename);
      fname_tempfd = open (fname_testfilename, O_WRONLY);
      *param = fname_testfilename;
      break;

    case FNAME_EMPTY_STR:
      *fname_testfilename = ‘\0’;
      *param = fname_testfilename;
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      break;

    case FNAME_RAND:
      *param = (char *) ( (unsigned long) fname_testfilename < 194670 ?
                        (unsigned long) fname_testfilename+194675 :
                        (unsigned long) fname_testfilename-194675 );
         /* that keeps it positive */
      break;

    case FNAME_NEG:
      *param = (char *) -1;
      break;

    case FNAME_NULL:
      *param = NULL;
      break;

    default:
      fprintf (stderr, “Error: Unknown filename type [%d]\n”, value);
   }

   /* global teardown here */

   *param_name = param_name_table [value];
   return (0);
}
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Sample function specification file

# Format of a function specification line:
#
# <#include file>  <return type>  <FUNCTION NAME>  <param1 type>  <param2 type>  ...
#

file_group:
unistd int access fname mode
unistd int chdir fname
sys/stat int chmod fname fmode
unistd int chown fname pid pid
unistd int close fd
fcntl int creat fname fmode
unistd int dup fd
unistd int dup2 fd fd
sys/stat int fchmod fd fmode
fcntl int fcntl fd mode int
fcntl int fcntl fd mode oflags
unistd int fdatasync fd
sys/stat int fstat fd buf
unistd int fsync fd
unistd int ftruncate fd int
unistd char* getcwd buf int
unistd int link fname fname
unistd int lseek fd int mode
sys/stat int mkdir fname fmode
sys/stat int mkfifo fname fmode
fcntl int open fname oflags
fcntl int open fname oflags fmode
unistd int read fd buf int
unistd int rename fname fname
unistd int rmdir fname
sys/stat int stat fname buf
sys/stat int umask fmode
unistd int unlink fname
unistd int write fd str int
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Sample test result file

Results from CRASHmarks OS robustness test suite

OS under test:  OSF1 V3.2
Run date:  Thu 22 Jan 1998  09:16:52 EST
CRASHmarks version:  0.90

System call chmod 40/40
FNAME_NOEXIST FMODE_ZERO Done - Pass 2
FNAME_NOEXIST FMODE_ONE Done - Pass 2
FNAME_NOEXIST FMODE_ALL Done - Pass 2
FNAME_NOEXIST FMODE_NEG_ONE Done - Pass 2
FNAME_EMBED_SPC FMODE_ZERO Done - Pass 2
FNAME_EMBED_SPC FMODE_ONE Done - Pass 2
FNAME_EMBED_SPC FMODE_ALL Done - Pass 2
FNAME_EMBED_SPC FMODE_NEG_ONE Done - Pass 2
FNAME_LONG FMODE_ZERO Done - Pass 63
FNAME_LONG FMODE_ONE Done - Pass 63
FNAME_LONG FMODE_ALL Done - Pass 63
FNAME_LONG FMODE_NEG_ONE Done - Pass 63
FNAME_CLOSED FMODE_ZERO Done - Pass 0
FNAME_CLOSED FMODE_ONE Done - Pass 0
FNAME_CLOSED FMODE_ALL Done - Pass 0
FNAME_CLOSED FMODE_NEG_ONE Done - Pass 0
FNAME_OPEN_RD FMODE_ZERO Done - Pass 0
FNAME_OPEN_RD FMODE_ONE Done - Pass 0
FNAME_OPEN_RD FMODE_ALL Done - Pass 0
FNAME_OPEN_RD FMODE_NEG_ONE Done - Pass 0
FNAME_OPEN_WR FMODE_ZERO Done - Pass 0
FNAME_OPEN_WR FMODE_ONE Done - Pass 0
FNAME_OPEN_WR FMODE_ALL Done - Pass 0
FNAME_OPEN_WR FMODE_NEG_ONE Done - Pass 0
FNAME_EMPTY_STR FMODE_ZERO Done - Pass 2
FNAME_EMPTY_STR FMODE_ONE Done - Pass 2
FNAME_EMPTY_STR FMODE_ALL Done - Pass 2
FNAME_EMPTY_STR FMODE_NEG_ONE Done - Pass 2
FNAME_NEG FMODE_ZERO Done - Pass 14
FNAME_NEG FMODE_ONE Done - Pass 14
FNAME_NEG FMODE_ALL Done - Pass 14
FNAME_NEG FMODE_NEG_ONE Done - Pass 14
FNAME_NULL FMODE_ZERO Done - Pass 14
FNAME_NULL FMODE_ONE Done - Pass 14
FNAME_NULL FMODE_ALL Done - Pass 14
FNAME_NULL FMODE_NEG_ONE Done - Pass 14

System call pipe 16/16
BUF_SMALL Done - Pass 0
BUF_MED Done - Pass 0
BUF_LARGE Done - Abort -1
BUF_XLARGE Done - Abort -1
BUF_HUGE Done - Abort -1
BUF_MAX Done - Abort -1
BUF_64K Done - Pass 0
BUF_END_MED Done - Pass 0
BUF_FAR_PAST Done - Abort -1
BUF_ODD Done - Pass 0
BUF_FREED Done - Pass 0
BUF_CODE Done - Abort -1
BUF_LOW Done - Abort -1
BUF_NULL Done - Abort -1
BUF_NEG Done - Abort -1
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Results of Robustness Testing of Other Operating Systems

AIX 4.1 Robustness Failures
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Digital Unix 3.2 Robustness Failures

233 POSIX FUNCTIONS (alphabetical by function name)

ab
s 

ai
o_

er
ro

r 
ai

o_
w

rit
e 

at
an

 
at

ol
 

cf
ge

to
sp

ee
d 

ch
m

od
 

cl
oc

k_
ge

tti
m

e 
co

s 
ct

im
e 

ex
ec

le
 

ex
ec

vp
 

fc
lo

se
 

fe
of

 
fg

et
s 

fo
pe

n 
fp

ut
s 

fre
xp

 
fs

yn
c 

ge
tc

 
ge

tg
rn

am
 

ge
ts

 
is

at
ty

 
is

lo
w

er
 

is
up

pe
r 

lio
_l

is
tio

 
lo

ng
jm

p 
m

kf
ifo

 
m

m
ap

 

m
q_

ge
ta

ttr
 

m
q_

se
nd

 
m

un
lo

ck
 

op
en

di
r 

po
w

 
pu

ts
 

re
m

ov
e 

rm
di

r 

sc
he

d_
ge

tp
ar

am
 

sc
he

d_
se

ts
ch

ed
u

se
m

_i
ni

t 

se
m

_u
nl

in
k 

se
tjm

p 
sh

m
_o

pe
n 

si
gd

el
se

t 

si
gl

on
gj

m
p 

si
gt

im
ed

w
ai

t 
sq

rt 
st

rc
at

 
st

rc
sp

n 
st

rn
cm

p 
st

rs
pn

 
ta

n 
tc

flu
sh

 
tc

se
ta

ttr
 

tim
er

_d
el

et
e 

tim
es

 
tty

na
m

e 
un

lin
k 

w
rit

e 

P
er

ce
nt

 o
f T

es
ts

 F
ai

lin
g,

 p
er

 fu
nc

tio
n

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%



32

HP-UX A.09.05 Robustness Failures

233 POSIX FUNCTIONS (alphabetical by function name)
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IRIX 6.2 Robustness Failures

233 POSIX FUNCTIONS (alphabetical by function name)
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Linux 2.0.18 Robustness Failures
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QNX 4.22 Robustness Failures
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SunOS 4.1.3 Robustness Failures

233 POSIX FUNCTIONS (alphabetical by function name)
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